Titanium Compound Containing Coating (e.g., Titanium Carbonitride, Titanium Nitride, Etc.) Patents (Class 427/255.391)
  • Patent number: 6793969
    Abstract: A CVD process of forming a conductive film containing Ti, Si and N includes a first step of supplying gaseous sources of Ti, Si and N simultaneously to grow a conductive film and a second step of supplying the gaseous sources of Ti, Si and N in a state that a flow rate of the gaseous source of Ti is reduced, to grow the conductive film further, wherein the first step and the second step are conducted alternately.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: September 21, 2004
    Assignee: Tokyo Electron Limited
    Inventors: Yukihiro Shimogaki, Yumiko Kawano
  • Patent number: 6780476
    Abstract: An object of the present invention is to provide a liquid material for chemical vapor deposition (CVD), a method of forming a film by CVD and a CVD apparatus, capable of achieving film formation of a silicate compound of good quality. A liquid material for CVD includes an organometallic compound, a siloxane compound and an organic solvent for dissolving the organometallic compound and the siloxane compound. If the organometallic compound includes an alcoxyl group (e.g., tertialy-butoxyl group) having a larger number of carbon atoms than a propoxyl group or a &bgr;-diketone group (e.g., 2,2,6,6-tetramethyl-3,5-heptanedionate group), the stability in film formation is improved. As the organic solvent, diethyl ether, tetrahydrofuran, nor-octane, iso-octane and the like may be employed. As the siloxane compound, tri-metoxy-silane having a high degree of solubility in a nonsolar solvent and hexa-methyl-di-siloxane and octa-methyl-cycro-tetra-siloxane both having solubility in a polar solvent may be employed.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: August 24, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Tsuyoshi Horikawa
  • Patent number: 6767582
    Abstract: This invention concerns a method for modifying a source material used in an ALD process, a method for depositing transition metal nitride thin films by an ALD process and apparatus for use in such process. According to the present invention transition metal source materials are reduced by vaporizing a metal source material, conducting the vaporized metal source material, into a reducing zone comprising a solid reducing agent maintained at an elevated temperature. Thereafter, the metal source material is contacted with the solid or liquid reducing agent in order to convert the source material into a reduced metal compound and reaction byproducts having a sufficiently high vapor pressure for transporting in gaseous form.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: July 27, 2004
    Assignee: ASM International NV
    Inventor: Kai-Erik Elers
  • Patent number: 6756088
    Abstract: Integrated circuits are generally built layer by layer on a substrate. One technique for forming layers is chemical vapor deposition (CVD.) This technique injects gases through a gas-dispersion fixture, such as a showerhead, into a chamber. The gases react and blanket a substrate in the chamber with a layer of material. One method of promoting uniform layer thickness is to coat the gas-dispersion fixture with a uniform layer of the material before using the fixture for deposition on the substrate. However, conventional fixture-coating techniques yield uneven or poorly adherent coatings. Accordingly, the inventor devised new methods for coating these fixtures. One exemplary method heats a fixture to a temperature greater than its temperature during normal deposition and then passes one or more gases through the fixture to form a coating on it. The greater conditioning temperature improves evenness and adhesion of the fixture coating, which, in turn, produces higher quality layers in integrated circuits.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: June 29, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Sujit Sharan
  • Patent number: 6730355
    Abstract: A first substrate is provided within a chemical vapor deposition chamber. A reactive gas mixture comprising TiCl4 and a silane is provided within the chamber effective to first chemically vapor deposit a titanium silicide comprising layer on the first substrate. After the first deposit, the first substrate is removed from the chamber. After the first deposit, a first cleaning is conducted within the chamber with a chlorine comprising gas. After the first cleaning, a second cleaning is conducted within the chamber with a hydrogen comprising gas. After the second cleaning and after the removing, a titanium silicide comprising layer is chemically vapor deposited over a second substrate within the chamber using a reactive gas mixture comprising TiCl4 and a silane. Other implementations are disclosed.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 4, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ammar Derraa, Cem Basceri, Irina Vasilyeva, Philip H. Campbell, Gurtej S. Sandhu
  • Patent number: 6699530
    Abstract: The construction of a film on a wafer, which is placed in a processing chamber, may be carried out through the following steps. A layer of material is deposited on the wafer. Next, the layer of material is annealed. Once the annealing is completed, the material may be oxidized. Alternatively, the material may be exposed to a silicon gas once the annealing is completed. The deposition, annealing, and either oxidation or silicon gas exposure may all be carried out in the same chamber, without need for removing the wafer from the chamber until all three steps are completed. A semiconductor wafer processing chamber for carrying out such an in-situ construction may include a processing chamber, a showerhead, a wafer support and a rf signal means. The showerhead supplies gases into the processing chamber, while the wafer support supports a wafer in the processing chamber.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: March 2, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Michal Danek, Marvin Liao, Eric Englhardt, Mei Chang, Yeh-Jen Kao, Dale R. DuBois, Alan F. Morrison
  • Publication number: 20040028911
    Abstract: A process for the production of durable photocatalytically active self-cleaning coating on glass by contacting a hot glass surface with a fluid mixture of titanium chloride, a source of oxygen and a tin precursor. The coating preferably comprises less than 10 atom % tin in the bulk of the coating and preferably there is a greater atomic percent tin in the surface of the coating than there is in the bulk of the coating. Preferably, the coating is durable to abrasion and humidity cycling.
