Metal Base Patents (Class 427/383.7)
  • Patent number: 10662788
    Abstract: A gas turbine engine includes: a turbine section including a casing extending circumferentially about a plurality of turbine blades and having at least one seal member coated with an abradable coating. At least one turbine blade has sides and a tip and at least one seal member is located adjacent to the tip of the at least one turbine blade. The tip of the at least one turbine blade has a wear resistant layer and an abrasive coating disposed on the wear resistant layer. The wear resistant layer has a thickness less than or equal to 10 mils (254 micrometers) and includes metal boride compounds.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: May 26, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventor: Agnieszka M. Wusatowska-Sarnek
  • Patent number: 10465535
    Abstract: A compressor blade for a gas turbine is provided. The compressor blade has a blade substrate that consists of a metal alloy and has an aluminum diffusion zone on a surface of the blade substrate. In addition, the compressor blade has a hard material coating provided on the surface of the blade substrate. A compressor that has a compressor blade and a method of producing such a compressor blade is also provided.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: November 5, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Arturo Flores Renteria, Torsten Neddemeyer
  • Patent number: 8993064
    Abstract: Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10 nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 31, 2015
    Assignees: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Hironao Okayama, Kouji Nanbu, Akira Kaneko, Hajime Ota, Kotaro Ohki, Takashi Yamaguchi, Kazuhiko Hayashi, Kazuya Ohmatsu
  • Publication number: 20150064354
    Abstract: The present invention relates to a coating material for the production of an anti-corrosion and/or adhesion promoter layer, which material comprises metal powder and a phosphate-ion-containing solution as the binder, the metal powder being at least partially coated with Si or Si alloys or the binder consisting of phosphoric acid and metal phosphates and being substantially free of chromates. The invention further relates to a method for producing an anti-corrosion and/or adhesion promoter layer, comprising the following steps: Providing a coating material, such as indicated above, applying the coating material to a component surface on which the anti-corrosion and/or adhesion promoter layer is to be created, and drying and/or hardening by way of a heat treatment at a first temperature.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 5, 2015
    Inventors: Martin Stapel, Natividad Lopez Lavernia, Max Niegl, Max Morant
  • Patent number: 8962154
    Abstract: A pipe or pipe fitting for use in harsh environment such as in petroleum refinery processes for cracking petroleum feedstocks, the pipe or pipe fitting comprising a 0.25 to 2.5 mm thick Co-based metallic coating on an internal surface of the pipe body, the coating having a hypereutectic microstructure characterized by carbides in a cobalt matrix and an average carbide grain size of less than 50 microns, and the Co-based metallic composition overlays the pipe internal surface at an interface which is free of heat-affected zone and which has a diffusion zone which is less than 0.002 inches thick.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: February 24, 2015
    Assignee: Kennametal Inc.
    Inventors: Matthew Yao, Louw DeJong, Danie DeWet
  • Patent number: 8940404
    Abstract: Tin-plated copper-alloy material for terminal having: a substrate made of Cu or Cu alloy; an Sn-based surface layer formed on a surface of the substrate; and a Cu—Ni—Sn alloy layer including Ni formed between the Sn-based surface layer and the substrate, in which the Cu—Ni—Sn alloy layer is made of: fine Cu—Ni—Sn alloy particles; and coarse Cu—Ni—Sn alloy particles, an average thickness of the Sn-based surface layer is not less than 0.2 ?m and not more than 0.6 ?m, an area ratio of the Cu—Ni—Sn alloy layer exposed at a surface of the Sn-based surface layer is not less than 10% and not more than 40%, and a coefficient of kinetic friction of the tin-plated copper-alloy material for terminal is not more than 0.3.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: January 27, 2015
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yuki Taninouchi, Naoki Kato, Kenji Kubota
  • Publication number: 20140360247
    Abstract: Method for producing an extrusion die having a functional surface for metal extrusion material, comprising the following steps: providing a die support body, depositing a weldable substance containing cobalt and/or nickel onto a subsection of the die support body by means of an effective bonding application process to produce an inseparable deposition layer, machining the deposition layer in a chipping and/or material removal process to form the functional surface of the extrusion die, and carrying out a CVD coating process with a reaction gas at least on the functional surface.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 11, 2014
