Metallic Compound-containing Coating Patents (Class 427/419.1)
  • Patent number: 8652345
    Abstract: A method of forming a patterned substrate is provided. The method includes providing a substrate (300) having a structured surface region comprising one or more recessed features (310). The method includes disposing a first liquid (325) onto at least a portion of the structured surface region. The method includes contacting the first liquid with a second liquid (330). The method includes displacing the first liquid with the second liquid from at least a portion (315) of the structured surface region. The first liquid is selectively located in at least a portion of the one or more recessed features.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 18, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Cristin E. Moran, Matthew H. Frey, Matthew S. Stay, Mikhail L. Pekurovsky
  • Patent number: 8623526
    Abstract: Disclosed are a gradient bioceramic coating comprising a rare earth oxide, a broadband laser method for preparing the bioceramic coating, and the use of the bioceramic coating in the field of medical materials.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 7, 2014
    Assignee: Guizhou University
    Inventors: Qibin Liu, Wenfei Li, Ling Wu
  • Publication number: 20140004340
    Abstract: The present invention relates to a coating composition that comprises a composite structure with a body of polysaccharide, into which carbonate has been precipitated. The invention also relates to a coated paper or board product, onto which the said composition has been spread on one or both sides into one or more layers; as well as to paint that is formed of the coating composition according to the invention, or that contains the said composition.
    Type: Application
    Filed: March 13, 2013
    Publication date: January 2, 2014
    Inventor: Nordkalk OY AB
  • Patent number: 8609201
    Abstract: An infrared energy oxidizing and/or curing process includes an infrared oxidation zone having an infrared energy source operable to emit infrared energy that oxidizes a conductive thin film deposited or established on a glass substrate to establish a light transmissive or transparent conductive thin film for manufacturing of a touch panel. Optionally, the infrared energy curing process provides an in-line infrared energy curing process that oxidizes the conductive thin film on the glass substrate as the glass substrate is moved past the infrared energy source. Optionally, the infrared energy curing process bonds a thick film silver frit electrode pattern to the conductively coated glass substrate. Optionally, the infrared energy curing process reduces the transparent conductive thin film.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: December 17, 2013
    Assignee: TPK Touch Solutions Inc.
    Inventor: Catherine A. Getz
  • Publication number: 20130323518
    Abstract: A coating process, a coating, and a coated component are disclosed. The coating process includes providing a MCrAlY substrate, applying a thermal barrier coating to the MCrAlY substrate, applying a flash layer to the thermal barrier coating, the flash layer including an inert ceramic, applying a reaction product deposition onto the thermal barrier coating, the reaction product deposition including reaction products selected from the group consisting of a magnesium oxide compound, a magnesium orthovanadate compound, a magnesium vanadate compound, a magnesium pyrovanadate compound, a magnesium sulfate compound, and combinations thereof. The reaction products are by-products of a doped fuel.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Surinder Singh PABLA, Gilbert Otto KRAEMER, Richard Todd EVERHART, William Francis CARNELL, JR.
  • Publication number: 20130315513
    Abstract: The present invention is applied to a tribological pair comprising two metal pieces, a first of them having a movable contact surface which provides friction in relation to a respective contact surface of a second of said metal pieces. According to the present invention, the first metal piece has its contact surface defined by a coating formed: by a first surface layer in a material harder than that of the first metal piece; and by a second surface layer, disposed onto the first surface layer and in a material defining a coating which reduces the chemical affinity in relation to the contact surface of the second metal piece of the tribological pair, in order to provide, to said tribological pair, a lower friction coefficient in relation to the tribological pair deprived of said coating.
    Type: Application
    Filed: December 2, 2011
    Publication date: November 28, 2013
    Applicant: WHIRLPOOL S.A.