    Type: Application
    Filed: February 20, 2003
    Publication date: February 12, 2004
    Inventors: Simon James Hurst, Kevin David Sanderson, Timothy Ian McKittrick, David Rimmer
  • Publication number: 20040013803
    Abstract: Methods of depositing titanium nitride (TiN) films on a substrate are disclosed. The titanium nitride (TiN) films may be formed using a cyclical deposition process by alternately adsorbing a titanium-containing precursor and a NH3 gas on the substrate. The titanium-containing precursor and the NH3 gas react to form the titanium nitride (TiN) layer on the substrate. The titanium nitride (TiN) films are compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, an interconnect structure is fabricated. The titanium nitride films may also be used as an electrode of a three-dimensional capacitor structure such as for example, trench capacitors and crown capacitors.
    Type: Application
    Filed: December 16, 2002
    Publication date: January 22, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Hua Chung, Hongbin Fang, Ken K. Lai, Jeong Soo Byun, Alfred W. Mak, Michael X. Yang, Ming Xi, Moris Kori, Xinliang Lu, Ping Jian
  • Patent number: 6669989
    Abstract: The invention relates to a method and apparatus for the production of protective coatings on parts. A coating formed in accordance with the invention has a chemical composition and structure gradient across its thickness. The coating is obtained by heating of a composite ingot including a body and at least one insert disposed within the body. As the composite ingot is heated it sequentially evaporates to produce a vapor with a chemical composition varying over the evaporation time period. The composition of the body and composition and location of the insert within the body function to determine the chemical composition of the vapor at any time. Condensation and/or deposition of the vapor onto a substrate forms the inventive coating.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: December 30, 2003
    Assignee: International Center for Electron Beam Technologies of E. O. Paton Electric Welding Institute
    Inventors: Boris A. Movchan, Leonila M. Nerodenko, Jury E. Rudoy
  • Patent number: 6660342
    Abstract: A method of forming a film by a plasma CVD process in which a high density plasma is generated in the presence of a magnetic field wherein the electric power for generating the plasma has a pulsed waveform. The electric power typically is supplied by microwave, and the pulsed wave may be a complex wave having a two-step peak, or may be a complex wave obtained by complexing a pulsed wave with a stationary continuous wave.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: December 9, 2003
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akiharu Miyanaga, Tohru Inoue, Shunpei Yamazaki
  • Patent number: 6652913
    Abstract: A method of forming a coated body having a nanocrystalline CVD coating of Ti(C,N,O) is disclosed. The coating is formed using the MTCVD process and including, as part of the gaseous mixture, CO, CO2 or mixtures therof. The use of this dopant during the coating results in a much smaller, equiaxed grain size.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: November 25, 2003
    Assignee: Seco Tools AB
    Inventors: Sakari Ruppi, Lennart Karlsson
  • Patent number: 6638571
    Abstract: The present invention relates to a coated cemented carbide cutting tool member, which includes: a substrate and a hard coating layer deposited on the substrate, wherein the hard coating layer has an average thickness of 3 to 25 &mgr;m and includes: (1) at least one layer having an average thickness of 0.1 to 5 &mgr;m and including a granular Ti compound selected from the group including TiC, TiN, TiCN, Ti2O3, TiCO, TiNO, TiCNO and mixtures thereof; (2) a TiCN layer having an average thickness is 2 to 15 &mgr;m and including a longitudinal growth crystal structure; and (3) an Al2O3 layer having an average thickness of 0.5 to 8 &mgr;m; wherein the TiCN layer includes a growth direction and a compositional gradient of carbon and nitrogen along the growth direction.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: October 28, 2003
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yoshio Hirakawa, Tetsuhiko Honma, Hitoshi Kunugi, Toshiaki Ueda
  • Patent number: 6624064
    Abstract: The present invention provides a method of depositing an amorphous fluorocarbon film using a high bias power applied to the substrate on which the material is deposited. The invention contemplates flowing a carbon precursor at rate and at a power level so that equal same molar ratios of a carbon source is available to bind the fragmented fluorine in the film thereby improving film quality while also enabling improved gap fill performance. The invention further provides for improved adhesion of the amorphous fluorocarbon film to metal surfaces by first depositing a metal or TiN adhesion layer on the metal surfaces and then stuffing the surface of the deposited adhesion layer with nitrogen. Adhesion is further improved by coating the chamber walls with silicon nitride or silicon oxynitride.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: September 23, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Turgut Sahin, Yaxin Wang, Ming Xi
  • Patent number: 6615483
    Abstract: In am method for coating a tip region of an multipolar electrode head adapted to be mounted at a distal end of a lead used preferably for providing heart stimulation by means of a heart stimulation apparatus, an electrode head is provided having a tip with a ceramic part in which a number of small spaced-apart conductive electrode surfaces are disposed, a region of the electrode head tip is directly coated with a tissue compatible material, such as TiN, so that all conductive electrode surfaces are coated in a single step coating operation without any masking operation.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: September 9, 2003
    Assignee: St. Jude Medical AB
    Inventor: Ulf Lindegren
