By Direct Decomposition Of Binary Compound; E.g., Chemical Storage, Etc. Patents (Class 423/658.2)
  • Patent number: 7959898
    Abstract: Disclosed is super water absorbent polymers applied to contain water, and the polymers may further collocate with water absorbent cotton materials to accelerate water absorbent rates. The described water absorbent materials are combined with solid hydrogen fuel to complete a stable hydrogen supply device. Performance of the hydrogen supply device is not effected by inverting or tilting thereof. Even if inverting or tilting the device, the water contained in the water absorbent materials does not flow out from the device. As such, the MEA film in the fuel cell connected to the hydrogen supply device will not blocked by the water, thereby avoiding the fuel cell performance degradation even breakdown.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: June 14, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Chan-Li Hsueh, Jie-Ren Ku, Ya-Yi Hsu, Shing-Fen Tsai, Reiko Ohara, Chien-Chang Hung, Cheng-Yen Chen, Ming-Shan Jeng, Fanghei Tsau
  • Publication number: 20110135563
    Abstract: A filter material for generating oxygen and/or hydrogen gas from a source having a porous boron doped carbon film with diRuthenium/diRuthenium molecules in direct contact with the porous boron doped carbon film, a synthetic film having at least one zeolite crystalline body in direct contact with the nanocarbon tubules, or both in a continuous alternating arrangement.
    Type: Application
    Filed: September 14, 2010
    Publication date: June 9, 2011
    Inventor: Binyomin A. Cohen
  • Publication number: 20110131991
    Abstract: Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 9, 2011
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Chang H. Oh, Eung Soo Kim, Steven R. Sherman
  • Publication number: 20110114037
    Abstract: Energy recovery systems can utilize waste heat from an internal combustion engine or other base energy conversion system in the operation of hydrogen processors. Some energy recovery systems can utilize more than one source of waste heat from the energy converting system for this purpose.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 19, 2011
    Applicant: Paradigm Waterworks, LLC
    Inventor: Lyle Bates
  • Patent number: 7939461
    Abstract: A catalyst for the decomposition of formic acid including a dinuclear metal complex represented by a formula (1) below, a tautomer or stereoisomer thereof, or any of their salts, where M1 and M2 are transition metals; Ar is a ligand having aromaticity and may be unsubstituted or substituted; R1 to R27 are each independently a hydrogen atom, an alkyl group, or the like, or R15 and R16 may together form a —CH?CH—, where Hs in the —CH?CH— may be each independently replaced by an alkyl group or the like, and R23 and R24 may together form a —CH?CH—, where Hs in the —CH?CH— may be each independently replaced by an alkyl group or the like; L is an arbitrary ligand or is absent; and m is a positive integer, 0, or a negative integer.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: May 10, 2011
    Assignee: Osaka University
    Inventors: Shunichi Fukuzumi, Tomoyoshi Suenobu, Seiji Ogo
  • Patent number: 7938254
    Abstract: A capsule having a hydrogen gas permeable shell with solid-state hydride material, such as hydrogen rich LiAlH4, Li3AlH6, and/or AlH3 encapsulated therein. The hydrogen gas permeable shell has pores that are between about 1 nm to about 150 ?m in diameter to allow hydrogen gas to be extracted from the capsule. After passing the capsule through a hydrogen extraction zone, the capsule containing the spent solid-state hydride material is removed and is sent to recycling, wherein the capsule is opened to remove the spent solid-state hydride material, and the spent solid-state hydride material is rehydrogenated and repacked in a hydrogen gas permeable shell. The shell of the spent solid-state hydride material can be recycled and reused to make new shells.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: May 10, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: John J. Vajo, Tina T. Salguero
  • Publication number: 20110097260
    Abstract: A method of hydrogen and methane recovery from syngas from a gasifier is provided. Then directing a raw syngas stream from an acid gas removal system to a CO and methane removal system. Then returning the CO and methane stream to the gasifier, and exporting the hydrogen stream as a product. This method may include exchanging heat between a raw syngas stream from an acid gas removal system, a separated CO and methane stream, a separated hydrogen stream and a liquid nitrogen stream in a heat exchanger. Then directing the cooled raw syngas stream to a cryogenic Then returning the warmed separated CO and methane stream to the gasifier, and exporting the vaporized nitrogen stream as product.