    Inventors: Oliver Maier, Joachim Maier
  • Publication number: 20140342181
    Abstract: A zinc-coated steel may be produced by performing a pre-alloying heat treatment after galvannealing the steel and prior to the hot stamping the steel. The pre-alloying heat treatment is conducted at a temperature between about 850° F. and about 950° F. in an open coil annealing process. The pre-alloying heat treatment allows for shorter time at the austenitization temperature to form a desired ?-Fe phase in the coating by increasing the concentration of iron. This also decreases the loss of zinc, and a more adherent oxide exists after hot stamping.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 20, 2014
    Inventors: Ralph Mutschler, Grant Thomas, Paul V. Janavicius, Luis G. Garza-Martinez
  • Publication number: 20140322555
    Abstract: Disclosed is a process for producing a high-temperature protective coating for metallic components, in particular components of turbomachines which are subjected to thermal loading. The process comprises producing a slip from MCrAlY powder, in which M is at least one metal, and from a Cr powder, applying the slip to the component to be coated and subsequently alitizing the component provided with the slip.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: MTU Aero Engines AG
    Inventor: Heinrich WALTER
  • Publication number: 20140287260
    Abstract: A process of treating a coated article and a treated article are disclosed. The process includes providing an article having a MCrAlY coating, applying an aluminide treatment onto the MCrAlY coating to form a treated MCrAlY coating, and outwardly forming ?-phase material from the MCrAlY coating into the treatment. The applying is selected from the group consisting of soaking, spraying, brushing, dipping, pouring, pack cementation, vapor deposition, and combinations thereof. The treated article includes a substrate and a treated MCrAlY coating positioned on at least a portion of the substrate. The treated MCrAlY coating includes a ?-phase aluminide in a spray-applied, brush-applied, pour-applied, dip-applied, pack cement-applied, vapor deposit-applied, or soaking-applied treatment.
    Type: Application
    Filed: March 19, 2013
    Publication date: September 25, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Vincent BUCCI, Dennis William CAVANAUGH
  • Publication number: 20140271220
    Abstract: A platinum plus chromium coating applied to the roots and firtrees of turbine blades where the inclusion of chromium creates a single phase outer zone which minimises diffusion paths for sulphur which can preferentially diffuse down phase boundaries and enables a chromium rich outer oxide scale to form on top of the coating.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 18, 2014
    Applicant: ROLLS-ROYCE PLC
    Inventor: Andrew Jonathan LEGGETT
  • Patent number: 8822872
    Abstract: Disclosed are an electrode wire for electro-discharge machining and a method for manufacturing the same. The electrode wire includes a core wire including a first metal including copper, a first alloy layer formed at a boundary region between the core wire and a second metal plated on an outer surface of the core wire due to mutual diffusion between the core wire and the second metal, and a second alloy layer formed due to diffusion of the first metal to the second metal. A core wire material is erupted onto a surface of the electrode wire for electro-discharge machining, which includes the core wire, the first alloy layer, and the second alloy layer, along cracks appearing on the second alloy layer, so that a plurality of grains are formed on the surface of the electrode wire.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 2, 2014
    Inventors: Ki-Chul Seong, Hyun-Soo Seong, Hyun-Kook Seong
  • Publication number: 20140234544
    Abstract: A surface treatment agent for aluminum heat exchangers, which includes a zirconium element, vanadium element, fluorine element, aluminum element and an acrylic polymer, with the concentration of zirconium element in terms of zirconium being 100-100,000 ppm by mass, the concentration of vanadium element in terms of vanadium being 50-100,000 ppm by mass, the fluorine element concentration being 125-125,000 ppm by mass, the concentration of aluminum element in terms of aluminum being 5-10,000 ppm by mass and the concentration of the acrylic polymer being 100-100,000 ppm by mass. The surface treatment agent has a pH of 0.5-3, and suppresses odor generated from an aluminum heat exchanger, and the generation of white rust that deposits on the surface of an aluminum fin.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 21, 2014
    Applicant: Noppon Paint Co., Ltd.
