Applying Superposed Diverse Coating Or Coating A Coated Base Patents (Class 427/402)
  • Patent number: 11779044
    Abstract: A 3D printer for producing consumable products, the 3D printer comprising an apparatus for dispensing a material, the apparatus comprising: a first syringe having a body for containing a material, a nozzle for dispensing the material from the body, and a plunger for controlling a pressure in the body, a plunger mechanism coupled to the plunger, a body mechanism coupled to the body and an actuator arranged to move the plunger mechanism relative to the body mechanism in a first direction to increase a pressure in the syringe body to dispense the material and to move the plunger mechanism relative to the body mechanism in a second direction to reduce the pressure in the syringe body to inhibit the dispensation of the material.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: October 10, 2023
    Assignee: REM3DY HEALTH LIMITED
    Inventors: Melissa Snover, Martyn Catchpole
  • Patent number: 11768162
    Abstract: Low-cost devices for measuring radar transmission and/or reflectance of coated articles are provided. An exemplary low-cost radar transmission and reflection measurement device includes a radar transmitter that emits a radar signal, a radar target to which the radar signal is directed, and a radar receiver that receives the radar signal. Further, the exemplary low-cost device includes a sample holder located between the radar transmitter and the radar target and between the radar target and the radar receiver. The sample holder receives a sample including a coating. The low-cost device also includes a controller connected to the radar transmitter and radar receiver. The controller measures a radar signal loss due to the coating.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: September 26, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Neil Richard Murphy
  • Patent number: 11592544
    Abstract: Methods and devices for estimating a component transmission loss are provided. In an exemplary embodiment, a method includes receiving a desired substrate criterion of a desired substrate, and receiving a desired coating criterion of a desired coating. A component includes the desired substrate and the desired coating. A coating criterion value is received, where the coating criterion value quantifies the desired coating criterion. A desired coating permittivity is estimated for the desired coating, using the coating criterion value, and an estimated component transmission loss of radar signal through the component is produced.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: February 28, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Neil Richard Murphy
  • Patent number: 11585763
    Abstract: Low-cost devices and methods for measuring radar transmission and/or reflectance of coated articles, as well as methods for forming coatings on articles are provided. An exemplary low-cost radar transmission and reflection measurement device includes a radar transmitter that emits a radar signal, a radar target to which the radar signal is directed, and a radar receiver that receives the radar signal. Further, the exemplary low-cost device includes a sample holder located between the radar transmitter and the radar target and between the radar target and the radar receiver. The sample holder receives a sample including a coating. The low-cost device also includes a controller connected to the radar transmitter and radar receiver. The controller measures a radar signal loss due to the coating.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: February 21, 2023
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Neil Richard Murphy
  • Patent number: 11306397
    Abstract: An aqueous solution for metal surface treatment includes an alkyl silicate or an oligomer thereof in a concentration of 0.005 mass % or more and less than 1 mass %, and an organic silane compound in a concentration of 0.005 mass % or more and less than 1 mass %. The aqueous solution has a pH of 2 or more and 7 or less.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: April 19, 2022
    Assignee: Kobe Steel, Ltd.
    Inventors: Yusuke Takahashi, Satoru Takada
  • Patent number: 11207823
    Abstract: A cap for an extruder of a three-dimensional printer is removeable and replaceable on the hot end of the extruder, e.g., for cleaning or other maintenance of the cap or extruder. The cap may be formed of a polymer having a lower thermal conductivity than the hot end of the extruder such that the cap forms a thermal barrier between the hot end of the extruder and an external environment. Further, the cap may protect the hot end of the extruder from damaging contact with deposited build material (e.g., spatters) as well as other undesirable contact during a three-dimensional printing process.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: December 28, 2021
    Assignee: MakerBot Industries, LLC
    Inventors: Michael C. Pappas, Vishnu Anantha
  • Patent number: 11130703
    Abstract: Disclosed herein are a method of manufacturing a heterogeneous coating solution bonded coating layer, and a coating layer and a cover window produced thereby. More particularly, there are provided a method of manufacturing a heterogeneous coating solution bonded coating layer, in which a step difference at the boundary between different types of coating solutions is controllable by controlling a difference in capillary number during discharge of the different types of coating solutions using a slot die coater, and a coating layer and a cover window produced thereby. Therefore, the method of manufacturing a heterogeneous coating solution bonded coating layer can produce a cover window that is excellent in all the properties including durability, optical characteristics, and flexibility.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 28, 2021
    Assignee: Korea Institute of Industrial Technology
    Inventors: Yong Cheol Jeong, Kang Han Kim
  • Patent number: 11104848
    Abstract: Disclosed is an etching solution for a silicon substrate. More specifically, an etching solution for a silicon substrate is disclosed in which a concentration of a silane compound (silicon) in the etching solution for the silicon substrate is adjusted to improve an etching selectivity of a silicon nitride film relative to a silicon oxide film during etching of the nitride film.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: August 31, 2021
    Assignee: OCI COMPANY LTD.
