Fused Oxide-containing Base (e.g., Ceramic, Glass, Etc.) Patents (Class 427/383.5)
  • Patent number: 7255893
    Abstract: A method of forming a dense and crack-free hematite-containing protective layer on a metal-based substrate for use in a high temperature oxidising and/or corrosive environment comprises applying onto the substrate a particle mixture consisting of: 60 to 99 95 weight %, in particular 70 to 95 weight % such as 75 to 85 weight %, of hematite with or without iron metal and/or ferrous oxide; 1 to 25 weight %, in particular 5 8 to 20 weight % such as 8 to 15 weight %, of nitride and/or carbide particles, such as boron nitride, aluminium nitride or zirconium carbide particles; and 0 to 15 weight %, in particular 5 to 15 weight %, of one or more further constituents that consist of at least one metal or metal oxide or a heat-convertible precursor thereof.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: August 14, 2007
    Assignee: Moltech Invent S.A.
    Inventors: Thinh T. Nguyen, Vittorio De Nora
  • Patent number: 7198666
    Abstract: A coating film is formed on a substrate of sapphire by coating the substrate with a jointing material prepared by dissolving Al(OC2H5)3 and B(OCH3)3 into xylene. Subsequently, the substrate is heated to about 450 ° C. and the coating film is irradiated with, e.g., ultraviolet radiation having a wavelength of 172 nm. Thus, xylene in the coating film is vaporized, and Al(OC2H5)3 and B(OCH3)3 are thermally decomposed to form a jointing material composed of amorphous or ?-layer alumina (Al2O3) and amorphous boron oxide (B2O3).
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: April 3, 2007
    Assignee: Yamatake Corporation
    Inventor: Takashi Masuda
  • Patent number: 7179500
    Abstract: A fluid impermeable thin film is fabricated on a porous substrate by depositing a material having a certain spatial oxidation expansion. After deposition, the material is oxidized whereby the deposited material expands and forms a void free film on top of the porous substrate. The snuggly contacting grain boundaries of the void free film may recombine to a continuous thin film that has a thickness of only a fraction of 1 ?m and is substantially fluid impermeable. The small film height contributes to a high ionic conductivity that makes the thin film a preferred choice for a fuel cell electrolyte membrane enabling efficient fuel cell operation at temperatures well below 500° C.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: February 20, 2007
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yong-Il Park, Friedrich B. Prinz, Suk-Won Cha, Sang-Joon John Lee, Yuji Saito
  • Patent number: 7090894
    Abstract: A bond coat composition is provided for applying to the surface of a ceramic composite component between the composite substrate and the thermal barrier coat. The composition includes an alumina powder, a silica-yielding liquid, glass frits, and sufficient solvent to permit mixing of the components and forming a bond coat.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: August 15, 2006
    Assignee: General Electric Company
    Inventors: Douglas Melton Carper, Andrew Jay Skoog, Jane Ann Murphy
  • Patent number: 7052732
    Abstract: A method for producing a piezoelectric element by superposing a piezoelectric material made of a piezoelectric ceramic composition containing a PbMg1/3Nb2/3O3—PbZrO3—PbTiO3 ternary system solid solution composition represented by the general formula Pbx(Mgy/3Nb2/3)aTibZrcO3 as a main component, and 0.05 to 10.0 mass % of NiO on a ceramic substrate or on an electrode formed on the ceramic substrate, and subjecting the superposed piezoelectric material to a thermal treatment in an atmosphere where 0.03–0.5 mg/cm3 (NiO conversion amount per unit volume of a space in a container) of an atmosphere-controlling material having the same composition as the piezoelectric material is coexisted.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: May 30, 2006
    Assignee: NGK Insulators, Ltd.
    Inventors: Toshikatsu Kashiwaya, Mutsumi Kitagawa
  • Patent number: 7011888
    Abstract: Process for protecting fiber-reinforced, carbon-containing composites whose matrix comprises, at least in the outer layer, silicon carbide (SiC) and also silicon (Si) and/or silicon alloys against oxidation, which comprises the steps a) impregnation of the composite with an aqueous, phosphate-containing solution, b) drying, c) heat treatment at a temperature which is at least sufficient to convert the dried solution into insoluble compounds which are suitable for forming a self-healing glass, wherein the composite is treated oxidatively to form silicon oxide (SiO2) either prior to step a), between steps a) and b) or during or after step b) and/or c).