    Inventors: Adilson Luiz Manke, Antonio Tadeu Cristofolini, Marcos Guilherme Schwarz
  • Patent number: 8563090
    Abstract: Methods of depositing boron-containing liner layers on substrates involve the formation of a bilayer including an initiation layer which includes barrier material to inhibit the diffusion of boron from the bilayer into the underlying substrate.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Li-Qun Xia, Derek R Witty, Yi Chen
  • Patent number: 8563125
    Abstract: Disclosed is a mica paper composite and a process for making the mica paper composite. Articles comprising the mica paper composite are also disclosed.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: October 22, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Gerard Joseph Grier
  • Patent number: 8541049
    Abstract: Provided is an optical member capable of keeping a high performance antireflection effect over a long period of time with respect to an arbitrary substrate. The optical member has plural layers on a substrate, and includes at least one metal oxide layer having a void, and at least one layer containing an organic resin as a main component formed between the substrate and the metal oxide layer. The metal oxide layer is a plate crystal layer formed of a plate crystal containing aluminum oxide as a main component and a surface of the plate crystal layer has an uneven profile. The organic resin has an aromatic ring and/or a hetero ring in at least a part thereof.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: September 24, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomonari Nakayama, Masayuki Yamada
  • Patent number: 8535761
    Abstract: A method of forming a coating comprising the steps of dissolving an silsesquioxane (e.g., one that is primarily a cage compound with 8, 10, 12, 14 or related complete cages or with partially condensed cages containing primarily Si(O)4 units in the cage) in a solvent to form an silsesquioxane solution; introducing (e.g., dissolving) an additive in the solution (e.g., the additive being selected from a rare earth compound, an acid, an organic moiety, a precious metal or compound thereof, a transition metal compound, or any combination thereof, or any of their ionic constituents); and optionally mixing a diluent with the solution to form a coating that is applied to a substrate, wherein the resulting coating forms crosslinks between resulting pendant Si(OH)x groups and a substrate surface. The present invention also contemplates coatings and coated articles consistent with the present teachings.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 17, 2013
    Assignees: Mayaterials, Inc., NIST
    Inventors: Richard M. Laine, Christopher L. Soles, David J. Krug, III, Hyun Wook Ro, Vera Nikolova Popova-Gueorguieva
  • Publication number: 20130216707
    Abstract: A composition includes a layer of nanoparticles and a layer of a second material.
    Type: Application
    Filed: December 19, 2007
    Publication date: August 22, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Seth A. Coe, Wing-Keung Woo, Moungi G. Bawendi
  • Patent number: 8512883
    Abstract: A low-emissivity multilayer coating includes, in order outward from the substrate, a first layer including a layer containing titanium oxide, a layer containing silicon nitride, or a sublayer layer containing titanium oxide in combination with a sublayer containing silicon 5 nitride, a second layer including Ag, a third layer including at least one layer selected from titanium oxide layers and silicon nitride layers, a fourth layer including Ag, and a fifth layer including silicon nitride, where the color of the coatings can be varied over a wide range by controlling the thicknesses of the layers of titanium oxide, silicon nitride and Ag.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 20, 2013
    Assignee: AGC Flat Glass North America, Inc.