  • Patent number: 6616970
    Abstract: Methods of making a coated cemented carbide body include: forming a powder mixture having WC, 5-12 wt % Co, 3-11% cubic carbides of Ta and Ti with a ratio of Ta/Ti is 1.0-4.0; adding N in an amount of 0.6-2.0% of the weight of Ta and Ti; milling and spray-drying the mixture to form a powder; compacting and sintering the powder at a temperature of 1300-1500° C., in a controlled atmosphere of about 50 mbar followed by cooling, whereby a body having a binder phase enriched and essentially gamma-phase free surface zone of 5-50 &mgr;m in thickness is obtained; applying a pre-coating treatment to the body; and appling a hard, wear-resistant coating to the body.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: September 9, 2003
    Assignee: Sandvik AB
    Inventors: Anders Lenander, Mikael Lindholm
  • Publication number: 20030165620
    Abstract: The precoat film forming method has the deposition step of feeding processing gas into the film forming device having the loading table structure 18 internally which has the loading table 16 for loading the article W to be processed and depositing the precoat film 22 composed of a TiN film on the surface of the loading table and the stabilization step of exposing and stabilizing the precoat film in NH3 (ammonia) containing gas by keeping the loading table at a temperature higher than the temperature at the deposition step. By doing this, the precoat film is stabilized, thereby even during a period of idling, there is no need to lower the temperature of the loading table and the throughput can be improved.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 4, 2003
    Inventors: Satoshi Wakabayashi, Toshio Hasegawa
  • Patent number: 6602783
    Abstract: The present invention is a process for enhancing the chemical vapor deposition of titanium nitride from a titanium containing precursor selected from the group consisting of tetrakis(dimethylamino)titanium, tetrakis(diethylamino)titanium and mixtures thereof, reacted with ammonia to produce the titanium nitride on a semiconductor substrate by the addition of organic amines, such as dipropylamine, in a range of approximately 10 parts per million by weight to 10% by weight, preferably 50 parts per million by weight to 1.0 percent by weight, most preferably 100 parts per million by weight to 5000 parts per million by weight to the titanium containing precursor wherein prior to the reaction, said titanium containing precursor is subjected to a purification process to remove hydrocarbon impurities from the titanium containing precursor.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: August 5, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Matthias J. Jahl, Douglas W. Carson, Shantia Riahi, Raymond Nicholas Vrtis
  • Publication number: 20030129309
    Abstract: The present invention generally relates to a method for depositing a metallic nitride series thin film, typically a TiN-series thin film. The TiN-series thin film according to the present invention is formed by a CVD, and contains Ti, O and N to have a higher barrier characteristic than those of conventional TiN thin films, so that TiN-series thin film can suitably used as a barrier layer. In addition, a TiN-series thin film according to the present invention is formed by a CVD, and contains Ti, N and P to have a lower resistance than those of conventional TiN films, so that TiN-series thin film can suitably used as a barrier layer or a capacitor top electrode. Moreover, if a TiN-series thin film containing Ti, O, N and P is formed by a CVD, the TiN-series thin film can have both of a high barrier characteristic and a low resistance characteristic.
    Type: Application
    Filed: December 2, 2002
    Publication date: July 10, 2003
    Inventor: Hayashi Otsuki
  • Patent number: 6555183
    Abstract: A method of forming thick titanium nitride films with low resistivity. Using a thermal chemical vapor deposition reaction between ammonia (NH3) and titanium tetrachloride (TiCl4), a titanium nitride film is formed at a temperature of less than about 600° C., and an NH3:TiCl4 ratio greater than about 5. The deposited TiN film is then treated in a hydrogen-containing plasma such as that generated from molecular hydrogen (H2). This results in a thick titanium nitride film with low resistivity and good step coverage. The deposition and plasma treatment steps may be repeated for additional cycles to form a thick, composite titanium nitride film of desired thickness, which is suitable for use in plug fill or capacitor structure applications.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: April 29, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ming Xi, Zvi Lando, Mei Chang
  • Patent number: 6551929
    Abstract: A method and system to form a refractory metal layer on a substrate features a bifurcated deposition process that includes nucleating a substrate using ALD techniques to serially expose the substrate to first and second reactive gases followed forming a bulk layer, adjacent to the nucleating layer, using CVD techniques to concurrently exposing the nucleation layer to the first and second gases.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: April 22, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Publication number: 20030072884
    Abstract: A method of forming a film structure (e.g., film stacks) comprising titanium (Ti) and/or titanium nitride (TiN). The Ti film structure is formed by alternately depositing and then plasma treating thin films (less than about 100 Å thick) of titanium. The TiN film structure is formed by alternately depositing and then plasma treating thin films (less than about 300 Å thick) of titanium nitride. The titanium films are formed using a plasma reaction of titanium tetrachloride (TiCl4) and a hydrogen-containing gas. The titanium nitride films are formed by thermally reacting titanium tetrachloride with a nitrogen-containing gas. The subsequent plasma treatment steps comprise a nitrogen/hydrogen-containing plasma.