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: March 14, 2006
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Martin Christ, Udo Gruber, Andreas Kienzle, Jens Rosenlöcher, Rainer Zimmerman-Chopin
  • Patent number: 6802999
    Abstract: A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: October 12, 2004
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Richard N. Grugel
  • Patent number: 6803138
    Abstract: Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: October 12, 2004
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz, William J. Dawson, Buddy E. McCormick
  • Patent number: 6761929
    Abstract: A method is provided for the preparation of metal/porous substrate composite membranes by flowing a solution of metal to be plated over a first surface of a porous substrate and concurrently applying a pressure of gas on a second surface of the porous substrate, such that the porous substrate separates the solution of metal from the gas, and the use of the resulting membrane for the production of highly purified hydrogen gas.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 13, 2004
    Assignee: Research Triangle Institute
    Inventor: Ashok S. Damle
  • Patent number: 6753033
    Abstract: A method of printing high-quality high-density circuit pattern in a production of a ceramic thick-film printed circuit board. The method comprises forming a resin layer for prevention of sagging on a substrate before printing the circuit pattern. The present invention provides conditions optimizing materials, thickness, surface roughness, printing conditions and firing conditions of the resin layer. According to the manufacturing method of the present invention, a ceramic thick-film printed circuit board densely printed with a satisfactory printed pattern and free of problems such as film exfoliation, deformation of the pattern, pinholes and the like can readily be obtained.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: June 22, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akira Hashimoto, Yoshihisa Takase
  • Patent number: 6749904
    Abstract: High areal storage density, patterned magnetic media comprising a patterned plurality of at least partially crystalline, ferromagnetic particles or grains are provided by means of a simple, economical process wherein a non-magnetic substrate is provided with a layer of an amorphous, paramagnetic or anti-paramagnetic material comprising at least one component, e.g., a metal element, which is ferromagnetic when in at least partially crystalline form, and at least partially crystallizing the at least one component at selected areas of the amorphous layer to form a spaced-apart pattern of at least partially crystallized, ferromagnetic particles or grains of the at least one component, the particles or grains being spaced apart and surrounded by a matrix of the amorphous material. Embodiments include utilizing a focussed or scanned laser source and an amorphous Ni—P layer for forming ferromagnetic Ni particles or grains.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: June 15, 2004
    Assignee: Seagate Technology LLC
    Inventors: Connie Chunling Liu, Li-Ping Wang, Linda Lijun Zhong, Jeffery Lee Petrehn
  • Patent number: 6743479
    Abstract: An electroless copper plating solution which can ensure superior adhesion of a copper plating film to a flat ceramic surface having low roughness and which can form a high-frequency electronic component having superior high-frequency conductivity and a high Q value is provided. Also provided is a high frequency electronic component formed by using this electroless copper plating solution. The electroless copper plating solution of contains copper ions, nickel ions, formaldehyde or a derivative thereof, and tartaric acid or a salt thereof. The ratio of the content of the nickel ions to that of the copper ions on a molar basis is in the range of about 0.0001 to 0.015.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: June 1, 2004
    Assignee: Murata Manufacturing Co. Ltd.
    Inventors: Osamu Kanoh, Kenji Yoshida
  • Patent number: 6733822
    Abstract: A sintered aluminum nitride having satisfactorily densified via holes, which is free from cracking and has an excellent appearance, is produced through firing an aluminum nitride molding having at least one highly isolated through-hole for via hole formation. At least one through-hole for formation of dummy via holes not used for electrical connection is formed around the highly isolated through-hole for via hole formation, and the through-hole for dummy via hole formation is also filled with a conductive paste. Thereafter, the aluminum nitride molding is fired into the sintered aluminum nitride.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: May 11, 2004
    Assignee: Tokuyama Corporation
    Inventors: Reo Yamamoto, Yoshihide Kamiyama
  • Patent number: 6720034
    Abstract: A heat-rejection coating is applied to a metallic component of a gas turbine engine, preferably made of a nickel-base superalloy. A component surface is preferably pre-treated, as by polishing the component surface, thereafter pre-oxidizing the component surface, and thereafter applying a ceramic barrier coating onto the component surface. A reflective-coating mixture is air sprayed onto the pre-treated component surface. The reflective-coating mixture includes a metallic pigment, such as platinum, gold, palladium, and alloys thereof, and a reflective-coating-mixture carrier. The component with the reflective-coating mixture sprayed thereon is fired.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: April 13, 2004
    Assignee: General Electric Company
    Inventors: Andrew Jay Skoog, Jane Ann Murphy, John Frederick Ackerman, Paul Vincent Arszman, Bryan Thomas Bojanowski, Timothy Ray Lattire
  • Publication number: 20040057880
    Abstract: A plasma reactor for treating exhaust gases of internal combustion engines is provided, the plasma reactor having a ceramic body with a plurality of channels running through it. A gas may be passed through a first set of channels, while a second set of channels contains an electrically conducting material such that a plasma is generated in the interior of the second set of channels by applying an electric voltage. Also, a method of manufacturing a plasma reactor is provided, whereby first a green ceramic body having a plurality of channels running through it is produced and sintered to form a ceramic body, and then an electrically conducting material is introduced into a second set of channels in the ceramic body.