    Inventors: Hiroshi Takada, Hidekimi Hirasawa, Kenji Tsuge
  • Patent number: 8808803
    Abstract: A coating method includes depositing substantially pure hafnium metal, that is free of other elements that are present in more than trace amounts as inadvertent impurities, onto a metallic substrate, and heat treating the metallic substrate to react the hafnium metal with at least one other element to form a protective coating on the metallic substrate.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: August 19, 2014
    Assignee: United Technologies Corporation
    Inventor: Benjamin Joseph Zimmerman
  • Publication number: 20140220378
    Abstract: Coating systems and processes by which the coating systems can be deposited to be resistant to contaminants, and particularly resistant to infiltration and damage caused by CMAS. The coating systems include inner and outer ceramic layers. The inner ceramic layer consists essentially of zirconia stabilized by about 6 to about 9 weight percent yttria and optionally contains greater than 0.5 to 10 weight percent hafnium oxide. The outer ceramic layer overlies and contacts the inner ceramic layer to define the outermost surface of the coating system. The outer ceramic layer consists essentially of zirconia stabilized by about 25 to about 75 weight percent yttria, has a thickness that is less than the thickness of the inner ceramic layer and further contains greater than 0.5 to 10 weight percent hafnium oxide and optionally 1 to 10 weight percent tantalum oxide. The outer ceramic layer has a porosity level that is lower than that of the inner ceramic layer.
    Type: Application
    Filed: July 5, 2012
    Publication date: August 7, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bangalore Aswatha Nagaraj, Douglas Gerard Konitzer, Julie Marie Chapman, Venkat Subramaniam Venkataramani
  • Publication number: 20140205856
    Abstract: A method of treating aluminum or aluminum alloy includes providing an aluminum or aluminum alloy substrate; depositing a first zincating layer on the substrate by zincate immersion; stripping off the first zincating layer; depositing a second zincating layer on the substrate by zincate immersion; stripping off the second zincating layer; and depositing a third zincating layer on the substrate by zincate immersion.
    Type: Application
    Filed: September 11, 2012
    Publication date: July 24, 2014
    Applicant: MONNAIE ROYALE CANADIENNE/ROYAL CANADIAN MINT
    Inventors: Taixiang Jiang, Xianyao Li, Hieu Cong Truong
  • Publication number: 20140193647
    Abstract: The present invention discloses coating compositions comprising: I) at least one highly absorbing material selected from the group consisting of ruthenium, iridium and osmium compounds, and mixtures thereof; II) an inorganic glass binder or a precursor thereof; III) a ceramic filler comprising metal oxides, metal powders and mixtures thereof; and V) a liquid organic vehicle. The invention further discloses methods for preparing these coatings and uses thereof in solar applications.
    Type: Application
    Filed: March 25, 2012
    Publication date: July 10, 2014
    Applicant: Bengurion University of The Negev Research and Development Authority
    Inventor: Jacob Hormadaly
  • Patent number: 8728629
    Abstract: A connector terminal, fabricated from a metallic material for connector which material has a tin or tin alloy layer, formed on a copper or copper alloy base material, wherein the thickness of the tin or tin alloy layer at a contact site on the surface of the terminal is smaller than the thickness of the tin or tin alloy layer in the areas other than the contact site, and a copper-tin alloy layer is formed as an under layer of the tin or tin alloy layer at the contact site; and a connector terminal, fabricated from a metallic material for connector which material has a copper or copper alloy base material, wherein a copper-tin alloy layer is formed in a spot shape at a contact site on the surface of the terminal, and a tin or tin alloy layer is formed in the remaining areas on the surface.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 20, 2014
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Shuichi Kitagawa, Kengo Mitose, Yoshiaki Kobayashi
  • Publication number: 20140127531
    Abstract: The present invention provides a high-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity. The steel sheet includes: a coating layer containing Al: 4 to 22 mass %, Mg: 1 to 6 mass %, and Si: 0.001 to 1 mass %, and a balance being composed of Zn and inevitable impurities formed on a surface, in which at an interface between the coating layer and a base steel sheet, Mg2Si phases and Ca phases each mainly composed of Ca or a Ca compound exist, and at least part of the Mg2Si phases precipitate by using the Ca phases as a nucleus.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 8, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takeshi Yasui, Tooru Oohashi, Nayuta Kamazu, Satoru Tanaka, Akio Saito