    Type: Application
    Filed: October 15, 2001
    Publication date: April 17, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Tong Zhang, Hyoung-Chan Ha, Jeong Soo Byun, Avgerinos Gelatos, Frederick C. Wu
  • Patent number: 6548402
    Abstract: A method of forming a titanium nitride (TiN) layer using a reaction between ammonia (NH3) and titanium tetrachloride (TiCl4). In one embodiment, an NH3:TiCl4 ratio of about 8.5 is used to deposit a TiN layer at a temperature of about 500° C. at a pressure of about 20 torr. In another embodiment, a composite TiN layer is formed by alternately depositing TiN layers of different thicknesses, using process conditions having different NH3:TiCl4 ratios. In one preferred embodiment, a TiN layer of less than about 20 Å is formed at an NH3:TiCl4 ratio of about 85, followed by a deposition of a thicker TiN layer at an NH3:TiCl4 ratio of about 8.5. By repeating the alternate film deposition using the two different process conditions, a composite TiN layer is formed. This composite TiN layer has an improved overall step coverage and reduced stress, compared to a standard TiN process, and is suitable for small geometry plug fill applications.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: April 15, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ming Xi, Frederick Wu, Ramanujapuram A. Srinivas, Yehuda Demayo, Zvi Lando, Mei Chang, Russell C. Ellwanger
  • Publication number: 20030031794
    Abstract: A Ti film is formed by CVD in holes formed in an insulating film formed on a Si substrate or on a Si film formed on a Si substrate by a method according to the present invenitioin. The method includes the steps of: loading a Si substrate into a film forming chamber; evacuating the chamber at a predetermined vacuum; supplying TiCl4 gas, H2 gas, Ar gas and SiH4 gas into the film forming chamber; and producing a plasma in the film forming chamber to deposit a Ti film in the holes formed in the insulating film. The Si substrate is heated at 500° C. or below during the deposition of the Ti film. The flow rate of the SiH4 gas is from 30 to 70% of the flow rate of the TiCl4 gas. This method enables formation of a Ti film on a Si base at positions of holes in an insulating layer, with a good morphology of the interface between the Si base and the Ti film and with a good step coverage.
    Type: Application
    Filed: August 12, 2002
    Publication date: February 13, 2003
    Inventors: Kunihiro Tada, Hayashi Otsuki
  • Publication number: 20030017268
    Abstract: In one aspect of the present invention there is provided a method of improving the uniformity of a titanium nitride film, comprising the steps of introducing TiCl4 gas to a chemical vapor deposition chamber from the center of a chamber lid wherein said chamber lid has a blocker plate; introducing NH3 gas to the chemical vapor deposition chamber simultaneously from both the center and edge of the chamber lid thereby distributing the TiCl4 gas and the NH3 gas uniformly across a surface of a wafer; and depositing a titanium nitride film by chemical vapor deposition onto the surface of the wafer where the uniform distribution of the TiCl4 gas and the NH3 gas yields a titanium nitride film with improved uniformity. The chamber is provided with two pumping channels positioned on either side of the chamber.
    Type: Application
    Filed: July 18, 2001
    Publication date: January 23, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Jianhua Hu, Hanh D. Nguyen, Steve H. Chiao, Xiaoxiong Yuan, Anzhong Chang, Hongbee Teoh, Avgerinos Gelatos
  • Publication number: 20020176993
    Abstract: A high temperature substrate having improved properties. The substrate is a polymer substrate having a glass transition temperature greater than about 120° C., and at least one first barrier stack adjacent to the polymer substrate. The barrier stack includes at least one first barrier layer and at least one first polymer layer. A method for making the high temperature substrate with improved properties is also disclosed.