    Inventors: Darin Glenn, Herb Johnson, Rand Dannenberg, Peter A. Sieck, Joe Countrywood
  • Patent number: 8507085
    Abstract: An aluminum or aluminum alloy article is described. The aluminum or aluminum alloy article includes an aluminum or aluminum alloy substrate, a barrier layer formed on the substrate, a color layer formed on the barrier layer, and an insulation layer formed on the color layer. The barrier layer and the color layer are formed by vacuum sputtering. The barrier layer is a layer of silver-aluminum-oxygen-nitrogen. The insulation layer is an external layer of the aluminum or aluminum alloy article.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: August 13, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Patent number: 8501300
    Abstract: A method of manufacture of a coated polymeric film which comprises performing in sequence the steps of: (i) forming a substrate layer comprising poly(ethylene naphthalate) having a thickness in a range from 50 ?m to 250 ?m; (ii) stretching the substrate layer in at least one direction; (iii) heat-setting the substrate layer under dimensional restraint at a tension in the range of about 19 to about 75 kg/m of film width, at a temperature above the glass transition temperature of the poly(ethylene naphthalate) but below the melting temperature thereof; (iv) heat-stabilizing the substrate layer under a tension of less than 5 kg/m of film width, and at a temperature above the glass transition temperature of the poly(ethylene naphthalate) but below the melting temperature thereof; and (v) disposing a coating layer on a surface of the substrate layer by a process comprising applying a planarizing coating composition thereto such that a surface of said coating layer exhibits an Ra value of less than 0.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: August 6, 2013
    Assignee: DuPont Teijin Films U.S. Limited Partnership
    Inventors: Julian Neal Robinson, Robert William Eveson, Karl Rakos
  • Publication number: 20130177772
    Abstract: Articles comprising a substrate; a thermal barrier coating disposed on the substrate, the thermal barrier coating comprising a radioactive element, the radioactive element having a base radiation emission; and a radiation inhibitor disposed in or on the thermal barrier coating, or a combination thereof, the thermal barrier coating and radiation inhibitor having a mitigated radiation emission, wherein the mitigated radiation emission is lower than the base radiation emission and a methods of making the same.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jon Conrad Schaeffer, Stephen Gerard Pope
  • Patent number: 8481115
    Abstract: A method for producing coated, fine metal particles each having a Ti oxide coating and a silicon oxide coating formed in this order on a metal core particle by mixing powder comprising TiC and TiN with oxide powder of a metal M meeting the relation of ?GM-O>?GTiO2, wherein ?GM-O represents the standard free energy of forming an oxide of the metal M; heat-treating the resultant mixed powder in a non-oxidizing atmosphere to reduce the oxide of the metal M with the powder comprising TiC and TiN, while coating the resultant metal M particles with Ti oxide; coating the Ti-oxide-coated surface with silicon oxide; and classifying the resultant particles such that they have a median diameter d50 of 0.4-0.7 ?m, and a variation coefficient (=standard deviation/average particle size) of 35% or less, which indicates a particle size distribution range.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: July 9, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hisato Tokoro, Takashi Nakabayashi, Shigeo Fujii
  • Publication number: 20130171435
    Abstract: A plastic glazing includes a base layer; and a coating layer formed on one surface of the base layer, wherein the base layer includes polycarbonate including a biphenyl group. The biphenyl group is present in an amount of about 10 mol % to about 50 mol % based on the total amount of polycarbonate.
    Type: Application
    Filed: December 10, 2012
    Publication date: July 4, 2013
    Applicant: CHEIL INDUSTRIES INC.
    Inventor: Cheil Industries Inc.
  • Publication number: 20130140776
    Abstract: A sliding element, in particular piston ring, has on at least one running surface, from the inside outwards, a coating having a metal-containing adhesive layer and a ta-C type DLC layer with a thickness of at least 10 ?m. In a process for the production of a sliding element, in particular a piston ring, coating with a metal-containing adhesive layer and a ta-C type DLC layer in a thickness of at least 10 ?m is carried out.