    Inventors: Ho-Seong Yoo, Myung-Hyun Kim, Jun-Eun Lee, Pyong-Hwa Jang
  • Patent number: 11046012
    Abstract: A method for generating a signal indicative for nozzle maintenance, including feeding modeling material through a feed channel of a printhead to a nozzle of the printhead in a three-dimensional modeling system, determining a parameter indicative of a fluid resistance of modeling material within the nozzle. Determining the parameter includes determining a flowrate of the modeling material within the feed channel, determining a pressure exerted on the modeling material within the feed channel and determining a pressure exerted on the modeling material outside the feed channel, determining a pressure difference between the pressure exerted on the modeling material within the feed channel and the pressure exerted on the modeling material outside the feed channel, and calculating the parameter from the determined flow rate and the determined pressure difference.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: June 29, 2021
    Assignee: BOND HIGH PERFORMANCE 3D TECHNOLOGY B.V.
    Inventors: Thomas Jonathan Bruggeman, Adrianus Bruggeman, Martijn Johannes Wolbers, Kevin Hendrik Jozef Voss, Bouwe Kuiper, Koendert Hendrik Kuit, Marald Speelman
  • Patent number: 10840465
    Abstract: According to an embodiment, a producing method of a radiation detection element, includes: forming an organic semiconductor layer by applying an organic semiconductor solution onto a first conductive layer formed on a support substrate; forming a second conductive layer on the organic semiconductor layer; sealing a laminated body of the first conductive layer, the organic semiconductor layer, and the second conductive layer, formed on the support substrate, with a sealing member; and applying heat to the laminated body sealed with the sealing member. In at least one of forming of the organic layer and forming of the second conductive layer, a forming environment of the organic semiconductor layer and the second conductive layer are adjusted such that the solvent content of the organic semiconductor layer is in a predetermined range.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: November 17, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hyangmi Jung, Satomi Taguchi, Isao Takasu, Yuko Nomura, Rei Hasegawa
  • Patent number: 10603813
    Abstract: Structures for use in forming products having a wood grain appearance include, for example, a plurality of extruded layers having different colors/shades spirally wound about a longitudinal axis to an outer surface to define the structure. The plurality of extruded layers include varying thicknesses along a spiral length of the plurality of layers and/or portions of the plurality of extruded layers encircling the longitudinal axis include portions disposed at different distances from the longitudinal axis. In some embodiments, the spirally winding includes forming a cylindrical structure, and pressing the cylindrical structure into a cuboid structure having a square or rectangular cross-section across the longitudinal axis and at least a portion of the plurality of extruded layers defining a square or rectangle pattern across the longitudinal axis. Longitudinal portions may be cut from the structures to form the products having a wood grain appearance.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: March 31, 2020
    Assignee: Telescope Casual Furniture, Inc.