  • Patent number: 8708646
    Abstract: A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal are provided. The MCrAlY alloy includes chromium, aluminum, yttrium and iron and optionally titanium, hafnium or silicon. The honeycomb seal includes a substrate, honeycomb cells and a protective coating on side walls of the honeycomb cells or a diffusion area inside side walls of the honeycomb cells, the protective coating or the diffusion area including the MCrAlY alloy.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: April 29, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: David Fairbourn, Paul Mathew Walker
  • Publication number: 20140079886
    Abstract: A method of producing a tinned steel sheet that includes forming an Sn-containing plating layer on at least one surface of a steel sheet with a mass per unit area of Sn is 0.05 to 20 g/m2; immersing the steel sheet in a chemical conversion solution containing 60 g/L or more and 200 g/L or less of aluminum phosphate monobasic and which has a pH of 1.5 to 2.4 or cathodically electrolyzing the steel sheet at a current density of 10 A/dm2 or less in the chemical conversion solution; and drying the steel sheet to form a chemical conversion coating.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: JFE Steel Corporation
    Inventors: Takeshi Suzuki, Norihiko Nakamura, Hiroki Iwasa
  • Publication number: 20140079957
    Abstract: The present invention is directed to a process for tin coating a metallic substrate, and a process for hardening a tin layer and wire having a tin coating The invention relates in particular to a process for tin coating a wire. In the process, firstly a tin layer is applied, and a metal layer made of a metal different to tin is applied thereto. Then, the layers are subjected to a diffusion annealing operation.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 20, 2014
    Applicant: Feindrahtwerk Adolf Edelhoff GmbH & Co. KG
    Inventors: Ingo JOLK, Mathias FIOLKA, Gerhard BUERSTNER, Joerg LIEDEMANN
  • Publication number: 20140037852
    Abstract: A steel wire having a stainless steel exterior; the steel wire includes a core region that comprises at least 55 wt. % iron which is metallurgically bonded to a stainless steel coating that consists of a stainless steel region and a bonding region. The stainless steel region can have a thickness of about 1 ?m to about 250 ?m, and a stainless steel composition that is approximately consistent across the thickness of the stainless steel region. The stainless steel composition includes an admixture of iron and about 10 wt. % to about 30 wt. % chromium. The bonding region is positioned between the stainless steel region and the core region, has a thickness that is greater than 1 ?m and less than the thickness of the stainless steel region, and has a bonding composition.
    Type: Application
    Filed: October 12, 2013
    Publication date: February 6, 2014
    Applicant: ARCANUM ALLOY DESIGN INC.
    Inventors: Daniel E. Bullard, Joseph E. McDermott
  • Patent number: 8637164
    Abstract: A silver-coated composite material for movable contact parts, which has: an underlying layer composed of any one of nickel, cobalt, a nickel alloy, and a cobalt alloy at least provided on a part of the surface of a stainless steel substrate; an intermediate layer composed of copper or a copper alloy provided thereon; and a silver or silver alloy layer provided thereon as an outermost layer, wherein a thickness of the intermediate layer is 0.05 to 0.3 ?m, and wherein an average grain size of the silver or silver alloy provided as the outermost layer is 0.5 to 5.0 ?m.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: January 28, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshiaki Kobayashi, Satoru Zama, Satoshi Suzuki, Masato Ohno
  • Publication number: 20140017514
    Abstract: The purpose of the present invention is to provide a water-soluble finishing agent for a trivalent chromium chemical conversion coating film, which has low insulation, no problems with tightening properties, outstanding gloss and high corrosion resistance, and can obtain a trivalent chromium chemical conversion coating film, especially a black trivalent chromium chemical conversion coating film, having few scratches and flaws. The finishing agent for a trivalent chromium chemical conversion coating film is characterized by containing a trivalent chromium source, a phosphate ion source, a zinc ion source, a chelating agent which can form a complex with trivalent chromium, and a non-ionic water-soluble polymer compound selected from a group comprising poly(vinyl alcohol) and derivatives thereof, poly(vinyl pyrrolidone) and derivatives thereof, poly(alkylene glycol)s and derivatives thereof, and cellulose ethers and derivatives thereof.