    Type: Application
    Filed: October 28, 2009
    Publication date: April 28, 2011
    Applicant: Air Liquide Process & Construction, Inc.
    Inventors: Dennis A. Vauk, Bhadra S. Grover
  • Publication number: 20110076228
    Abstract: Hydrogen storage fuel compositions and devices comprising a mixture of at least one chemical hydride compound and at least one proton source, and methods for thermally initiated hydrogen generation from fuel compositions are disclosed. The fuel compositions comprise an excess of hydridic hydrogens relative to protic hydrogens. Fuel cartridges suitable for use with compositions which generate hydrogen upon the application of thermal initiation and methods for operating the fuel cartridges are also disclosed.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 31, 2011
    Applicant: PROTONEX TECHNOLOGY CORPORATION
    Inventors: Michael T. Kelly, Jeffrey V. Ortega
  • Publication number: 20110070142
    Abstract: The invention relates to a hydrogen reservoir comprising a substance suitable for storing hydrogen wherein said substance is made up of nano-structured silicon. It also relates to a process for manufacturing and a method for use of this hydrogen reservoir.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 24, 2011
    Applicants: Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse
    Inventors: Volodymyr LYSENKO, Christophe Jean-Paul Philippe Turpin
  • Publication number: 20110059009
    Abstract: A thermochemical water-splitting process all reactions of which operate at relatively low temperatures and high efficiencies, and in which relatively inexpensive materials and processing methods are made possible. This invention involves the decomposition of a metal halide compound, i.e., one which is capable of being reduced from a higher oxidation state to lower oxidation state, e.g. vanadium chloride III?vanadium dichloride. The process is cyclic and regenerative, and the only net inputs are water and heat; and the only net outputs are hydrogen and oxygen. The process makes it possible to utilize a wide variety of available heat, including solar, sources for the energy input.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 10, 2011
    Inventor: Steven Amendola
  • Patent number: 7901491
    Abstract: Disclosed herein is a hydrogen storage material comprising a metal hydride and an organic hydrogen carrier. Also disclosed herein is a hydrogen storage/fuel cell system which employs the hydrogen storage material.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Grigorii Lev Soloveichik
  • Patent number: 7901661
    Abstract: A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 8, 2011
    Assignee: The Penn State Research Foundation
    Inventors: Angela Lueking, Deepa Narayanan
  • Patent number: 7892521
    Abstract: The invention provides for the synthesis of a hydride directly from metal and water or metal and hydroxide or metal and aqueous hydrogen chloride. The hydride generated may be used as metal hydride slurry for on-board generation of hydrogen by reaction with water or with aqueous HCl.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: February 22, 2011
    Inventor: Surendra Saxena
  • Patent number: 7887781
    Abstract: In one aspect, the invention provides a method of storing hydrogen that comprises reacting two precursors to form a hydrogen storage composition comprising hydrogen, nitrogen, a Group 13 element, and an element selected from Group 1, Group 2 or mixtures thereof. In other aspects, the present invention provides a method of storing hydrogen by ball-milling two precursors at a temperature in a range sufficient to prevent pre-mature release of hydrogen, while the temperature is still sufficient to induce reaction between the precursors. The precursors preferably have X—H, Y—H and A-H bonds where X represents a Group 13 element, Y represents a Group 15 element, and A represents an element from Group 1, Group 2, or mixtures thereof. Other variations of the methods of storing hydrogen are further provided.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: February 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Alexandra N. Torgersen, Scott W. Jorgensen, Stacey E. Siporin
  • Publication number: 20110020215
    Abstract: A chemical hydride liquid reactant distribution mixture is provided. The mixture includes a fuel mixture having at least one hydride and at least one activating agent. The invention further includes a liquid-distributing agent (LDA), a form-stabilizing agent, and at least one anti-caking agent. The liquid reactant distribution mixture reduces caking and precipitation while promoting liquid reactant distribution, where the chemical hydride liquid reactant distribution mixture generates hydrogen via hydrolysis.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 27, 2011
    Inventors: WonHyoung Ryu, Daniel Braithwaite, Tibor Fabian
  • Patent number: 7862791