    Inventor: William M. Vanderminden
  • Patent number: 10526694
    Abstract: A method of preparing an ultra-flat metal surface involves providing a layer of a crystalline metallic material on an ultra-flat substrate surface that is relatively harder than the metallic material layer and then impinging the metallic material layer with incoming metal atoms that are deposited as an additive crystalline layer thereon, wherein at least a lattice constant of the additive crystalline layer is different enough from a lattice constant of the crystalline metallic material layer resulting in a reduction of roughness of the surface of the metallic material layer adjacent to the substrate surface. The metallic material layer having an ultra-flat surface then is separated by template stripping or other technique from the substrate surface for further use of the ultra-flat surface.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: January 7, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Martin Thuo, Jiahao Chen, Ian D. Tevis
  • Patent number: 10497615
    Abstract: A method includes forming a first opening in a dielectric layer over a substrate, lining sidewalls and a bottom of the first opening with a conductive barrier layer, and depositing a seed layer over the conductive barrier layer. The method further includes treating the seed layer with a plasma process, and filling the first opening with a conductive material after the treating the seed layer.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Sheng Wang, Chi-Cheng Hung, Ching-Hwanq Su, Liang-Yueh Ou Yang, Ming-Hsing Tsai, Yu-Ting Lin
  • Patent number: 10375835
    Abstract: The present invention relates to methods of treating metal surfaces to enhance adhesion or binding to substrates, and devices formed thereby. In some embodiments of the present invention, methods of achieving improved bonding strength without roughening the topography of a metal surface are provided. The metal surface obtained by this method provides strong bonding to resin layers. The bonding interface between the treated metal and the resin layer exhibits resistance to heat, moisture, and chemicals involved in post-lamination process steps, and therefore can suitably be used in the production of PCB's. Methods according to some embodiments of the present invention are especially useful in the fabrication of high density multilayer PCB's, in particular for PCB's having circuits with line/spacing of equal to and less than 10 microns. Methods according to other embodiments of the present invention are particularly useful in the coating of metal surfaces in a wide variety of applications.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: August 6, 2019
    Assignee: Atotech Deutchland GmbH
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Patent number: 10177342
    Abstract: A display device includes a substrate, a barrier layer, a transistor, and a first impact buffer layer. The barrier layer is disposed on the substrate. The transistor is disposed on the barrier layer. The first impact buffer layer is disposed between the barrier layer and the transistor. The first impact buffer layer includes a nanostructure. The nanostructure includes pores.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: January 8, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sun Hee Lee, Pil Suk Lee, Ju Chan Park, Young Gug Seol
  • Patent number: 10154585
    Abstract: An object of the present invention is to provide a conductive coating film formed on a polyimide-based insulating substrate by using a metal powder paste which can exhibit a good conductivity and good adhesion to the insulating substrate. By forming a resin cured layer having a solvent-soluble content of not more than 20% by weight and a thickness of not more than 5 ?m on a polyimide-based insulating substrate; forming a metal powder-containing coating layer on the resin cured layer by using a metal powder paste; and then subjecting the resulting coating layer to heat treatment with superheated steam, it is possible to obtain a conductive coating film which can exhibit a good conductivity and good adhesion to the insulating substrate.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: December 11, 2018
    Assignees: TODA KOGYO CORPORATION, TOYOBO CO., LTD.
    Inventors: Takeshi Yatsuka, Chiho Ito, Yasuo Kakihara, Hirotoshi Kizumoto, Koji Shoki
  • Patent number: 10117816
    Abstract: The present invention relates to a cosmetic process for treating human body odor, in particular underarm odor, which consists in applying to human keratin materials a composition containing, in a cosmetically acceptable medium, at least one 4-(3-ethoxy-4-hydroxyphenyl)alkyl ketone or 2-ethoxy-4-hydroxyalkylphenol compound of formula (I) below: in which: R represents a hydrogen atom, or a linear or branched, saturated or unsaturated (alkyl or alkenyl), C1-C18 hydrocarbon-based radical; R? represents a linear or branched, saturated or unsaturated (alkyl or alkenyl), C1-C18 hydrocarbon-based radical, optionally substituted with a hydroxyl group; C—X represents C?O or CH—OH. The invention also relates to the cosmetic use of at least one compound of formula (I), as a deodorant active agent.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: November 6, 2018