    Type: Application
    Filed: March 30, 2012
    Publication date: January 16, 2014
    Applicant: Dipsol Chemicals Co., Ltd.
    Inventors: Manabu Inoue, Takashi Koike, Ryuta Kashio
  • Patent number: 8617661
    Abstract: A method for fabricating a direct metal deposition (DMD) structure having substantially fully forged structural qualities is provided. In various embodiments, the method includes depositing a layer of metallic material onto an existing metallic structure having a microstructure that provides the existing metallic structure with substantially fully forged structural qualities. The DMD layer has a microstructure that provides the DMD layer with non-forged structural qualities.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: December 31, 2013
    Assignee: The Curators of the University of Missouri
    Inventors: Joseph William Newkirk, Fuewen Frank Liou, Romy Francis
  • Publication number: 20130323532
    Abstract: A copper-based material includes a base comprising copper and a surface treatment layer disposed on a surface of the base, the surface treatment layer including an amorphous layer containing a metal element that has a greater affinity for oxygen than for copper, oxygen, and, optionally, copper diffused from the base.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Inventors: Hideyuki SAGAWA, Seigi Aoyama, Toru Sumi, Keisuke Fujito, Hiromitsu Kuroda
  • Patent number: 8597724
    Abstract: Methods for repairing gas turbine components damaged by corrosion that not only restores the components back to their original dimensions to ensure proper engine operations, but also have the added benefit of mitigating future corrosion attacks thereby extending the useful life of the components.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: December 3, 2013
    Assignee: United Technologies Corporation
    Inventors: Billie W. Bunting, Andrew DeBiccari, Chris Vargas, Monika D. Kinstler, Derek W. Anderson
  • Publication number: 20130309410
    Abstract: A metal customization process that provides an alloy metal product which meets predefined product specifications which are typically based on whole thickness materials. The metal customization process can be used with any commercially available substrates (e.g., aluminum bar, aluminum coil, steel bar, steel coil, and alloys thereof) but, preferably, the substrate is made of steel (e.g., carbon steel, low carbon steel or steel alloys). This process can include receiving a product specification that can include performance or composition criteria; converting the product specification to a surface specification and a core specification; then treating a substrate with a deposition composition, for example, at a temperature below an annealing temperature, thereby depositing at least one alloying element onto the substrate to form a coating composition that is carried by the substrate; and then annealing the coated substrate to provide a product that meets the product specification.
    Type: Application
    Filed: March 13, 2013
    Publication date: November 21, 2013
    Applicant: Arcanum Alloy Design Inc.
    Inventors: Daniel E. Bullard, Joseph E. McDermott
  • Publication number: 20130299339
    Abstract: An aluminum alloy component has a surface region alloyed with an anodic metal to increase corrosion resistance in aqueous environments with high salinity or sulfur content.
    Type: Application
    Filed: June 17, 2013
    Publication date: November 14, 2013
    Inventors: Thomas J. Watson, Thomas J. Garosshen
  • Patent number: 8481172
    Abstract: A flat steel product, and a method for its production, which is formed from a steel substrate, such as strip or sheet steel, and a zinc-based corrosion protection coating, applied to at least one side of the steel substrate, which contains (in wt. %) Mg: 0.25 to 2.5%, Al: 0.2 to 3.0%, Fe: ?4.0%, and optionally in total up to 0.8% of one or more elements of the group Pb, Bi, Cd, Ti, B, Si, Cu, Ni, Co, Cr, Mn, Sn and rare earths, remainder zinc and unavoidable impurities are described. The corrosion protection coating has an Al content of maximum 0.5 wt. % in an intermediate layer extending between a surface layer directly adjacent to the surface of the flat steel product and a border layer adjacent to the steel substrate and with a thickness amounting to at least 20% of the total thickness of the corrosion protection coating.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: July 9, 2013
    Assignee: ThyssenKrupp Steel AG
    Inventors: Wilhelm Warnecke, Manfred Meurer, Rudolf Schönenberg, Michael Keller, Alexander Elsner
  • Publication number: 20130157896
    Abstract: A nanoscale calcinated silicate film fabricated on a gold substrate for highly effective, matrix-free laser desorption ionization mass spectrometry (LDI-MS) analysis of biomolecules. The calcinated film is prepared by a layer-by-layer (LbL) deposition/calcination process wherein the thickness of the silicate layer and its surface properties are precisely controlled. The film exhibits outstanding efficiency in LDI-MS with extremely low background noise in the low-mass region, allowing for effective analysis of low mass weight samples and detection of large biomolecules including amino acids, peptides and proteins. Additional advantages for the calcinated film include ease of preparation and modification, high reproducibility, low cost and excellent reusability.