    Abstract: In one aspect, the invention provides a hydrogen storage material that is formed by reacting solid precursors (a) and (b). The (a) precursor is a compound containing X—H and Y—H bonds, where X is a Group 13 and Y is a Group 15 element. Preferably X is boron (B—H) and Y is nitrogen (N—H). Most preferably, the precursor (a) is borazane. The (b) precursor is preferably a hydride, such as LiH or LiAlH4. Another feature of the present invention is a novel hydrogen storage composition material that is formed as an intermediate (INT) in the reaction of the (a) with the (b) precursors. The INT hydrogen storage material can be a quaternary B—H—Li—N composition. Other aspects of hydrogen storage materials are provided herein.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: January 4, 2011
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Alexandra N. Torgersen, Scott W. Jorgensen, Stacey E. Siporin
  • Patent number: 7858068
    Abstract: A preferred embodiment of the present invention is a hydrogen gas storage and supply method, comprising (a) providing a dry, solid-state hydrogen fuel source comprising a solid metal hydride or chemical hydride and a reaction-controlling agent in a solid state, wherein the hydride and the reaction-controlling agent are mixed at a desired proportion; and (b) delivering a desired amount of a liquid reactant to contact and react with a desired amount of the solid-state fuel source to produce hydrogen gas continuously or intermittently on demand, responsive to the needs of a fuel cell.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: December 28, 2010
    Assignee: Nanotek Instruments, Inc.
    Inventors: Ian M. Fuller, Bor Z. Jang
  • Publication number: 20100322846
    Abstract: In one aspect, there is disclosed a process of forming a hydrogen material including the steps of providing a metal hydride material, providing a Bronsted acid material, combining the metal hydride material and Bronsted acid material, and pyrolyzing the combined material forming a hydrogen storage material having a hydrogen release temperature less than the metal hydride material.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Rana F. Mohtadi
  • Publication number: 20100323253
    Abstract: A process for forming lithium hydride for use in storing and producing hydrogen is presented. The process includes reacting lithium oxide with water to form a regenerated lithium hydroxide and reacting the regenerated lithium hydroxide with magnesium to form magnesium oxide and a regenerated lithium hydride. The magnesium oxide can be regenerated to form magnesium. The process can further include reacting lithium hydride to form hydrogen and lithium oxide. Such hydrogen production can include reaction between lithium hydride and lithium hydroxide, and/or reaction between lithium hydride and water.
    Type: Application
    Filed: February 22, 2007
    Publication date: December 23, 2010
    Applicant: UNIVERSITY OF UTAH RESARCH FOUNDATION
    Inventors: Zhigang Zak Fang, Jun Lu, Hong Yong Sohn
  • Publication number: 20100310952
    Abstract: Oil sand or other naturally occurring oil-containing mixtures are used to produce SiC and/or Si3N4. In a subsequent step, the Si3N4 is employed to produce ammonia (NH3).
    Type: Application
    Filed: May 28, 2010
    Publication date: December 9, 2010
    Applicant: SINCONO AG
    Inventor: Florian Krass
  • Patent number: 7846410
    Abstract: Method of producing ammonia borane, comprising providing polyborazylene; digesting the polyborazylene with a dithiol-containing agent to produce a boro-sulfide compound and a byproduct; converting the byproduct to the boro-sulfide product of step (b) by reaction with a first alkyl-tin hydride; and, converting the boro-sulfide compound produced in steps (b) and (c) to ammonia borane by reaction with a second alkyl-tin hydride.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: December 7, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Benjamin L. Davis, John C. Gordon
  • Patent number: 7842276
    Abstract: Organic pigments are capable of catalyzing the decomposition reaction of hydrogen-rich, stabilized, borohydride solutions to generate hydrogen gas on-board an operable hydrogen-consuming device such as a motor vehicle or other combustion engine. The organic pigments are used in hydrogen generating systems and in methods for controlling the generation of hydrogen gas from metal hydride solutions.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: November 30, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Clovis Alan Linkous, Darlene Kay Slattery, Danielle Delong Nangle
  • Patent number: 7837976
    Abstract: In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: November 23, 2010
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Gary Sandrock, James Reilly, Jason Graetz, James E. Wegrzyn
  • Patent number: 7833502
    Abstract: A process to efficiently remove sulfur compounds from a hydrocarbon stream in a refinery operation includes the production and recycle of hydrogen from the sulfur compounds. The sulfur compounds present in the hydrocarbon cut are converted to hydrogen sulphide which is split to hydrogen and sulfur in a non-thermal plasma reactor.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 16, 2010
    Assignee: ENI S.p.A.