    Assignee: L'OREAL
    Inventor: Maria Dalko
  • Patent number: 10053994
    Abstract: An abrasive sheath for application to a component surface is disclosed. The abrasive sheath may comprise a metallic layer and an abrasive layer plated on a surface of the metallic layer. The abrasive layer may include a metal matrix and abrasive particles protruding from the matrix. An exposed surface of the metallic layer of the abrasive sheath may be joinable to the component surface by a heat treatment.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: August 21, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Eric W. Stratton, Michael J. Minor
  • Patent number: 9993842
    Abstract: Disclosed are Bisphenol A (BPA), Bisphenol F, Bisphenol A diglycidyl ether (BADGE), and Bisphenol F diglycidyl ether (BFDGE)-free coating compositions for metal substrates including an under-coat composition containing a polyester (co)polymer, and an under-coat cross-linker; and an over-coat composition containing a poly(vinyl chloride) (co)polymer dispersed in a substantially nonaqueous carrier liquid, an over-coat cross-linker, and a functional (meth)acrylic (co)polymer. Also provided is a method of coating a metal substrate using the BPA, BPF, BADGE and BFDGE-free coating system to produce a hardened protective coating useful in fabricating metal storage containers. The coated substrate is particularly useful in fabricating multi-part foodstuffs storage containers with “easy-open” end closures.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: June 12, 2018
    Assignee: SWIMC LLC
    Inventors: Peter Mayr, Paul Cooke, Trevor Fielding, Ronald L. Goodwin, Greg Paulson, James Robinson, Anthony Violleau
  • Patent number: 9962735
    Abstract: Disclosed are a multilayer coating film made from a natural material and a method of producing the same. The multilayer coating film may be produced by forming a multilayer coating film through formation of a color coating film for providing adhesion and color to a cork on the cork material and a clear coating film for realizing texture and supplementing properties on the color coating film. As such, the multilayer coating film may be made from a natural material to diversify the color and gloss of cork as a natural material, to additionally increase marketability of an interior material and provide various appearance, to prevent discoloration due to light (e.g. UV light.) and water permeation, and to enhance durability against abrasion, scratches and the like.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: May 8, 2018
    Assignees: Hyundai Motor Company, Noroobee Chemical Co., Ltd.
    Inventors: Ho Tak Jeon, Hyo Jin Lee, Young Seok Kim, Yong Chul Lee, Jae Beom Ahn
  • Patent number: 9763336
    Abstract: Embodiments of the present invention relate generally to methods of treating metal surfaces to enhance adhesion or binding to substrates, and devices formed thereby. In some embodiments of the present invention, methods of achieving improved bonding strength without roughening the topography of a metal surface are provided. The metal surface obtained by this method provides strong bonding to resin layers. The bonding interface between the treated metal and the resin layer exhibits resistance to heat, moisture, and chemicals involved in post-lamination process steps, and therefore can suitably be used in the production of PCB's. Methods according to some embodiments of the present invention are especially useful in the fabrication of high density multilayer PCB's, in particular for PCB's having circuits with line/spacing of equal to and less than 10 microns.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 12, 2017
    Assignee: Atotech Deutschland GmbH
    Inventors: Jen-Chieh Wei, Zhiming Liu, Steven Z. Shi, Werner G. Kuhr
  • Patent number: 9735299
    Abstract: A reactive pressure sensitive adhesive composition is disclosed. A tape formed using the reactive pressure sensitive adhesive is also disclosed. In its cured state, the pressure sensitive adhesive shows superior mechanical and electrical properties compared to conventional, non-curable charge collection tapes. The tape has a cure profile pre-selected to correspond to that of a photovoltaic cell fabrication process, such that curing can take place during cell fabrication and may occur simultaneously with one or more other curing steps employed in cell fabrication.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: August 15, 2017
    Assignee: Adhesives Research, Inc.