    Type: Application
    Filed: May 18, 2011
    Publication date: June 20, 2013
    Applicant: The Regents of the University of California
    Inventors: Quan Cheng, Jicheng Duan, Matthew James Linman
  • Publication number: 20130134591
    Abstract: A semiconductor device is provided which has internal bonds which do not melt at the time of mounting on a substrate. A bonding material is used for internal bonding of the semiconductor device. The bonding material is obtained by filling the pores of a porous metal body having a mesh-like structure and covering the surface thereof with Sn or an Sn-based solder alloy.
    Type: Application
    Filed: August 3, 2011
    Publication date: May 30, 2013
    Inventors: Yoshitsugu Sakamoto, Hiroyuki Yamada, Yoshie Yamanaka, Tsukasa Ohnishi, Shunsaku Yoshikawa, Kenzo Tadokoro
  • Patent number: 8415028
    Abstract: A method of producing a clad sheet formed by joining a clad layer at least containing nickel, chromium, silicon, and phosphorus to a base material made of a stainless steel or a nickel-based alloy. A step of forming the clad layer includes contact-bonding a mixed powder to the base material, wherein an alloy powder that contains at least one selected from chromium, silicon, and phosphorus as components, and a nickel powder that functions as a binder to have the alloy powder be contact bonded to the base material are mixed in the mixed powder.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 9, 2013
    Assignee: IHI Corporation
    Inventors: Chitoshi Mochizuki, Takashi Yoshida
  • Publication number: 20130084466
    Abstract: Disclosed are methods for treating metal substrates that include contacting the metal with pretreatment compositions comprising: (a) a group IIIB metal, a group IVB metal and/or a group VB metal; and (b) a rheology modifier composition.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: PPG Industries Ohio, Inc.
    Inventors: Nathan J. Silvernail, Thor G. Lingenfelter
  • Publication number: 20130071685
    Abstract: A product includes a product body, a metallic plating layer and a resin layer. The product body is a rod-like member mainly including a metallic material. The metallic plating layer has a metallic luster on its surface and covers an exterior surface of the product body. The resin layer includes a thermosetting resin and an adhesive component and is adhered to the surface of the metallic plating layer, permitting the metallic plating layer to be seen through the resin layer.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: IWAKI FILM PROCESSING CO., LTD.
    Inventors: Daisuke IWAKI, Hiroshi IWAKI
  • Patent number: 8367160
    Abstract: A coating method includes depositing a reactive material onto a turbine engine component using an ionic liquid that is a melt of a salt, and heat treating the turbine engine component to react the reactive material with at least one other element to form a protective coating on the turbine engine component.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: February 5, 2013
    Assignee: United Technologies Corporation
    Inventor: Benjamin Joseph Zimmerman
  • Publication number: 20130029177
    Abstract: Methods of coating a magnesium substrate are provided along with coated magnesium substrates. A low melting point material is cold sprayed onto a region of the magnesium substrate. A corrosion resistant material or a zinc material is cold sprayed over at least a portion of the low melting point material to form a coated magnesium substrate. The coated magnesium substrate is then heated.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: GM Global Technology Operations LLC
    Inventor: Guangling Song
  • Publication number: 20130008799
    Abstract: The method of forming an oxidation resistant coating layer is for forming an oxidation resistant coating layer containing aluminum on a surface layer of a member (A) formed of metallic material. The method includes a plating treatment step (S1) of plating aluminum on a surface of the member (A) in a solvent, and a heat treatment step (S2) of heat-treating the member (A) whose surface has been plated by the plating treatment step (S1).