    Type: Application
    Filed: June 25, 2003
    Publication date: March 25, 2004
    Inventors: Christoph Treutler, Andreas Hachtel, Thomas Schulte, Sascha Henke, Martin Hruschka, Ulrich Hasenkox, Susanne Lucas
  • Patent number: 6699528
    Abstract: Spray on polyurethaneurea coatings provide corrosion resistance over long periods of time to marine fixtures, particularly of active metals such as aluminum and steel. Radar arches, fishing platforms, railing systems, etc. can maintain their aesthetics over extended periods of time, even in salt water environments, when the coating has been penetrated to the metal surface.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: March 2, 2004
    Inventor: Scott J. McKeand
  • Patent number: 6695955
    Abstract: A method of forming polycrystalline silicon for a liquid crystal display device is disclosed in the present invention. The method includes forming an amorphous silicon layer on a substrate, forming a plurality of catalytic metal clusters on the amorphous silicon layer, forming a catalytic metal gettering layer adjacent to the amorphous silicon layer, and heat-treating the substrate including the amorphous silicon layer to transform the amorphous silicon layer into a polycrystalline silicon layer, wherein unreacted catalytic metal clusters migrate to the catalytic metal gettering layer in a direction perpendicular to the substrate.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: February 24, 2004
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Kwang Jo Hwang, Binn Kim, Hae Yeol Kim, Jong Uk Bae
  • Patent number: 6692336
    Abstract: The invention relates to a method for protecting an underwater surface (3) against pollution due to fouling, in particular a metal surface, upon which a coating (4) is applied, whereby the coating (4), in the presence of water, is brushed or polished smooth with at least one brush (8) having brushes (9) made of synthetic material in which a grinding agent (10) is embedded. In the coating (4), glass flakes (5) are embedded to which silver is bonded.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: February 17, 2004
    Inventor: Boudewijn Gabriël Van Rompay
  • Patent number: 6679982
    Abstract: An oxygen sensor is disposed downstream from a catalyst for purifying exhaust gas from an internal combustion engine and which can suppress an influence of unburnt hydrocarbon on an output voltage. After forming a platinum thin film on the outer periphery of a zirconia ceramic body, only a detection electrode of the ceramic body is dipped in a silver nitrate aqueous solution of 0.1 mol/l, and the silver nitrate is pyrolyzed through a heat treatment. Subsequently, a platinum reference electrode is formed on the inner periphery of the ceramic body. To protect the silver-doped detection electrode, a protective layer is formed on the surface of the detection electrode. By the exposure to combustion gas and through aging, a detection element is formed, and set into a metal case together with a cylindrical heater, to complete an oxygen sensor to be disposed downstream from a CNG engine catalyst.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: January 20, 2004
    Assignees: NGK Spark Plug Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Hiroshi Matsuzaki, Keiji Suzuki, Teppei Ookawa, Hiroshi Kubota, Seiichi Hosogai, Hiroyuki Fujita, Katsunori Nakamura
  • Publication number: 20040009291
    Abstract: Manufacturing method for tempered glass circuit board, including steps of: by means of a halftone, evenly painting a layer of silver plasma onto the surface of a glass and waiting until the silver plasma dries; thereafter, gradually increasing temperature of the glass from 30° C.; when the temperature reaches 450˜550° C., thermally fully fusing the surface of the glass with the silver plasma; continuously increasing the temperature to 750±2% ° C. to temper the glass; and thereafter, gradually decreasing the temperature to room temperature to achieve a tempered glass circuit board. A circuit can be directly soldered on the surface of the tempered glass instead of any conductive tempered glass.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Applicant: Shang Chuen Weighing Machine Co., Ltd.