    Inventors: Donald Herr, Brian A. Harkins
  • Patent number: 9593246
    Abstract: An object having a coating produced using an adhesion promoter, wherein the adhesion promoter comprises at least one, optionally oligomeric, addition product having no terminal C?C double bonds and having hydrolyzable silane groups.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 14, 2017
    Assignee: BYK-CHEMIE GMBH
    Inventors: René Nagelsdiek, Bernd Gobelt, Jürgen Omeis, Andreas Freytag, Dorothée Greefrath
  • Patent number: 9586437
    Abstract: A method for coating a surface of a structural component includes applying at least one ink to the surface of the structural component via an inkjet process. The at least one ink applied is irradiated with UV radiation so as to cure the at least one ink and to form an ink-containing layer. At least one metal layer is applied to the ink-containing layer via a PVD procedure. At least one clear lacquer is applied to the at least one metal layer. The at least one clear lacquer is cured so as to form a clear lacquer layer.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 7, 2017
    Assignee: MANKIEWICZ GEBR. & CO. GMBH & CO. KG
    Inventors: Umberto De Rossi, Klaus Roths
  • Patent number: 9364589
    Abstract: In a method for making a wire guide, a fluoropolymer coating is removed from a distal section of an FP coated core wire to expose a metallic portion. A polymer coating is applied to a proximal section of the FP coated core wire such that the polymer coating overlays at least a portion of the FP coating, and to the distal section of the FP coated core wire including the exposed metal portion. The polymer coating is removed from the FP coating to form the wire guide having a proximal portion with the FP coating and a distal portion with the polymer coating. A hydrophilic coating may be applied to the distal portion over the polymer coating.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: June 14, 2016
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Logan Michael Cage, James Cameron Elsesser
  • Patent number: 9302921
    Abstract: A bio-inspired method for detoxifying contaminated water is disclosed. In the method, polydopamine, a mussel-inspired adhesive catecholamine was used as an adsorbent to effectively remove from contaminated water three major classes of toxic agents: heavy metal ions (e.g., Cr, Hg, Pb, Cu, and Cd), toxic organic species (e.g., 4-aminopyridine), and radioisotopes (e.g., Lutetium-177). Furthermore, the polydopamine adsorbent was regenerated by treatment with acid or hydrogen peroxide.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: April 5, 2016
    Assignee: Northwestern University
    Inventors: Phillip B. Messersmith, Haeshin Lee
  • Publication number: 20150140340
    Abstract: This invention discloses a new process of preparing highly reflective coatings with thermal resistance on substrates of metals. The thermal resistant coating layers include a minor-like coating with high reflectivity and a transparent protective coating, which are coated on metallic substrates with surfaces pre-treated by anodizing or thermal resistant primers (base coating layers).
    Type: Application
    Filed: October 27, 2014
    Publication date: May 21, 2015
    Inventors: Jianying MIAO, Wei LI, Shing Hang NG
  • Patent number: 9034489
    Abstract: A coating composition which imparts antifog, antireflective, easy-cleaning, and/or antistatic properties to substrates coated therewith. The coating compositions utilize nanoparticles funtionalized with amine groups and/or protected amine groups, and amine-reactive groups.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 19, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Zhigang Yu, Xue-hua Chen, Bangwei Xi, Appuswamy Devasenapathi, Wei De Liu, George Van Dyke Tiers, Justin A. Riddle, Deivaraj Theivanayagam Chairman, Michelle L. Legatt, Cecil V. Francis
  • Publication number: 20150132499
    Abstract: Provided is a manufacturing method for a multilayer laminated film at a high coating rate, whereby film thickness uniformity is improved and interference unevenness is reduced. The present invention is a manufacturing method for a multilayer laminated film, the method including the step of simultaneous multilayer coating of plural coating liquids onto a substrate at a coating rate of 10 m/min or more, wherein, when A [mPa·s] stands for the viscosity of the coating liquid at a temperature of 45° C. and a shear rate of 10 sec?1, B [mPa·s] stands for the viscosity of the coating liquid at a temperature of 45° C. and a shear rate of 1000 sec?1, and C [mPa·s] stands for the viscosity of the coating liquid at a temperature of 45° C. and a shear rate of 10000 sec?1, at least one coating liquid of the plural coating liquids has A/B in the range of 1.5 to 9 and B/C in the range of 0.6 to 1.4.