    Type: Application
    Filed: October 13, 2011
    Publication date: June 6, 2013
    Inventor: Marcus Kennedy
  • Patent number: 8449972
    Abstract: Disclosed is a mica paper composite and a process for making the mica paper composite. Articles comprising the mica paper composite are also disclosed.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: May 28, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Gerard Joseph Grier
  • Patent number: 8445066
    Abstract: Systems and methods for making a monolithic gel body. Some systems can include a substrate, a sol, an ammonia atmosphere. Some methods can include applying a first quantity of the sol to the substrate to form a first coated substrate, and positioning the first coated substrate in the ammonia atmosphere to cure the first quantity of sol to form a first supported gel comprising a first gel supported by the substrate. Such methods can further include applying a second quantity of the sol to the first supported gel to form a second coated substrate comprising the second quantity of sol and the first supported gel. Some methods can include positioning the substrate in the ammonia atmosphere while applying the sol onto the substrate to form a monolithic gel body by a layering process.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 21, 2013
    Assignee: 3M Innovative Properties Company
    Inventor: Michael Jahns
  • Patent number: 8414960
    Abstract: A production method of an ink composition for organic EL devices comprises preparing a composition containing a polymer organic EL material and an organic solvent; and applying an electric field to the composition. Preferably, a composition containing a polymer organic EL material prepared by a coupling reaction between a halogenated aromatic compound and an aromatic boron compound in the presence of palladium catalyst or nickel catalyst, an organic solvent, and an aromatic carboxylic acid contained in an amount of 0.01-1 wt % based on the total amount of the organic solvent and aromatic carboxylic acid is prepared.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Takaaki Higashida, Kazuhiro Nishikawa
  • Patent number: 8404369
    Abstract: A disk for a hard disk drive is provided. The disk comprises a substrate comprising aluminum, and a coating layer disposed over the substrate. The coating layer comprises an alloy of Ni, X1 and X2, wherein X1 comprises one or more elements selected from the group consisting of Ag, Au, B, Cr, Cu, Ga, In, Mn, Mo, Nb, Pb, Sb, Se, Sn, Te, W, Zn and Zr, and wherein X2 comprises either B or P, and wherein X1 and X2 do not comprise the same elements.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: March 26, 2013
    Assignee: WD Media, LLC
    Inventors: Alan J. Ruffini, Lindsey A. Hamilton, Dorothea Buechel-Rimmel, Jean M. LaPlante, Ambrose Schaffer, Frederick Lowes
  • Patent number: 8404366
    Abstract: In a cutting tool, if the outermost ceramic coating layer is a ?-Al2O3 coating layer, then certain microns of the ?-Al2O3 layer will be transformed into an ?-Al2O3 by instantaneous melting, vaporization and solidification. Further, if the outermost coating layer of the ceramic coating layers is an ?-Al2O3 coating layer, then the surface roughness will be enhanced since at least a portion of it will be melted, wherein the melted surface will be solidified with its surface flattened by the surface tension provided in a melted state.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: March 26, 2013
    Assignee: TaeguTec, Ltd.
    Inventors: Dong Gil Ahn, Joo Wan Lee
  • Publication number: 20130071675
    Abstract: A corrosion resistant pretreatment composition for coating a metal substrate is provided. The composition comprises an aqueous carrier, one or more Group IA metal ions, wherein at least one of the Group 1A metal ions comprises a lithium compound, a hydroxide; and a phosphate or a halide. A process for treating a metal substrate with a lithium based coating is also provided, as well as a process for treating a metal substrate with a non-chrome conversion coating process.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Inventor: Eric L. Morris
  • Patent number: 8367207
    Abstract: The invention relates to a hydrogenated amorphous carbon coating and to a method for the production thereof. It also relates to devices having such a coating. The method of the invention consists in producing a hydrogenated amorphous carbon coating comprising at least two layers of hydrogenated amorphous carbon, each of said layers having chemical compositions and physical and mechanical properties that are identical, and with thicknesses that are identical or different. The coating of the invention finds many applications, in particular in the mechanical field for parts subject to considerable wear and rubbing problems. It may also be applicable, in particular, in the field of surgical implants and in the MEMS (microelectromechanical systems) field.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: February 5, 2013
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternative, Centre National de la Recherche Scientifique
    Inventors: Caroline Chouquet, Cédric Ducros, Frédéric Sanchette
  • Patent number: 8367225