    Type: Application
    Filed: April 20, 2000
    Publication date: November 28, 2002
    Inventors: GORDON L GRAFF, MARK E GROSS, MING K SHI, MICHAEL G HALL, PETER M MARTIN, ERIC S MAST
  • Publication number: 20020168468
    Abstract: A method of forming a titanium silicide nitride (TiSiN) layer on a substrate id described. The titanium silicide nitride (TiSiN) layer is formed by providing a substrate to a process chamber and treating the substrate with a silicon-containing gas. A titanium nitride layer is formed on the treated substrate and exposed to a silicon-containing gas. The titanium nitride (TiN) layer reacts with the silicon-containing gas to form the titanium silicide nitride (TiSiN) layer. The formation of the titanium silicide nitride (TiSiN) layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the titanium silicide nitride (TiSiN) layer may be used as a diffusion barrier for a tungsten (W) metallization process.
    Type: Application
    Filed: April 16, 2002
    Publication date: November 14, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Jing-Pei Chou, Chien-Teh Kao, Chiukin Lai, Roderick C. Mosely, Mei Chang
  • Patent number: 6478872
    Abstract: A method of delivering two or more mutually-reactive reaction gases when a predetermined film is deposited on a substrate, and a shower head used in the gas delivery method, function to increase the film deposition rate while preventing formation of contaminating particles. In this method, one reaction gas is delivered toward the edge of the substrate, and the other reaction gases are delivered toward the central portion of the substrate, each of the reaction gases being delivered via an independent gas outlet to prevent the reaction gases from being mixed. In the shower head, separate passages are provided to prevent the first reaction gas from mixing with the other reaction gases by delivering the first reaction gas from outlets formed around the edge of the bottom surface of the shower head. The other reaction gases are delivered from outlets formed in the central portion of the bottom surface of the shower head.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: November 12, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-sook Chae, In-sang Jeon, Sang-bom Kang, Sang-in Lee, Kyu-wan Ryu
  • Publication number: 20020164420
    Abstract: The invention includes a deposition system having a reservoir for containment of a metastable specie connected to a deposition chamber. The system includes a metastable specie generating catalyst within the reservoir. The invention also includes an atomic layer deposition apparatus having a deposition chamber that contains a substrate platform, first and second inlets and a dispersion head positioned between the inlets and the substrate platform. The ALD apparatus includes first and second metastable specie containment reservoirs in fluid communication with the deposition chamber through the inlets. One or more sources of carrier gas are configured to deliver carrier gas through at least one of the inlets. The invention also includes an atomic layer deposition method.
    Type: Application
    Filed: February 25, 2002
    Publication date: November 7, 2002
    Inventors: Garo J. Derderian, Gurtej S. Sandhu
  • Publication number: 20020155219
    Abstract: A method of forming thick titanium nitride films with low resistivity. Using a thermal chemical vapor deposition reaction between ammonia (NH3) and titanium tetrachloride (TiCl4), a titanium nitride film is formed at a temperature of less than about 600° C., and an NH3:TiCl4 ratio greater than about 5. The deposited TiN film is then treated in a hydrogen-containing plasma such as that generated from molecular hydrogen (H2). This results in a thick titanium nitride film with low resistivity and good step coverage. The deposition and plasma treatment steps may be repeated for additional cycles to form a thick, composite titanium nitride film of desired thickness, which is suitable for use in plug fill or capacitor structure applications.
    Type: Application
    Filed: February 1, 2000
    Publication date: October 24, 2002
    Inventors: Shulin Wang, Ming Xi, Zvi Lando, Mei Chang
  • Publication number: 20020155299
    Abstract: Methods and articles are disclosed in which a substrate is provided with a photo-induced hydrophilic surface by forming a photo-induced hydrophilic coating on the substrate by spray pyrolysis, chemical vapor deposition, or magnetron sputter vacuum deposition. The coating can have a thickness of 50 Å to 500 Å, a root mean square roughness of less than 5, preferably less than 2, and photocatalytic activity of less than 3.0×10−3 cm−1 min−1±2.0×10−3 cm−1 min−1. The substrate includes glass substrates, including glass sheets and continuous float glass ribbons.