    Type: Application
    Filed: May 16, 2013
    Publication date: May 14, 2015
    Inventor: Akiyoshi Kimura
  • Publication number: 20150125279
    Abstract: A submersible pump component is provided. The component includes a substrate including an outer surface in a plurality of orientations, wherein a first portion of the outer surface is configured to be worn by a first wear mechanism, and a second portion of said outer surface is configured to be worn by a second wear mechanism. The component also includes at least one layer of a first coating applied to the outer surface, and at least one layer of a second coating applied over said first coating at said second portion of said outer surface. The first coating is configured to inhibit the first wear mechanism at the first portion of the outer surface, and the second coating is configured to inhibit the second wear mechanism at the second portion of the outer surface.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: General Electric Company
    Inventors: Patrick James McCluskey, Dennis Michael Gray, Scott Andrew Weaver, Bala Srinivasan Parthasarathy, Richard Arthur Nardi, JR., Charles Joseph Underwood
  • Publication number: 20150119252
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A niobium/aluminum oxide/niobium trilayer may be formed and individual Josephson Junctions (JJs) formed. A protective cap may protect a JJ during fabrication. A hybrid dielectric may be formed. A superconductive integrated circuit may be formed using a subtractive patterning and/or additive patterning. A superconducting metal layer may be deposited by electroplating and/or polished by chemical-mechanical planarization. The thickness of an inner layer dielectric may be controlled by a deposition process. A substrate may include a base of silicon and top layer including aluminum oxide. Depositing of superconducting metal layer may be stopped or paused to allow cooling before completion. Multiple layers may be aligned by patterning an alignment marker in a superconducting metal layer.
    Type: Application
    Filed: March 7, 2013
    Publication date: April 30, 2015
    Inventors: Eric Ladizinsky, Jeremy P. Hilton, Byong Hyop Oh, Paul I. Bunyk
  • Publication number: 20150118441
    Abstract: The present disclosure provides a multi-layer thermal protection material comprising: (i) a substrate layer; (ii) a reflection layer formed on the substrate layer; and (iii) an emission layer formed on the reflection layer and effective to convert thermal energy to photonic energy. The reflection layer comprises a porous scattering media effective to reflect photonic energy away from the substrate layer. The emission layer comprises a thermally emissive dopant incorporated into a thermal matrix material. The present disclosure also provides articles such as portions of hypersonic flight vehicles and turbine component parts that include coatings comprising the multi-layer protection material of the present disclosure. The present disclosure also provides methods of making and using the multi-layer thermal protection material and associated articles described herein.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Wen Shang, Tao DENG, Boris RUSS, Hendrik Pieter Jacobus DE BOCK, Adam RASHEED, Andrew Arthur Paul BURNS, Mohamed SAKAMI, Steven Charles ACETO, Andrey MESHKOV, Scott Michael MILLER
  • Publication number: 20150110963
    Abstract: The present invention is directed to an anticorrosion composition and a method for preventing or inhibiting the corrosion of a metal substrate utilizing an anticorrosion compound. The method utilizes an anticorrosion composition comprising at least one amine oxide and at least one N-containing compound. The invention relates to a method for inhibiting the corrosion of metal surfaces by applying the composition to a metal substrate. The composition of the present invention provides corrosion inhibition, cleaning capabilities, and conversion capabilities.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 23, 2015
    Inventors: Xiao Jiang, David Biro, Edwin Holcombe
  • Publication number: 20150109162
    Abstract: A combination of a radar sensor and a trim component, which are to be mounted on a motor vehicle so that the trim component is penetrated by microwaves of the radar sensor, the trim component including at least one layer, which reflects a portion of the microwaves, the trim component including an additional layer, which is configured based on thickness and dielectric constant to reduce the reflection.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 23, 2015
    Applicant: Robert Bosch GmbH
    Inventor: Thomas BINZER
  • Patent number: 9012044
    Abstract: A process of forming optically clear conductive metal or metal alloy thin films is provided that includes depositing the metal or metal alloy film on a polycrystalline seed layer that has been deposited directly on a nucleation layer of metal oxide comprising zinc oxide. Also conductive films made by this process are provided. In some embodiments, the metal alloy thin films include silver/gold alloys.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 21, 2015
    Assignee: 3M Innovative Properties Company
    Inventor: Clark I. Bright
  • Patent number: 9012043
    Abstract: A medical implant device or component thereof comprising a metal substrate and a coating layer structure provided on the substrate. The coating layer structure comprises an outermost layer of a ceramic material. A bonding structure is deposited between the metal substrate and the coating layer structure. The bonding structure comprises a chromium rich layer, which is deposited onto the metal substrate surface and has a higher concentration of chromium than the metal substrate, as well as a gradient layer having a composition gradient from the chromium rich layer towards the surface of the device providing increasing proportions of a gradient material which has structural correspondence with the layer of the coating layer structure that is most adjacent to the bonding structure.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 21, 2015
    Assignee: Sandvik Intellectual Property AB
    Inventors: Ola Wilhelmsson, Tom Eriksson, Per MĂĄrtensson
  • Patent number: 9009967
    Abstract: A composite catalyst substrate is provided, which may include a metallic core and a porous ceramic coating on the metallic core. The substrate may also include a washcoat substantially covering the ceramic coating and including a catalyst material configured to react with constituents in an exhaust flow of an exhaust producing engine. The catalyst material may be dispersed in, or coated on, the washcoat.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 21, 2015
    Assignee: Caterpillar Inc.