    Abstract: A coating includes a deposited layer. The deposited layer is a nickel-titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 5, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Patent number: 8361639
    Abstract: A coating includes a nano-composite base comprising a number of films, the films stacked together one after another. Each film includes a nickel-titanium carbonitride layer and a titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 29, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Patent number: 8349408
    Abstract: A method of protecting a reactor component from fouling includes forming an oxide layer on a metal foil to achieve an antifouling liner. The antifouling liner may be manipulated into a shape that conforms to one or more surfaces of the reactor component that are contacted by a fluid during reactor operation. The metal foil portion of the antifouling liner is secured to the surface(s) of the reactor component by suitable means. As a result, the oxide layer portion of the antifouling liner is exposed to the fluid in the reactor, thereby reducing or preventing the fouling of the component.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: January 8, 2013
    Assignee: GE-Hitachi Nuclear Energy Americas, LLC
    Inventors: Catherine Procik Dulka, Young Jin Kim
  • Patent number: 8343584
    Abstract: A method of manufacturing a decorative article, including a first coating formation step of forming a first coating of primarily TiN on a substrate; a second coating formation step of forming a second coating on the first coating by means of a dry plating method using a target containing 70.0 wt %?85.0 wt % Au and 15.0 wt %?30.0 wt % Cu; a heat treatment step of promoting formation of a solid solution of the constituents of the second coating by applying a heating process that heats the substrate on which the first coating and the second coating are disposed to 300° C.?395° C. and then applying a cooling process; and an acid treatment step that, of the constituents of the second coating to which the heating process was applied, removes the constituents not forming a solid solution by applying an acid treatment.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 1, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Atsushi Kawakami, Yuzuru Tsukamoto
  • Publication number: 20120308844
    Abstract: The present invention relates generally to methods for producing a coated jewelry article or a coated component of a jewelry article, comprising a jewelry article or a component of a jewelry article, a first metallic coating, and a second metallic coating.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 6, 2012
    Applicant: FREDERICK GOLDMAN INC.
    Inventor: Andrew Derrig
  • Publication number: 20120301641
    Abstract: A method for surface treatment of a paper substrate and a paper product produced therefrom are disclosed herein. The surface treatment method includes applying a salt-containing solution to at least one surface of a paper substrate by aerosol spraying in a separate step, whereby the salt distribution through the thickness of the treated paper substrate is non-uniform with the highest concentration of salt being present in the outermost portion of the paper substrate. The salt-containing solution contains at least one water-soluble metal salt and is void of any optical brightening agent (OBA).
    Type: Application
    Filed: March 10, 2010
    Publication date: November 29, 2012
    Applicant: HEWLETE-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Xiaoqi Zhou, Xulong Fu, Gracy Wingkono
  • Publication number: 20120295031
    Abstract: A method includes coating a substrate to provide a flame resistant substrate. In an embodiment, the method includes exposing the substrate to a cationic solution to produce a cationic layer deposited on the substrate. The cationic solution comprises cationic materials. The cationic materials comprise a polymer, a colloidal particle, a nanoparticle, a nitrogen-rich molecule, or any combinations thereof. The method further includes exposing the cationic layer to an anionic solution to produce an anionic layer deposited on the cationic layer to produce a layer comprising the anionic layer and the cationic layer. The anionic solution comprises a layerable material.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventor: Jaime C. Grunlan
  • Patent number: 8313835
    Abstract: A process for the production of multi-layer coatings comprising the successive steps: 1) applying an 8 to 20 ?m thick coating layer from an aqueous coating composition A onto a substrate provided with an EDC primer, 2) applying a 5 to 15 ?m thick base coat layer from an aqueous coating composition B onto the previously applied coating layer, 3) applying a clear coat layer onto the base coat layer, 4) jointly curing the three coating layers, wherein coating compositions A and B being different from each other and wherein the coating composition A contains at least one metal platelet pigment having a thickness from 10 to 100 nm in a proportion corresponding to a pigment/resin solids ratio by weight from 0.06:1 to 0.2:1.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 20, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Giannoula Avgenaki, Marcus Brunner, Marc Chilla, Volker Paschmann, Bruno Wokalek