    Type: Application
    Filed: February 14, 2002
    Publication date: October 24, 2002
    Inventors: Caroline S. Harris, Janos Szanyi
  • Patent number: 6458701
    Abstract: A method for forming a metal layer located over a metal underlayer of a semiconductor device, using a metal halogen gas. The method involves supplying a predetermined reaction gas into a reaction chamber for a predetermined period of time prior to deposition of the metal layer. The reaction gas has a higher reactivity with an active halogen element of a metal halogen gas supplied to form the metal layer, compared to a metal element of the metal halogen gas. As the metal halogen gas is supplied into the reaction chamber, the reaction gas reacts with the halogen radicals of the metal halogen gas, so that the metal underlayer is protected from being contaminated by impurities containing the halogen radicals.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: October 1, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-sook Chae, Sang-bom Kang, Gil-heyun Choi, In-sang Jeon
  • Patent number: 6451388
    Abstract: A Ti film is formed by chemical vapor deposition in holes formed in an insulating film formed on a Si substrate or on a Si film formed on a Si substrate by a method comprising the steps of: loading a Si substrate into a film forming chamber; evacuating the chamber at a predetermined vacuum; supplying TiCl4 gas, H2 gas, Ar gas and SiH4 gas into the film forming chamber; and producing a plasma in the film forming chamber to deposit a Ti film in the holes formed in the insulating film. The Si substrate is heated at a temperature of from 550 to 700° C. during the deposition of the Ti film, and the flow rates of the processing gases are regulated so that Si-to-insulator selectivity is not less than one. This method enables formation of a Ti film on a Si base at positions of holes in an insulating layer, with a good morphology of the interface between the Si base and the Ti film and with a good step coverage.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: September 17, 2002
    Assignee: Tokyo Electron Limited
    Inventors: Kunihiro Tada, Hayashi Otsuki
  • Patent number: 6451692
    Abstract: Chemical vapor deposition methods utilizing preheating of one or more of the reactant gases used to form deposited layers, chemical vapor deposition systems to perform the methods, and apparatus containing deposited layers produced using the methods. The reactant gases contain at least one chemical vapor deposition precursor. Heating one or more of the reactant gases prior to introduction to the reaction chamber may be used to improve physical characteristics of the resulting deposited layer, to improve the physical characteristics of the underlying substrate and/or to improve the thermal budget available for subsequent processing. One example includes the formation of a titanium nitride layer with reactant gases containing the precursors of titanium tetrachloride and ammonia.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: September 17, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Gordon Morrison
  • Patent number: 6444265
    Abstract: In a method for producing a titanium monophosphide layer, a carrier is first placed in a reactor. Thereafter, a TiN layer is deposited on the carrier by supplying TiCl4 ad NH3 into the reactor. The TiN layer is annealed immediately after deposition of the TiN layer while PH3 is supplied to the reactor, in order to form the titanium monophosphide layer on the TiN layer.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: September 3, 2002
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forchung E.V.
    Inventors: Barbara Fröschle, Roland Leutenecker, Peter Ramm
  • Publication number: 20020114886
    Abstract: A method of forming a titanium silicide nitride (TiSiN) layer is described. A titanium nitride (TiN) layer is deposited on a substrate, the process chamber is purged to remove reaction by-products therefrom and than the titanium nitride (TiN) layer is exposed to a silicon-containing gas to form the titanium suicide nitride (TiSiN) layer. Alternatively, the substrate may be exposed to the silicon-containing gas in a process chamber different from the one used for the titanium nitride (TiN) layer deposition.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 22, 2002
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jing-Pei Chou, Chien-Teh Kao, Chiukin Steven Lai, Roderick Craig Mosely, Mei Chang, Fufa Chen
  • Patent number: 6436820
    Abstract: The present disclosure pertains to the discovery that TiN films having a thickness of greater than about 400 Å and, particularly greater than 1000 Å, and a resistivity of less than about 175 &mgr;&OHgr;cm, can be produced by a CVD technique in which a series of TiN layers are deposited to form a desired TiN film thickness. Each layer is deposited employing a CVD deposition/treatment step. During a treatment step, residual halogen (typically chlorine) was removed from the CVD deposited film. Specifically, a TiN film having a thickness of greater than about 400 Å was prepared by a multi deposition/treatment step process where individual TiN layers having a thickness of less than 400 Å were produced in series to provide a finished TiN layer having a combined desired thickness. Each individual TiN layer was CVD deposited and then treated by exposing the TiN surface to ammonia in an annealing step carried out in an ammonia ambient.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: August 20, 2002
    Assignee: Applied Materials, Inc
    Inventors: Jianhua Hu, Yin Lin, Fufa Chen, Yehuda Demayo, Ming Xi
  • Publication number: 20020110638
    Abstract: The subject of the invention is a glass-, ceramic- or vitroceramic-based substrate (1) provided on at least part of at least one of its faces with a coating (3) with a photocatalytic property containing at least partially crystalline titanium oxide.
    Type: Application
    Filed: February 22, 2002
    Publication date: August 15, 2002
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Philippe Boire, Xavier Talpaert
  • Publication number: 20020094371
    Abstract: Integrated circuits are generally built layer by layer on a substrate. One technique for forming layers is chemical vapor deposition (CVD.) This technique injects gases through a gas-dispersion fixture, such as a showerhead, into a chamber. The gases react and blanket a substrate in the chamber with a layer of material. One method of promoting uniform layer thickness is to coat the gas-dispersion fixture with a uniform layer of the material before using the fixture for deposition on the substrate. However, conventional fixture-coating techniques yield uneven or poorly adherent coatings. Accordingly, the inventor devised new methods for coating these fixtures. One exemplary method heats a fixture to a temperature greater than its temperature during normal deposition and then passes one or more gases through the fixture to form a coating on it. The greater conditioning temperature improves evenness and adhesion of the fixture coating, which, in turn, produces higher quality layers in integrated circuits.