    Inventor: Shashank Mupparapu
  • Patent number: 8999452
    Abstract: The present invention provides a surface-independent surface-modifying multifunctional biocoating and methods of application thereof. The method comprises contacting at least a portion of a substrate with an alkaline solution comprising a surface-modifying agent (SMA) such as dopamine so as to modify the substrate surface to include at least one reactive moiety. In another version of the invention, a secondary reactive moiety is applied to the SMA-treated substrate to yield a surface-modified substrate having a specific functionality.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: April 7, 2015
    Assignee: Northwestern University
    Inventors: Phillip B. Messersmith, Haeshin Lee
  • Publication number: 20150093563
    Abstract: The embodiments described herein relate to anodic oxides and methods for forming anodic oxides. The methods involve incorporating an ultraviolet (UV) light absorbing compounds into anodic oxides to prevent color fading of the anodic oxides caused by exposure to UV light. In some embodiments, the UV light absorbing compound includes para-aminobenzoic acid (PABA). The UV light absorbing compound can be incorporated within the anodic oxide during a sealing process. The UV light absorbing compound becomes infused within a seal layer, which is formed during the sealing process. The resultant anodic oxide has a UV light absorbing seal layer that can block UV light from reaching any underlying colorant existing within the anodic oxide.
    Type: Application
    Filed: January 22, 2014
    Publication date: April 2, 2015
    Applicant: APPLE INC.
    Inventors: Jude Mary Runge, Patrick S. Wieler, John Murray Thornton, III, Max A. Maloney
  • Patent number: 8993897
    Abstract: The photosensitive resin composition contains a (A) binder polymer, (B) cross-linked polymer particles, (C) thermosetting resin, (D) photo-polymerization initiator, and a (E) phosphoric flame retardant, in which a content of the (B) cross-linked polymer particles is 30 parts by weight to 100 parts by weight with respect to the 100 parts by weight of the (A) binder polymer, and an average particle diameter of the (B) cross-linked polymer particles is 1 ?m to 10 ?m. Therefore, the photosensitive resin composition (i) obtains an excellent tack-free property after being applied and dried, (ii) can be subjected to fine processing, (iii) is formed into a cured film having excellent flexibility, flame retardancy, and electrical insulation reliability, and (iv) causes a substrate to have a small warpage after being cured.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: March 31, 2015
    Assignee: Kaneka Corporation
    Inventor: Yoshihide Sekito
  • Publication number: 20150086778
    Abstract: The present application relates to gas barrier film having excellent adhesive strength and a method of manufacturing the same.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 26, 2015
    Inventors: Sang Uk RYU, Dong Ryul KIM, Seung Lac MA, Jang Yeon HWANG, Jong Min MOON
  • Patent number: 8986814
    Abstract: Surfaces having a hierarchical structure—having features of both microscale and nanoscale dimensions—can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 24, 2015
    Assignees: Massachusetts Institute of Technology, University of Maryland, College Park
    Inventors: Evelyn N. Wang, Matthew McCarthy, Ryan Enright, James N. Culver, Konstantinos Gerasopoulos, Reza Ghodssi
  • Patent number: 8986841
    Abstract: A process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66% MgO 3-8% Na2O ?7-15% K2O 0-3% Li2O ?0-12% CaO ?0-10% BaO ?0-15% Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The reinforced glass-ceramics obtained by the process.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 24, 2015
    Assignee: Eurokera S.N.C.
    Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
  • Publication number: 20150079304
    Abstract: A Schiff base compound configured to detoxify a toxic chemical agent. The toxic chemical agent includes at least one leaving group and the Schiff base compound includes an imine having at least one Lewis base and an alkyl substituent or an aryl substituent having an electron acceptor. The at least one Schiff base nitrogen is spaced way from the electron acceptor by a distance that ranges from about 200 pm to about 1000 pm.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: Government of the United States as Represented by the Secretary of the Air Force
    Inventors: Jeffery Ray Owens, Wallace Bruce Salter, Katherine Moss Simpson
  • Publication number: 20150064406
    Abstract: [Problem] To provide a fluoride spray coating covered member in which a fluoride spray coating firmly adheres by coating carbide cermet to a surface of a substrate and interposing it, and to propose a method therefor. [Solution] A fluoride spray coating is formed in such a manner that an undercoat layer of carbide cermet, which covers a substrate in a film-shaped manner while a tip portion of carbide cermet particles is embedded in the substrate, or a primer part of carbide cermet, is formed by blowing a carbide cermet material at a high velocity by using a spray gun to a surface of the substrate, and after that, a fluoride particle is sprayed thereon.
    Type: Application
    Filed: November 28, 2012
    Publication date: March 5, 2015
    Inventors: Yoshio Harada, Kenichiro Togoe
  • Publication number: 20150053611
    Abstract: The invention relates to hydrophobic hollow fiber membranes, and in particular, to hydrophobic organic-inorganic composite hollow fiber membranes. Methods for forming the hydrophobic organic-inorganic composite hollow fiber membranes are also disclosed. The hydrophobic organic-inorganic composite hollow fiber membranes may be used in membrane contactor applications such as gas-liquid (G-L) contactor and liquid-liquid (L-L) contactor processes. Applications for G-L membrane contactors include gas streams purification (gas absorption), water ozonation, and water deoxygenation. Applications for L-L membrane contactors include direct contact membrane distillation and liquid-liquid extraction.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 26, 2015
    Inventors: Rong Wang, Yuan Zhang
  • Publication number: 20150050424
    Abstract: In various embodiments, methods are provided for detecting surface defects in in the preparation of a surface for overcoating (e.g., in a painting operation) where the method comprises applying to a surface being prepared for overcoating a highlighting liquid composition that increases the gloss of the surface onto which is applied, wherein said highlighting liquid substantially comprises odorless mineral spirits; examining the glossy surface for surface shape irregularities; and removing any noted surface shape irregularities by mechanical means.
    Type: Application
    Filed: July 23, 2014
    Publication date: February 19, 2015
    Inventor: Christopher Edward Woodhall
  • Publication number: 20150050435
    Abstract: In one example, a print medium includes pigment particles sized less than a hundred nanometers and frictional control additives. An undercoating is disposed between the base material and top coating. The undercoat includes a first sub-layer comprising a pigment fixative agent and a second sub-layer comprising a dye fixative agent The top coating forms a protective and low friction coating over the undercoating.
    Type: Application
    Filed: April 17, 2012
    Publication date: February 19, 2015
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Lokendra Pal, Xulong Fu, Julio Cesar Alonso
  • Patent number: 8956689
    Abstract: A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal faces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 35 nm to 150 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer in the (100) plane.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 17, 2015
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Toshihiro Doi
  • Publication number: 20150044442
    Abstract: A method for manufacturing a flexible substrate comprises the steps of: providing a supporting plate; coating a first flexible layer on a side of the supporting plate; forming a barrier layer on the first flexible layer at its side opposite to the supporting plate, the barrier layer comprises multiple films stacked on top of one another; and coating a second flexible layer on the barrier layer at its side opposite to the first flexible layer, the barrier layer is coated by the first and second flexible layer.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 12, 2015
    Inventors: Tianwang Huang, Chienlin Wu