    Inventors: Aldo Bosetti, Alberto de Angelis
  • Patent number: 7811957
    Abstract: Compositions are described for catalyzing or facilitating hydrogen transfer kinetics in various kinds of chemical reactions that depend on the efficiency of hydrogen relocation or exchange. One such composition has the formula M-H-E, where M is a metal, metalloid, alloy of a metal, alloy of a metalloid, compound of a metal or compound of a metalloid, H is hydrogen and E is an electronegative element. Another such composition is a hydrogen storage composition that includes the catalytic composition having the formula M-H-E and a hydride or a material capable of absorbing hydrogen to form a hydride.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: October 12, 2010
    Inventors: Alicja Zaluska, Leszek Zaluski
  • Patent number: 7807131
    Abstract: A hydrogen producing fuel comprises a chemical hydride and metal hydride. In one embodiment the chemical hydride evolves hydrogen spontaneously upon exposure to water vapor, and the metal hydride reversibly absorbs/desorbs hydrogen based on temperature and pressure. The hydrogen producing substance may be formed in the shape of a pellet and may be contained within a hydrogen and water vapor permeable, liquid water impermeable membrane.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: October 5, 2010
    Assignee: Honeywell International Inc.
    Inventor: Steven J. Eickhoff
  • Publication number: 20100239495
    Abstract: The present invention is: a hydride composite containing NaH and a metal salt containing an alkali earth metal or a transition metal; and a preparation process of a hydrogen gas including a reaction process to react such a hydride composite with an ammonia gas. Further, the present invention is: a hydride composite containing NaH, a metal salt containing an alkali earth metal or a transition metal, and an ammonia source that is a solid at ordinary temperatures and generates an ammonia gas by decomposition; and a preparation process of a hydrogen gas including a reaction process to heat such a hydride composite.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 23, 2010
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventor: Mitsuru Matsumoto
  • Patent number: 7799315
    Abstract: A thermochemical water-splitting process all reactions of which operate at relatively low temperatures and high efficiencies, and in which relatively inexpensive materials and processing methods are made possible. This invention involves the decomposition of a metal halide compound, i.e., one which is capable of being reduced from a higher oxidation state to lower oxidation state, e.g. vanadium chloride III?vanadium dichloride. The process is cyclic and regenerative, and the only net inputs are water and heat; and the only net outputs are hydrogen and oxygen. The process makes it possible to utilize a wide variety of available heat, including solar, sources for the energy input.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: September 21, 2010
    Inventor: Steven Amendola
  • Publication number: 20100233077
    Abstract: A solid hydrogen fuel is formed into a solid pressure-formed block. The method of manufacturing the solid hydrogen fuel includes following steps. First, at least a hydride powder and at least a hydrogen releasing catalyst powder are mixed well. Next, the mixed powder is bonded into a block by pressure. When in use, the solid hydrogen fuel is mixed with water to produce hydrogen. The hydride powder and water bring about a hydrogen releasing reaction. The hydride releasing catalyst powder is used for catalyzing the hydrogen releasing reaction to produce hydrogen. The solid hydride has higher hydrogen production and can release hydrogen completely.