    Type: Application
    Filed: August 29, 2001
    Publication date: July 18, 2002
    Inventor: Sujit Sharan
  • Patent number: 6399490
    Abstract: Process for forming highly conformal titanium nitride on a silicon substrate. A gaseous reaction mixture of titanium tetrachloride and ammonia is passed over the semiconductor substrate surface maintained at a temperature of about 350° C. to about 800° C. The ratio of titanium tetrachloride to ammonia is about 5:1 to 20:1. The high degree of conformality achieved by the process of the invention allows TiN layers to be deposited on structures with high aspect ratios and on complicated, three-dimensional structures without forming a large seam or void.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: June 4, 2002
    Assignee: International Business Machines Corporation
    Inventors: Rajarao Jammy, Cheryl G. Faltermeier, Uwe Schroeder, Kwong Hon Wong
  • Publication number: 20020064598
    Abstract: A method of forming a titanium nitride (TiN) layer using a reaction between ammonia (NH3) and titanium tetrachloride (TiCl4). In one embodiment, an NH3:TiCl4 ratio of about 8.5 is used to deposit a TiN layer at a temperature of about 500° C. at a pressure of about 20 torr. In another embodiment, a composite TiN layer is formed by alternately depositing TiN layers of different thicknesses, using process conditions having different NH3:TiCl4 ratios. In one preferred embodiment, a TiN layer of less than about 20 Å is formed at an NH3:TiCl4 ratio of about 85, followed by a deposition of a thicker TiN layer at an NH3:TiCl4 ratio of about 8.5. By repeating the alternate film deposition using the two different process conditions, a composite TiN layer is formed. This composite TiN layer has an improved overall step coverage and reduced stress, compared to a standard TiN process, and is suitable for small geometry plug fill applications.
    Type: Application
    Filed: June 11, 1999
    Publication date: May 30, 2002
    Inventors: SHULIN WANG, MING XI, FREDERICK WU, RAMANUJAPURAM A. SRINIVAS, YEHUDA DEMAYO, ZVI LANDO, MEI CHANG, RUSSELL C. ELLWANGER
  • Patent number: 6388309
    Abstract: An ultra-large scale integrated circuit is manufactured by using silicon-based, low dielectric constant materials which are spin-coated, dried, cured, and capped in-situ in chemical vapor deposition equipment. The low dielectric constant material is spun on, processed in chemical vapor deposition equipment, subject to chemical-mechanical polishing, and then processed by a conventional photolithographic process for depositing conductors. The material is then reprocessed for each successive layer of conductor separated by dielectric.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: May 14, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Lu You, Dawn M. Hopper, Richard J. Huang
  • Patent number: 6387844
    Abstract: A titanium dioxide film having at least photocatalytic activity, whose light linear transmittance corresponding to light having a wavelength of 550 nm is not less than 50 % and whose thickness is 0.1 to 5 &mgr;m or so, is formed on a transparent substrate constituted by a glass plate or the like. Preferably, a precoat film, which has optical transmissivity and is constituted by a SiO2 film having a thickness of 0.02 to 0.2 &mgr;m or so, is provided between the transparent substrate and the titanium dioxide film. Thereby, excellent photocatalytic action and optical transmissivity can be obtained. Moreover, members composing various structures such as a glass window, which are especially required to have optical transparency, can be further provided with photocatalytic activities.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: May 14, 2002
    Inventors: Akira Fujishima, Kazuhito Hashimoto, Tomokazu Iyoda, Shigemichi Fukayama, Tetsuo Yoshimoto, Tokuyoshi Saitoh
  • Patent number: 6372301
    Abstract: The present invention generally provides a method for stabilizing a halogen-doped silicon oxide film, particularly a fluorinated silicon oxide film. The invention also provides a method for preventing loosely bonded halogen atoms from reacting with components of the barrier layer during subsequent processing of the substrate. The invention provides a hydrogen plasma treatment of the halogen-doped silicon oxide film without subjecting the substrate to a heated environment that may damage the substrate and the structures formed on the substrate. The invention also improves the adhesion strength between the halogen-doped silicon oxide film and the barrier layer. Furthermore, the hydrogen plasma treatment can be practiced in a variety of plasma processing chambers of an integrated process sequence, including pre-clean chambers, physical vapor deposition chambers, chemical vapor deposition chambers, etch chambers and other plasma processing chambers.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: April 16, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Murali Narasimhan, Vikram Pavate, Kenny King-Tai Ngan, Xiangbing Li
  • Patent number: 6365519
    Abstract: A process used during the formation of a semiconductor device comprises the steps of placing a plurality of semiconductor wafers each having a surface into a chamber of a batch wafer processor such as a diffusion furnace. The wafers are heated to a temperature of between about 300° C. and about 550° C. With the wafers in the chamber, at least one of ammonia and hydrazine is introduced into the chamber, then a precursor comprising trimethylethylenediamine tris(dimethylamino)titanium and/or triethylaluminum is introduced into the chamber. In the chamber, a layer comprising aluminum nitride is simultaneously formed over the surface of each wafer. The inventive process allows for the formation of aluminum nitride or titanium aluminum nitride over the surface of a plurality of wafers simultaneously. A subsequent anneal of the aluminum nitride layer or the titanium aluminum nitride layer can be performed in situ.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: April 2, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Brenda D. Kraus, John T. Moore, Scott J. DeBoer
  • Publication number: 20020012818
    Abstract: An improved coated body having a nanocrystalline CVD coating of Ti(C,N,O) is disclosed. The coating is formed using the MTCVD process and including, as part of the gaseous mixture, CO, CO2 or mixtures thereof. The use of this dopant during the coating results in a much smaller, equiaxed grain size. The method of forming the body is also disclosed.