    Inventor: Wu-Hsiung Lee
  • Patent number: 6663914
    Abstract: A method for adhering a resistive coating to a substrate for use in process fluids employed in the semiconductor processing industry in clean, particle-free, nonreactive, non-trapping, ultra-pure, thermally tolerant, sealed systems. In one arrangement, the method may include the steps of selecting a substrate having a wall, modifying a surface of the wall to provide a roughened texture suitable for mechanically securing a coating thereto, and applying a conductive coating that is configured to be electrically resistive, to extend over at least a portion of the roughened texture, and to adhere thereto throughout variations in operational temperatures thereof.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: December 16, 2003
    Assignee: Trebor International
    Inventor: Steven A. Black
  • Patent number: 6652905
    Abstract: A piezoelectric element includes a ceramic substrate, a piezoelectric ceramic composition composed mainly of a PbMg1/3Nb2/3O3—PbZrO3—PbTiO3 ternary system solid solution composition containing 0.05 to 10.0% by weight NiO, based on the ceramic composition. Electrodes are electrically connected to the piezoelectric. The piezoelectric is solidly attached to the ceramic substrate directly or via part of or all of the electrodes. The piezoelectric ceramic composition is represented by the following general formula: Pbx(Mgy/3Nb2/3)aTibZrcO3, wherein 0.95≦x≦1.05; 0.8≦y≦1.0; a, b and c are decimals falling in a range surrounded by (a,b,c)=(0.550, 0.425, 0.025), (0.550, 0.325, 0.125), (0.375, 0.325, 0.300), (0.100, 0.425, 0.475), (0.100, 0.475, 0.425) and (0.375, 0.425, 0.200), and a+b+c=1.000.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: November 25, 2003
    Assignee: NGK Insulators, Ltd.
    Inventor: Toshikatsu Kashiwaya
  • Patent number: 6607804
    Abstract: A filter having two zones, the first zone having a low electrical conductivity and the second zone having a high electrical conductivity at electrode attachment zones due to infiltration of metal within the second zone.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: August 19, 2003
    Assignee: Thomas Josef Heimbach Gesellschaft mit beschrankter Haftung & Co.
    Inventors: Walter Best, Oliver Benthaus, Wolfgang Schäfer, Uwe Schumacher
  • Publication number: 20030152706
    Abstract: Defect-free dielectric coatings comprised of porous polymeric matrices are prepared using nitrogen-containing polymers as pore-generating agents. The dielectric coatings are useful in a number of contexts, including the manufacture of electronic devices such as integrated circuit devices and integrated circuit packaging devices. The dielectric coatings are prepared by admixing, in a solvent, a polymeric nitrogenous porogen with a high temperature, thermosetting host polymer miscible therewith, coating a substrate surface with the admixture, heating the uncured coating to cure the host polymer and provide a vitrified, two-phase matrix, and then decomposing the porogen. The dielectric coatings so prepared have few if any defects, and depending on the amount and molecular weight of porogen used, can be prepared so as to have an exceptionally low dielectric constant on the order of 2.5 or less, preferably less than about 2.0.
    Type: Application
    Filed: February 21, 2003
    Publication date: August 14, 2003
    Inventors: Craig Jon Hawker, James Lupton Hedrick, Elbert Emin Huang, Victor Yee-Way Lee, Teddie Magbitang, David Mecerreyes, Robert Dennis Miller, Willi Volksen
  • Patent number: 6544583
    Abstract: A method for adjusting resistivity of a film heater on a substrate for use in process fluids employed in the semiconductor-processing industry as part of a clean, particle-free, nonreactive, non-trapping, ultra-pure, thermally tolerant, sealed system. In one arrangement, the method includes the steps of selecting a heating rate, selecting an electrical resistance value in accordance with the heating rate, selecting a resistive material for coating a substrate to produce resistance heating consistent with the electrical resistance value, selecting dimensions for a film of the resistive material selected to balance effects of conductivity, resistivity, length, and area against effects of the heating rate, and forming the film by conformally coating a surface of the substrate with the film at the selected dimensions.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: April 8, 2003
    Assignee: Trebor International, Inc.