  • Patent number: 8304026
    Abstract: Disclosed is a method for producing a pigmented composite comprising contacting a microporous material with a tin compound to form a composite then contacting the composite with a pigment comprising an elemental metal, a metal oxide, a metal alloy, a metal salt, or a combination thereof to produce the pigmented composite. The pigmented composites described herein are useful for separating one or more analytes present in a fluid sample.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: November 6, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Roger E. Smith, Karl V. Voelkerding, Marc G. Elgort, Jacob Durtschi
  • Patent number: 8303853
    Abstract: A method using a chemical synthesis method to produce a metallic nanoparticle inorganic composite having fine metallic nanoparticles that are uniformly dispersed at a high density in a solidified matrix, a metallic nanoparticle inorganic composite, and a plasmon waveguide using this composite are provided. Thus, a method including: preparing a precursor solution, applying the precursor solution onto a substrate, and then hydrolyzing the precursor solution to form an oxide film having fine pores, bringing the oxide film into contact with an acidic aqueous solution of tin chloride to chemically adsorb Sn2+ ions in the fine pores, removing an excess of the Sn2+ ions, bringing the oxide film into contact with an aqueous metal chelate solution to precipitate metallic nanoparticles in the fine pores, and removing an excess of ions of the metal is provided.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miho Maruyama, Kenji Todori, Tsukasa Tada, Reiko Yoshimura, Yasuyuki Hotta, Ko Yamada, Masakazu Yamagiwa
  • Patent number: 8298618
    Abstract: A preparation method of composite blue luminescent thin film of sulfonated poly(p-phenylene) (i.e. poly[2,5-bis(3-sulfonatopropoxy)-1,4-phenylene-alt-1,4-phenylene]) and LDHs (Layered Double Hydroxides) is disclosed. The preparation method comprises the following steps: preparing delaminated LDHs colloidal solution using formamide solvent, preparing sulfonated poly(p-phenylene) aqueous solution, and performing alternate assembling on hydrophilically treated substrate in the two solutions to give the composite thin film of sulfonated poly(p-phenylene)/LDHs multilayer. The preparation method has the advantages of simple preparation process, and film thickness controllable at nanoscale precision, in addition, this method also achieves the immobilization of luminescent polymer via restricted space among LDHs layers and host-guest interaction, effectively improves thermal stability, and reduces fluorescence quenching caused by aggregation.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: October 30, 2012
    Assignee: Beijing University of Chemical Technology
    Inventors: Dongpeng Yan, Jun Lu, Min Wei, Xue Duan
  • Patent number: 8293333
    Abstract: A filter for removing contaminants from air. The filter includes (a) a substrate that does not have any volatile ammonia on the surface thereof; (b) copper that has been impregnated onto the substrate; and (c) molybdenum and/or tungsten that has been impregnated onto the substrate. The filter can be made using an aqueous solution(s) that contains one or more of a first copper salt and a second salt that include a polynuclear anion that contains molybdenum, tungsten, or both. Because the metals can be impregnated onto the substrate surface without using an ammonium-based solution, the need to manage ammonia off-gassing is avoided. Further, no volatile ammonia would be present on the resulting substrate surface.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 23, 2012
    Assignees: 3M Innovative Properties Company
    Inventors: Lisa M. Croll, Jeffrey R. Dahn, Allen R. Siedle, Jock W. H. Smith, Philippe Westreich, Thomas E. Wood
  • Patent number: 8287121
    Abstract: The present invention provides an inkjet recording medium having at least an ink-receiving layer, the ink-receiving layer containing at least fumed silica, a hydroxycarboxylic acid ester having the I/O value of 1.5 or more as determined in accordance with an organic conceptual diagram, and a polyvinyl alcohol, and an amount of the hydroxycarboxylic acid ester with respect to 1 kg of the fumed silica in the ink-receiving layer being from 0.1 moles to 2 moles. The present invention further provides an inkjet recording medium having at least a support and an ink-receiving layer provided on the support, the ink-receiving layer containing at least a chloride ion-containing zirconium salt, a water-soluble aluminum salt, a hydroxy acid derivative, inorganic fine particles, and a water-soluble resin.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: October 16, 2012
    Assignee: FUJIFILM Corporation
    Inventor: Masamichi Kobayashi
  • Patent number: 8283042
    Abstract: Coating compositions are disclosed that include corrosion resisting particles such that the coating composition can exhibit corrosion resistance properties. Also disclosed are substrates at least partially coated with a coating deposited from such a composition and multi-component composite coatings, wherein at least one coating later is deposited from such a coating composition. Methods and apparatus for making ultrafine solid particles are also disclosed.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: October 9, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Edward R. Millero, John R. Schneider, Cheng-Hung Hung, Noel R. Vanier