    Type: Application
    Filed: August 8, 2001
    Publication date: January 31, 2002
    Inventors: Sakari Ruppi, Lennart Karlsson
  • Patent number: 6338879
    Abstract: A method for manufacturing a solid lubricant film for cutting tools, having a hard material layer positioned on a tool steels, high-speed steels or cemented carbide substrate, includes the steps of: depositing on the hard material layer a solid lubricant oxide layer (MOX :0.2≦×<2) where the metal M is selected from Si, Zr, Ni, Fe, Co, Cr or combinations thereof. The thickness (t) of the solid lubricant oxide layer is 0.01 &mgr;m≦t<3.0 &mgr;m. The solid lubricant oxide film is deposited on the harden layer by heating a vacuum ion-plating chamber to a temperature of between from 150° C. to 450° C., and depositing on the coated cutting tool the solid lubricant oxide layer by an ion-plating. A negative bias charge is applied using a direct current of from −15 V to −1000 V or a high frequency alternating current equivalent to an effective negative bias charge of the direct current of from −15 V to −1000 V.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: January 15, 2002
    Assignee: Nachi-Fujikoshi Corp.
    Inventor: Manabu Yasuoka
  • Patent number: 6335049
    Abstract: A chemical vapor deposition method of forming a high k dielectric layer includes positioning a substrate within a chemical vapor deposition reactor. At least one metal comprising precursor and N2O are provided within the reactor under conditions effective to deposit a high k dielectric layer on the substrate comprising oxygen and the metal of the at least one metal precursor. The N2O is present within the reactor during at least a portion of the deposit at greater than or equal to at least 90% concentration by volume as compared with any O2, O3, NO, and NOX injected to within the reactor. In one implementation, the conditions are void of injection of any of O2, O3, NO, and NOX to within the reactor during the portion of the deposit. In one implementation, a capacitor is formed using the above methods. In preferred implementations, the technique can be used to yield smooth, continuous dielectric layers in the absence of haze or isolated island-like nuclei.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: January 1, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Cem Basceri
  • Publication number: 20010051215
    Abstract: A method for chemical vapor deposition of a TiSixNy film onto a substrate wherein x is greater than zero and no greater than about 5, and y is greater than zero and no greater than about 7, including introducing into a deposition chamber: (i) a substrate; (ii) a source precursor comprising titanium in a vapor state having the formula (I):
    Type: Application
    Filed: April 13, 2001
    Publication date: December 13, 2001
    Applicant: Gelest, Inc.
    Inventors: Barry C. Arkles, Alain E. Kaloyeros
  • Patent number: 6323119
    Abstract: The present invention provides a method of depositing an amorphous fluorocarbon film using a high bias power applied to the substrate on which the material is deposited. The invention contemplates flowing a carbon precursor at rate and at a power level so that equal same molar ratios of a carbon source is available to bind the fragmented fluorine in the film thereby improving film quality while also enabling improved gap fill performance. The invention further provides for improved adhesion of the amorphous fluorocarbon film to metal surfaces by first depositing a metal or TiN adhesion layer on the metal surfaces and then stuffing the surface of the deposited adhesion layer with nitrogen. Adhesion is further improved by coating the chamber walls with silicon nitride or silicon oxynitride.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: November 27, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Turgut Sahin, Yaxin Wang
  • Patent number: 6306765
    Abstract: A film formation method which comprises the steps of forming a high melting metal film on a substrate to cover an insulating pattern formed on the substrate therewith, and forming on the surface of the high melting metal film a high melting metal nitride film or a high melting oxide nitride film. The high melting metal film in the first step is formed by a chemical vapor deposition process, after which the high melting metal nitride or high melting metal oxide nitride film is continuously formed by the chemical vapor deposition process. During the CVD processes in the first and second steps, the substrate may be applied with an RF bias.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: October 23, 2001
    Assignee: Sony Corporation
    Inventor: Junichi Sato