    Type: Application
    Filed: March 23, 2011
    Publication date: January 10, 2013
    Inventors: Akihiro Sato, Yoshihiro Tsuda, Hiroaki Iwata, Akira Tateno, Hiroki Yoshizawa, Tetsuji Hirato
  • Patent number: 8343584
    Abstract: A method of manufacturing a decorative article, including a first coating formation step of forming a first coating of primarily TiN on a substrate; a second coating formation step of forming a second coating on the first coating by means of a dry plating method using a target containing 70.0 wt %?85.0 wt % Au and 15.0 wt %?30.0 wt % Cu; a heat treatment step of promoting formation of a solid solution of the constituents of the second coating by applying a heating process that heats the substrate on which the first coating and the second coating are disposed to 300° C.?395° C. and then applying a cooling process; and an acid treatment step that, of the constituents of the second coating to which the heating process was applied, removes the constituents not forming a solid solution by applying an acid treatment.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 1, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Atsushi Kawakami, Yuzuru Tsukamoto
  • Patent number: 8337997
    Abstract: A composite material for an electrical/electronic part, which is used as a material for use in an electrical/electronic part, containing: a metal base material having at least a surface formed of Cu or a Cu alloy; and an insulating film provided on at least a part of the metal base material; wherein a metal layer having Cu diffused in Ni or a Ni alloy is interposed between the metal base material and the insulating film; and wherein the ratio of the number of Cu atoms to the number of Ni atoms (Cu/Ni) obtained by analyzing the outermost surface of the metal layer by Auger electron spectroscopy is 0.005 or more.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 25, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Chikahito Sugahara, Satoru Zama, Akira Tachibana
  • Publication number: 20120288697
    Abstract: Methods for coating wires to apply a silver cladding are disclosed herein. Silver nanoparticles are dispersed in a low surface tension solvent to form a coating solution. A wire is drawn through the coating solution to form a coating layer of silver nanoparticles on the wire. The coating layer is then annealed to form the wire with a silver cladding thereon.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Applicant: XEROX CORPORATION
    Inventors: Yiliang Wu, Ping Liu, Nan-Xing Hu
  • Patent number: 8309178
    Abstract: Provided are methods and initial structures for fabricating corrosion resistant steels that incorporate an aluminum rich corrosion resistant surface layer. The initial structures utilize layering and/or patterning for reducing the effective diffusion length Deff to a value well below the total thickness of the aluminum alloy protective layer X1 by providing vertical and/or lateral laminated structures that provide ready sources of Fe atoms during subsequent heat treatment processes.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Alan Seid, Masayuki Narita
  • Publication number: 20120264601
    Abstract: The invention relates to a method for producing an aluminium strip, in which the aluminium strip is coated with a sorption layer which has a binder and a sorbent. The object to propose a method for producing an aluminium strip coated with a sorption layer, by means of which an aluminium strip can be coated cost-effectively having constant performance characteristics with respect to the sorption of, for example, water vapour, is achieved according to the invention by means of a method for producing an aluminium strip coated with a sorption layer by applying a suspension to the aluminium strip in the coil-coating process, which in addition to a liquid comprises at least one binder, formed as a solid, and a sorbent, and by subjecting the aluminium strip, together with the applied suspension, to a drying process, in which the binder is activated.
    Type: Application
    Filed: February 25, 2010
    Publication date: October 18, 2012
    Applicant: Hydro Aluminium Deutschland GmbH
    Inventors: Volker Denkmann, Ulrich Hampel, Willi Schenkel, Andreas Siemen, Wolf Oetting
  • Publication number: 20120189778
    Abstract: A coating method includes depositing a coating material onto a turbine engine component using an ionic liquid that is a melt of the salt. The coating material includes aluminum. The turbine engine component is then heat treated to react with at least one element of the coating material with at least one other element to form a protective coating on the component.
    Type: Application
    Filed: January 26, 2011
    Publication date: July 26, 2012
    Inventors: Curtis H. Riewe, Benjamin Joseph Zimmerman, Mark R. Jaworowski, Xiaomei Yu
  • Publication number: 20120189868
    Abstract: The invention relates to a process for preparing a substrate with a multizone metallic coating comprising the steps of heating a metallic material optionally comprising a metallic outer layer having a different composition than said metallic material, to a temperature T1, depositing a coating of aluminium, magnesium, and/or zinc, and cooling down to a temperature T2 and continuing the deposition. It furthermore relates to a substrate with a multizone metallic coating obtainable with said process.