    Type: Application
    Filed: May 27, 2009
    Publication date: September 16, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jie-Ren Ku, Shing-Fen Tsai, Ya-Yi Hsu, Chan-Li Hsueh, Ming-Shan Jeng, Fanghei Tsau
  • Patent number: 7790013
    Abstract: Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: September 7, 2010
    Assignee: Safe Hydrogen, LLC
    Inventors: Andrew W. McClaine, Kenneth Brown
  • Patent number: 7790133
    Abstract: A reversible hydrogen storage composition having an empirical formula of: Li(x+z)NxMgyBzHw where 0.4?x?0.8; 0.2?y?0.6; 0<z?0.4, x+y+z=1 and “w” varies from 0 to 2x+2y+4z. This composition shows greater low temperature reversible hydrogen storage compared to binary systems such as MgH2—LiNH2.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: September 7, 2010
    Assignees: UOP LLC, Ford Global Technologies, LLC
    Inventors: Syed A. Faheem, Gregory J. Lewis, J.W. Adriaan Sachtler, John J. Low, David A. Lesch, Paul M. Dosek, Christopher M. Wolverton, Donald J. Siegel, Andrea C. Sudik, Jun Yang
  • Patent number: 7785542
    Abstract: A hydrogen iodide manufacturing method which includes a step of producing aqueous solution of hydrogen iodide and sulfuric acid by causing iodine-containing aqueous solution and sulfur dioxide to react with each other in a pressurized condition. The pressurized condition may be of not lower than 0.1 MPa in gauge pressure. The method may further include: a separation step of adding iodine to the aqueous solution of hydrogen iodide and separating an upper phase containing sulfuric acid relatively to a large extent and a lower phase containing hydrogen iodide relatively to a large extent; and a step of producing hydrogen iodide by adding sulfur dioxide to the upper phase in a pressurized condition and extracting the produced hydrogen iodide to the lower phase.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryouta Takahashi, Hideki Nakamura, Kazuo Murakami, Haruhiko Takase, Noboru Jimbo, Kazuya Yamada
  • Patent number: 7780747
    Abstract: An apparatus and method including storage and dispensing vessels to safely store and dispense gaseous hydrides, where the storage and dispensing vessels contain a solid-phase physical sorbent medium having a physically sorptive affinity for gaseous hydrides, and wherein the gaseous hydride is decomposed in the apparatus to generate hydrogen gas. The gaseous hydrides include, but are not limited to, silane, germane, stibine and diborane. The gaseous hydrides decompose spontaneously and/or decomposition is enhanced using surface modified adsorbents. The hydrogen generated by the apparatus may be used in a fuel cell or other hydrogen gas consuming unit.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: August 24, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Jose I. Arno
  • Patent number: 7763227
    Abstract: A process for the manufacture of carbon disulfide comprising the following steps: (a) reacting carbon monoxide with hydrogen sulfide to form carbonyl sulfide and hydrogen; (b) contacting the carbonyl sulfide formed in step (a) with a catalyst effective for disproportionating carbonyl sulfide into carbon disulfide and carbon dioxide.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: July 27, 2010
    Assignee: Shell Oil Company
    Inventor: Dean Chien Wang
  • Patent number: 7763233
    Abstract: A device for generating hydrogen by hydrolysis of a hydride comprising a reactor containing the hydride in solid form, in the divided state or not, and comprising at least one orifice for removing the hydrogen produced; means for releasing the water required for the hydrolysis reaction; and at least one envelope suitable for isolating the hydride from the water required for the hydrolysis reaction, the envelope being made from a consumable material. According to the present invention, the envelope is suitable for contacting the water with the hydride in a site capable of serving as the seat of the hydrolysis reaction and of moving in the reactor as the material constituting the envelope is consumed by the hydrolysis reaction products.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: July 27, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Yves Laurent, Frédéric Gaillard, Philippe Capron, Denis Locatelli
  • Patent number: 7754641
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 13, 2010
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Patent number: 7736531
    Abstract: A chemical system for storing and releasing hydrogen utilizes an endothermic reaction that releases hydrogen coupled to an exothermic reaction to drive the process thermodynamically, or an exothermic reaction that releases hydrogen coupled to an endothermic reaction.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: June 15, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: David L. Thorn, William Tumas, Kevin C. Ott, Anthony K. Burrell
  • Patent number: 7731918
    Abstract: A method and device for loading a catalyst into a chamber. The catalyst loading is well suited for production of hydrogen producing microreactors. The catalyst is coated onto a strip which is mountable within the chamber.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: June 8, 2010
    Assignee: Intelligent Energy, Inc.