  • Patent number: 8277194
    Abstract: The invention relates to a component for arrangement in the duct of a turbine engine. The component is provided with a coating, which has a surface structure with scales which overlap each other in the direction of flow of the turbine engine. The invention also relates to a spraying method for generating a coating on a component.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: October 2, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler
  • Patent number: 8268394
    Abstract: A method of fabricating a metamaterial is provided, comprising providing a sample of engineered microstructured material that is transparent to electromagnetic radiation and comprises one or more voids, passing through the voids a high pressure fluid comprising a functional material carried in a carrier fluid, and causing the functional material to deposit or otherwise integrate into the engineered microstructured material to form the metamaterial. Many microstructured materials and functional materials can be used, together with various techniques for controlling the location of the integration of the functional material within the microstructured material, so that a wide range of different metamaterials can be produced.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: September 18, 2012
    Assignee: University of Southampton
    Inventors: Pier John Anthony Sazio, John Victor Badding, Dan William Hewak, Steven Melvyn Howdle
  • Patent number: 8252601
    Abstract: A method for designating a component, coated with a heat insulation layer including zirconium dioxide (ZrO2) stabilized with yttrium oxide (Y2O3) [YSZ], and for determining its operating time or operating temperature is provided. The method includes doping the heat insulation layer and marking the doped heat insulation layer, with at least one metal oxide in at least one surface region of the component. The metal oxide is selected such that the doped region of YSZ is visible or can be made optically visible in order to designate the component. The method also includes comparing a slower or faster change in lattice parameters of the doped YSZ region, as compared with undoped YSZ, and determining the operating time of the component under temperature by comparing the lattice parameters with a known calibrating characteristic curve.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 28, 2012
    Assignee: ALSTOM Technology Ltd.
    Inventors: Hans-Peter Bossmann, Dietrich Eckardt
  • Patent number: 8250850
    Abstract: A pollution-free propulsion engine includes a rotating arm, a hollow axle defining a fuel delivery chamber, and hydrogen and oxygen sources. The rotating arm is formed with a detonation chamber, an opening and two tubular ducts therebetween. The axle is inserted into the opening. A pair of holes is formed in the axle to establish paths of fluid communication from the fuel delivery chamber through the ducts and into the detonation chamber as the rotating arm turns. The hydrogen source comprises a thin palladium binding layer deposited onto an aluminum sheet. Hydrogen molecules that are trapped in the binding layer are released, and the hydrogen is fed into the delivery chamber, through one duct and into the detonation chamber. At the same time, oxygen is delivered into the detonation chamber through the other duct, and the oxygen-hydrogen combination is detonated to release energy, which is converted into mechanical energy.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 28, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Richard Adams, Carol A. Becker
  • Patent number: 8247038
    Abstract: This application relates to a process for the application of thin layers of substantially pure spin transition molecular materials while maintaining the hysteresis properties of the material. The process makes it possible to obtain a dense uniform surface with very low roughness.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: August 21, 2012
    Assignees: Centre National de la Recherche Scientifique (C.N.R.S), Universitat de Valencia
    Inventors: Azzedine Bousseksou, Gabor Molnar, Saioa Cobo, Lionel Salmon, José Antonio Real Cabezos, Christophe Vieu
  • Publication number: 20120208035
    Abstract: An object of the present invention is to provide an aqueous coating composition comprising an (A) aluminium pigment treated with molybdic acid and a (B) condensed polycyclic pigment. The aqueous coating composition can achieve a small difference between the color of a coating film formed by application of the coating composition after storage and a color of the coating film formed by application of the coating composition before storage. The aqueous coating composition of the present invention inhibits hydrogen gas generation, and thus has excellent storage stability. The present invention provides an aqueous coating composition, comprising: (A) aluminium pigment treated with molybdic acid; (B) condensed polycyclic pigment; (C) resin having an aromatic ring with a nitro group bonded thereto; and (D) film-forming resin.