    Type: Application
    Filed: July 28, 2010
    Publication date: July 26, 2012
    Applicant: AKZO NOBEL CHEMICALS INTERNATIONAL B.V.
    Inventors: Alexander Sergeevich Borovik, Dennis Leon Deavenport, Jörg Heller, Boris Kuzmanovic, Arthur Robert Luttmer, Simon Oberhauser
  • Publication number: 20120177830
    Abstract: In general, the present invention provides coating systems and processes for applying a selected coating system on a metallic substrate. The coating system includes two or more coating layers. A first layer comprises a MCrAl(Y,Hf)-type coating. The MCrAl(Y,Hf) coating is overlaid with a second coating composition that includes a metallic composition different from the MCrAl(Y,Hf) coating composition and includes one or more of: a platinum, silicon containing composition; a platinum, silicon, aluminum containing composition; a platinum, silicon, chromium containing composition; an aluminum, silicon containing composition; and an aluminum, silicon, chromium containing composition; each optionally combined with one or more of chromium, hafnium, lanthanum, manganese, yttrium and mixtures of these metals. Additionally the platinum in the metallic compositions can be exchanged in whole or in part by another noble metal.
    Type: Application
    Filed: November 14, 2011
    Publication date: July 12, 2012
    Inventors: George Edward Creech, Subhash Krishna Naik
  • Publication number: 20120156366
    Abstract: A process for forming a coated substrate comprises providing a nickel base alloy substrate, depositing a chromium coating onto the nickel base alloy substrate and diffusing chromium from said coating into the substrate, applying a MCrAlY coating onto the nickel base alloy substrate and heat treating the substrate with the deposited chromium and the MCrAlY coating so that chromium diffuses into an outer region of the substrate. Further, in accordance with the present invention, a strip process for removing a coating from a substrate broadly comprises the steps of providing a nickel base alloy substrate having chromium diffused into an outer region and a MCrAlY coating deposited over the substrate with the diffused chromium and removing the MCrAlY coating by immersing the nickel base alloy substrate in an acid solution containing a sulfuric acid—hydrochloric acid mixture in water.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Alan D. Cetel, Curtis Heath Riewe, Dwayne A. Braithwaite
  • Publication number: 20120141686
    Abstract: A rust-proof coating, which does not contain a hazardous metal such as chromium and is able to form a thin coating in which crack generation is inhibited even after a baking treatment at a high temperature, including based on the whole composition, 5 to 40% by weight of an organic silicon compound, 0.05 to 5.0% by weight of an organic titanium compound, 20 to 60% by weight of one or more metal powders selected from the group of zinc powder, zinc alloy powder, and aluminum powder, and 10 to 60% by weight of an organic solvent. A coating having excellent anticorrosive properties can be formed by coating the above-mentioned paint composition followed by heating at a temperature of from 200 to 400 degrees C.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 7, 2012
    Applicant: Yuken Industry Co., Ltd.
    Inventor: Toshimichi Suzuki
  • Publication number: 20120100987
    Abstract: The invention relates to a method for producing an aluminium strip, in which the aluminium strip is coated with a sorption layer which has a binder and a sorbent. The object to propose a method for producing an aluminium strip coated with a sorption layer, by means of which an aluminium strip can be coated cost-effectively having constant performance characteristics with respect to the sorption of, for example, water vapour, is achieved according to the invention by means of a method for producing an aluminium strip coated with a sorption layer by applying a suspension to the aluminium strip in the coil-coating process, which in addition to a liquid comprises at least one binder, formed as a solid, and a sorbent, and by subjecting the aluminium strip, together with the applied suspension, to a drying process, in which the binder is activated.
    Type: Application
    Filed: February 25, 2010
    Publication date: April 26, 2012
    Applicant: Hydro Aluminium Deutschland GmbH
    Inventors: Volker Denkmann, Ulrich Hampel, Willi Schenkel, Andreas Siemen, Wolf Oetting