    Inventor: Anand Chellappa
  • Patent number: 7722853
    Abstract: Organic pigments are capable of catalyzing the decomposition reaction of hydrogen-rich, stabilized, borohydride solutions to generate hydrogen gas on-board an operable hydrogen-consuming device such as a motor vehicle or other combustion engine. The organic pigments are used in hydrogen generating systems and in methods for controlling the generation of hydrogen gas from metal hydride solutions.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: May 25, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Clovis Alan Linkous, Darlene Kay Slattery, Danielle Delong Nangle
  • Publication number: 20100111826
    Abstract: A novel method for producing hydrogen gas from water comprising adding water to the slag and carbonaceous flux to produce hydrogen by thermo-chemical decomposition of water.
    Type: Application
    Filed: June 13, 2006
    Publication date: May 6, 2010
    Applicant: Tata Steel Limited
    Inventors: Debashish Bhattacharjee, Tridibesh Mukharjee, Vilas Tathavadkar
  • Patent number: 7708815
    Abstract: Embodiments of the invention relate to a composite hydrogen storage material comprising active material particles and a binder, wherein the binder immobilizes the active material particles sufficient to maintain relative spatial relationships between the active material particles.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: May 4, 2010
    Assignee: Angstrom Power Incorporated
    Inventor: Joerg Zimmermann
  • Patent number: 7700072
    Abstract: A novel application of a transition metal oxo complex, a cationic oxorhenium(V) oxazoline, in the production of molecular hydrogen (H2) from the catalytic hydrolytic oxidation of organosilanes. The reaction is characterized by quantitative hydrogen yields, low catalyst loading, ambient conditions, high selectivity for silanols, water as the only co-reagent, and no solvent requirement. The amount of hydrogen produced is proportional to the water stoichiometry. For example, reaction mixtures of polysilyl organics such as HC(SiH3)3 and water contain potentially greater than 6 weight percent hydrogen. Kinetic and isotope labeling experiments reveal a new mechanistic paradigm for the activation of Si—H bonds by oxometalates.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: April 20, 2010
    Assignee: Purdue Research Foundation
    Inventor: Mahdi M. Abu-Omar
  • Patent number: 7700069
    Abstract: Some metal hydrides permit reversible storage and release of hydrogen for a hydrogen using power-generator. But the surfaces of some metal hydrides or metal hydride precursors may be oxidized or have other coatings that inhibit hydrogen absorption or release. Such materials may be suspended in a suitable liquid of supercritical carbon dioxide or liquid nitrogen and subjected to cavitation processing to break up such hydrogen impermeable surfaces or to fracture the particles so as to provide fresh hydrogen penetratable surfaces.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: April 20, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Robert D. Stephens
  • Patent number: 7682594
    Abstract: A method for preparing for a photocatalyst. The method comprises steps of providing a mixture of indium oxide and vanadium oxide and then calcining the mixture to obtain a indium vanadium quadrioxide. Further, a nickel nitrate solution is added to the indium vanadium quadrioxide to form a catalyst with a nickel oxide supported amount of about 0.1-2.0 wt. % and a post treatment is performed on the catalyst. In the post treatment, a reduction process is performed and then an oxidation process is performed.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 23, 2010
    Assignee: National Central University
    Inventors: Yueh-Fang Chen, Hsin-Yu Lin, Yu-Wen Chen
  • Patent number: 7682597
    Abstract: The invention relates to a method for extracting hydrogen from a gas containing methane, especially natural gas. Hydrocarbons contained in the gas are catalytically broken down in a reformer (4) by steam in order to form hydrogen, carbon monoxide and carbon dioxide. Catalytic conversion of the obtained carbon monoxide with steam occurs in a downstream conversion step in order to form carbon monoxide and water. Carbon dioxide is removed from the converted gas flow (8) by gas washing (7), and the washed hydrogen-rich gas flow (10) is subsequently divided in a pressure-swing adsorption system (11) into a product gas flow (12) made of hydrogen and a waste gas flow (13). The waste gas flow (13) is introduced with hydrogen (14), which is separated from the gas flow (10) after gas washing, into a reformer (4) which is essentially a carbon-free combustible gas, and is combusted there. The invention also relates to a system for carrying out the method.