    Inventor: Steven A. Black
  • Patent number: 6528123
    Abstract: This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al2O3.2SiO2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite).
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: March 4, 2003
    Assignee: Sandia Corporation
    Inventors: Charles H. Cadden, F. Michael Hosking
  • Patent number: 6506452
    Abstract: A process for producing a honeycomb structure, comprising the steps of: providing a substrate having cell walls in a honeycomb form and comprising SiO2, Al2O3 and MgO as the main chemical components, applying to said substrate a mixture of a component for lowering the cordierite crystal phase crystallization temperature of said substrate with a liquid medium, and firing said substrate with said mixture applied to form a honeycomb structure comprising a crystalline cordierite phase, said crystalline cordierite phase comprising 42-56% by mass of SiO2 30-42% by mass of Al2O3 and 12-18% by mass of MgO as the main chemical components.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: January 14, 2003
    Assignee: Denso Corporation
    Inventor: Masakazu Murata
  • Patent number: 6503572
    Abstract: Improved silicon carbide composites made by an infiltration process feature a metal phase in addition to any residual silicon phase. Not only are properties such as mechanical toughness improved, but the infiltrant can be so engineered as to have much diminished amounts of expansion upon solidification, thereby enhancing net-shape-making capabilities. Further, multi-component infiltrant materials may have a lower liquidus temperature than pure silicon, thereby providing the practitioner greater control over the infiltration process. In particular, the infiltration may be conducted at the lower temperatures, where low-cost but effective bedding or barrier materials can terminate the infiltration process once the infiltrant has migrated through the permeable mass up to the boundary between the mass and the bedding material.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: January 7, 2003
    Assignee: M Cubed Technologies, Inc.
    Inventors: W. Michael Waggoner, Barry R. Rossing, Michael A. Richmond, Michael K. Aghajanian, Allyn L. McCormick
  • Patent number: 6479094
    Abstract: A method for forming a resistor on a roughened surface for use in process fluids employed in the semiconductor-processing industry as part of a clean, particle-free, nonreactive, non-trapping, ultra-pure, thermally tolerant, sealed system. In one arrangement, the method for forming the resistor includes the steps of selecting a coating for the roughened surface from among the group of resistive materials, roughening a surface to promote mechanical adherence of the coating to the selection of a coating comprising resistive material, roughening a surface for promoting mechanical adherence of the resistive material thereto, and electroplating the resistive material onto the roughened surface to provide a uniformly controllable resistance in the coating.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: November 12, 2002
    Assignee: Trebor International, Inc.
    Inventor: Steven A. Black
  • Patent number: 6461680
    Abstract: The present invention relates to a method and apparatus of fabricating electromagnetic coil vanes. The method involves photolithographically exposing high resolution, dense wire patterns in a flash coat of copper, on both sides of a ceramic vane substrate. The substrate can be pre-drilled with a through hole to connect the two copper coil patterns. Additional copper is then deposited on both high resolution patterns and in the through hole by plating until the desired thickness is obtained. A firing operation is then performed that eutectically bonds the copper to the ceramic.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: October 8, 2002
    Assignee: Nikon Corporation
    Inventor: David J. Pinckney
  • Patent number: 6447845
    Abstract: A process for treating a surface of a substrate to improve the oxygen, carbon dioxide, flavor and odor gas barrier properties of the substrate with an organic acid having at least two acid substituents selected from the group consisting of a polybasic carboxylic acid, a polymer of an unsaturated carboxylic acid and a co-polymer of an unsaturated carboxylic acid, by applying the acid on to the substrate to form a layer, and exposing the layer to moisture. A variety of other types of additives may be included in the coating applied to the substrate with the acid including compounds of the formula RaX3−aSi(CH2)nY, a condensation catalyst, a solvent, and/or a filler.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: September 10, 2002
    Assignees: Dow Corning Corporation, Dow Corning S.A., EG Technology Partners, L.P.