    Type: Grant
    Filed: July 24, 2004
    Date of Patent: March 23, 2010
    Assignee: Uhde GmbH
    Inventors: Michael Blumenfeld, Vincent Liu, Bernd Mielke, Marcus Michel
  • Publication number: 20100068134
    Abstract: Methods of enhancing the kinetic properties of solid-state hydrogen storage materials are disclosed. The methods of the present invention comprise a process of utilizing built-in, ancillary reactions to effectually catalyze primary hydrogen storage reactions. This self-catalysis process gives rise to novel mechanisms for solid-state hydrogen storage compositions that benefit from enhanced kinetic properties, thereby increasing the usefulness of hydrogen storage technologies. The methods of enhancing the kinetic properties of hydrogen storage compositions by implementing a self-catalyzing reaction mechanism generally include formulating a hydrogen desorption pathway in a hydrogen storage composition, the pathway including a hydrogen releasing reaction and an ancillary reaction; and selecting the ancillary reaction to produce a product that serves to enhance the kinetic properties of the hydrogen releasing reaction.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Applicant: Ford Global Technologies, LLC
    Inventors: Andrea Sudik, Jun Yang, Donald J. Siegel, Christopher Mark Wolverton
  • Patent number: 7678362
    Abstract: A hydrogen storage material. The hydrogen storage material is a combination of LiBH4 with MHx, wherein greater than about 50% of M comprises Al.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: March 16, 2010
    Assignees: UOP LLC, Ford Global Technologies, LLC
    Inventors: Christopher Mark Wolverton, Gregory J. Lewis, John J. Low
  • Patent number: 7678356
    Abstract: A process is described for the preparation of magnesium borohydride having a high purity and crystallinity, which comprises the reaction of an orgenometallic compound of magnesium of the type MgX2, wherein X is an organic binder selected from alkyl, amide, alkoxide, cyclopentadienyl, aryl, with a derivative of a boron hydride, in a hydrocarbon solvent.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: March 16, 2010
    Assignee: Edison S.p.A.
    Inventors: Pierino Zanella, Laura Crociani, Giovanni Giunchi
  • Patent number: 7674320
    Abstract: Hydrogen gas at a hydrogen refueling site is cooled below liquid nitrogen temperature (e.g., about 80K) for more efficient adsorption of hydrogen on hydrogen adsorbent particles in the fuel storage of a hydrogen powered vehicle. When compressed hydrogen gas is available it may be cooled with liquid nitrogen and then sub-cooled below about 70K by a Joule-Thompson expansion. When liquid hydrogen provides hydrogen gas it may be cooled below liquid nitrogen temperatures by mixing with liquid hydrogen or by heat exchange with liquid hydrogen.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: March 9, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Senthil Kumar Vadivelu
  • Publication number: 20100055517
    Abstract: Methods and systems of providing a source of hydrogen and oxygen with high volumetric energy density, as well as a power systems useful in non-air breathing engines such as those in, for example, submersible vehicles, is disclosed. A hydride reactor may be utilized in forming hydrogen from a metal hydride and a peroxide reactor may be utilized in forming oxygen from hydrogen peroxide. The high temperature hydrogen and oxygen may be converted to water using a solid oxide fuel cell, which serves as a power source. The power generation system may have an increased energy density in comparison to conventional batteries. Heat produced by exothermic reactions in the hydride reactor and the peroxide reactor may be transferred and utilized in other aspects of the power generation system. High temperature water produced during by the peroxide reactor may be used to fuel the hydride reactor.
    Type: Application
    Filed: August 24, 2009
    Publication date: March 4, 2010
    Inventors: Ighor K. Uzhinsky, Gary K. Lund, John C. Leylegian, Florin Girlea, Jason S. Tyll, Lawrence G. Piper, Marten Byl, Wallace Chinitz