    Inventors: Shrenik Mahesh Nanavati, John E. Wyman, Patrick Jacques Jean Merlin, Laurence Gallez
  • Patent number: 6447923
    Abstract: A highly reliable metallized Si3N4 ceramic having a metallizing layer of high bonding strength on the surface of a highly heat-conductive, mechanically-strong Si3N4 ceramic. A metallizing layer including 0.01 to 20% silicon by weight in terms of silicon is formed on the surface of a silicon nitride ceramic including 0.01 to 10% free silicon by weight and having a thermal conductivity of 50 W/mK or more and a bending strength of 600 MPa or more. The silicon component in the metallizing layer is either introduced from the silicon nitride ceramic by diffusion or included in a metallizing paste beforehand.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: September 10, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Akira Yamakawa
  • Patent number: 6419980
    Abstract: A process for producing an automatic-machine-bondable LTCC (Low Temperature Cofired Ceramics) circuit carrier includes the steps of applying a conductive paste having a glass content of less than 1.0 percent by weight onto a ceramic substrate having a glass content of at least 30 percent by weight, in order to form contact pads. The circuit carrier is fired such that glass melts out of the ceramic substrate and causes an adhesion between the conductive paste and the ceramic substrate. A ceramic circuit carrier has adhesion-promoting glass between the ceramic substrate and the conductive paste, wherein the adhesion-promoting glass originates from the ceramic substrate.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: July 16, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventor: Gerd Auerswald
  • Patent number: 6395337
    Abstract: A multilayer ceramic substrate contains a ceramic coating which is different in composition than the main body of the multilayer ceramic substrate to control camber of the multilayer ceramic substrate during sintering. The primary component of the ceramic coating is a secondary component of the main body of the multilayer ceramic substrate.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: May 28, 2002
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Govindarajan Natarajan, Robert W. Pasco
  • Publication number: 20020061403
    Abstract: The present invention relates to a method for metal coating on a tube, particularly a tube for ozone generators which have been widely used for commercial and industrial purposes. Quartz or high aluminum-oxide-containing is a preferred material for the tube for an ozone generator. According to the present method, the tube is coated with a film of gold by putting the tube in a stove wherein the temperature and baking time is controlled. The present method for coating improves the durability of tubes operated at high temperature brought forth by micro-discharge, and thus extends the service life of the tube as used in an ozone generator.
    Type: Application
    Filed: February 12, 2001
    Publication date: May 23, 2002
    Inventors: Huei-Tarng Liou, Kuang-Lang Huang
  • Patent number: 6350529
    Abstract: A gas-impermeable elastic membrane including a co-polymeric gas-impermeable film including OH groups, positioned between two layers of a co-polymer containing blocks of polyamides and of polyesters, with a rubber coating on at least one of the two layers, as well as a method of manufacturing the membrane.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: February 26, 2002
    Assignee: Elf Atochem S.A.
    Inventors: Yves Germain, Jean-Luc Beal, Christophe Le Roy
  • Publication number: 20010051212
    Abstract: There is disclosed a method for adjusting the temperature coefficient of resistance (TCR) of a temperature-measuring resistive element comprising an electrically insulating base and a platinum film formed on the base. The platinum film is formed by sintering an organic platinum compound. The temperature coefficient of resistance (TCR) is adjusted by controlling either the temperature at which the platinum film is heat-treated after the formation of the platinum film or the thickness of the platinum film.
    Type: Application
    Filed: February 14, 1996
    Publication date: December 13, 2001
    Inventors: HIROJI TANI, TEPPEI KUBOTA
  • Patent number: 6321571
    Abstract: An assembly of rib structures sandwiched between a dielectric glass layer and a glass substrate for use in a flat panel display, such as plasma addressed liquid crystal (PALC) displays, is formed by a number of methods. One method includes molding thermoplastic glass frit containing paste into rib structures, transferring the rib structures to a thin transparent layer of a thermoplastic dielectric glass frit containing composition on a drum, and transferring the rib structures with the thin transparent dielectric glass layer to a glass substrate having metallic electrodes already formed thereon.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: November 27, 2001
    Assignee: Corning Incorporated
    Inventors: Jean-Pierre Themont, Jean-Jacques B. Theron
  • Patent number: 6254926
    Abstract: An oxygen sensor element includes a solid electrolyte having cavities on a surface thereof and an electrode formed on the surface of the solid electrolyte. In a method of producing the oxygen sensor element, a solution containing a noble metal compound for nucleus formation is first applied to an electrode forming portion of the solid electrolyte to form a coating film. Then, the coating film is heat-treated to form a nucleus forming portion where noble metal nuclei are deposited. Subsequently, metal plating is applied to the nucleus forming portion to form a plating film deeply entering the cavities. Thereafter, the plating film is burned to form the electrode deeply entering the cavities.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: July 3, 2001
    Assignee: Denso Corporation
    Inventors: Toru Katafuchi, Kiyomi Kobayashi, Naoto Miwa, Hiromi Sano, Toshitaka Saito
  • Patent number: 6251524
    Abstract: A colored film comprising gold, bismuth oxide and an oxide other than bismuth oxide.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: June 26, 2001
    Assignee: Asahi Glass Company Ltd.
    Inventors: Kenji Ishizeki, Yasuhiro Sanada, Satoshi Takeda, Akira Hirano
  • Patent number: 6235685
    Abstract: A rod 1 made of superconducting oxide is soaked in a molten normal conductor 2 to join the rod 1 and the normal conductor 2, whereby a superconducting oxide current lead is prepared. As a result, a contact resistance at the interface between the superconducting oxide and the normal conductor can be reduced. Consequently, Joule's heat at a current lead having a small cross sectional area can be suppressed low, which in turn realizes the reduction of the load on a freezer and the amount of evaporated cooling solvent, with respect to a superconducting coil.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: May 22, 2001
    Assignee: International Superconductivity Technology Center
    Inventors: Junya Maeda, Teruo Izumi, Yuichi Imagawa, Satoshi Matsuoka, Yuh Shiohara, Shoji Tanaka, Hiroshi Okamoto
  • Patent number: 6232004
    Abstract: The present invention provides methods for treating ceramic materials, including oxide ceramic materials such as zirconia, with a treatment agent comprising a metallic material, such as titanium, by contacting a surface of the ceramic material with the treatment agent and heating the assembly to a temperature at which the ceramic material incorporates a portion of the metallic material by diffusion. The treated ceramic material is uniformly darkened and exhibits improved structural and physical properties.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: May 15, 2001
    Assignee: Pacific Coast Technologies, Inc.
    Inventor: Brian J. Lasater
  • Patent number: 6231925
    Abstract: There is provided a method for adhering precious metal to vitreous substances or bodies. Precious metal (including but not limited to, gold, palladium or platinum) is deposited or applied to the surface of the vitreous body. After such initial application, which may include a preheating step, the outer skin or membrane of the glass is made plastic and sticky by superheating. This change in viscosity allows the glass to bond to the deposited precious metal. The superheating process is completed quickly before distortion of the contour of the vitreous object and unwanted vaporization of the deposited metal take place. After the superheating process is completed, the object is annealed conventionally to room temperature.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: May 15, 2001
    Inventor: Anthony O. Davlin
  • Patent number: 6221427
    Abstract: Structures, and methods of fabrication thereof, are described wherein between an electrically conducting region and a ceramic region there is an interface region which has a thermal coefficient of expansion which is intermediate between the thermal coefficient of expansion of the conducting region and the ceramic region. This interface region substantially avoids separation of the adhesion of the conducting region from the ceramic region and avoids the creation of voids therebetween. The interface region is preferably a mixture of metal particles and ceramic material. The interface region is created by sintering alternately in oxidizing and reducing atmospheres which results in metal particles being disposed away from the metal body about the periphery or the metal body within the ceramic material.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: April 24, 2001
    Assignee: International Business Machines Corporation
    Inventors: Sheree Hsiao-Ru Wen, Carl Stephen Wood
  • Patent number: 6199404
    Abstract: A manufacturing method for a gas discharge type display panel makes it possible to manufacture an environmentally friendly substrate with high accuracy and yet at low cost. According to the manufacturing methods electrodes are formed on a back substrate by photolithography or printing, then a glass paste is printed to a height of approximately 10 &mgr;m-500 &mgr;m by printing. A barrier rib blanks are produced by rolling under pressure the glass paste by using a roller provided with grooves. The roller is heated in advance. The barrier rib blanks are sintered into the barrier ribs.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: March 13, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Michifumi Kawai, Ryohei Satoh, Masahito Ijuin, Tomohiko Murase, Takao Terabayashi, Nobuyuki Ushifusa, Yoshihiro Kato, Shigeaki Suzuki, Seiichi Tsuchida, Yutaka Naito, Seiichi Yasumoto, Osami Kaneto