    Type: Application
    Filed: September 29, 2010
    Publication date: August 16, 2012
    Inventors: Toru Iwamoto, Chihiro Nagano, Takashi Nakayabu, Keiji Sugamoto, Hideo Sugai
  • Publication number: 20120201968
    Abstract: A storage container is provided, which includes carbon dioxide containing a functional material and a container body in which carbon dioxide has been hermetically contained. Accordingly, a method for molding a resin, a method for forming a plating film, and the storage container for carbon dioxide, which are excellent in the mass productively at low cost, are provided without using any special high pressure apparatus for producing a supercritical fluid.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 9, 2012
    Applicant: HITACHI MAXELL, LTD.
    Inventors: Takaki NASU, Atsushi YUSA, Yoshiyuki Nomura, Masato Fukumori
  • Patent number: 8236433
    Abstract: An antireflection structure is provided. The antireflection structure includes a substrate layer having a substrate refractive index; a first inorganic layer disposed on the substrate layer and having a first refractive index different from the substrate refractive index, where a thickness of the first inorganic layer is in a range of 1 to 40 nm; and a second inorganic layer disposed on the first inorganic layer and having a second refractive index different from the first refractive index.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: August 7, 2012
    Assignee: National Applied Research Laboratories
    Inventors: Po-Kai Chiu, Wen-Hao Cho, Hung-Ping Chen, Han-Chang Pan, Chien-Nan Hsiao
  • Publication number: 20120141671
    Abstract: A gas turbine engine component with an aluminide coating on at least a portion of an airflow surface that includes a roughening agent effective to provide a desired surface roughness and a deposition process for forming such aluminide coatings. A layer including a binder and the roughening agent may be applied to the superalloy substrate of the component and the aluminide coating formed on the airflow surface portion by exposing the component and layer to an appropriate deposition environment. Suitable roughening agents include metal and ceramic particles that are dispersed on the airflow surface portion before exposure to the deposition environment. The particles, which are substantially intact after the aluminide coating is formed, are dispersed in an effective number to supply the desired surface roughness.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 7, 2012
    Applicant: MT COATINGS, LLC
    Inventor: David C. Fairbourn
  • Patent number: 8187677
    Abstract: A process for electroless silver plating of a work piece includes simultaneously spraying a silver nitrate solution and a reducer on a work piece to form a reflective layer on the work piece, applying a water-based urethane coating on the reflective layer, and applying either a top coat that is solvent based or a powder based on the water-based urethane coating.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: May 29, 2012
    Inventor: Demitrios Roumonis
  • Patent number: 8182878
    Abstract: The present invention relates to methods for functionally modifying a polymeric surface for subsequent deposition of metallic particles and/or films, wherein the polymeric surface is modified by increasing hydroxyl and/or amine functional groups thereby providing an activated polymeric surface for deposition of metallic particles to form a fluorescence sensing device. The device can be used for metal-enhanced fluorescence of fluorophores positioned above the metallic particles that can be readily applied to diagnostic or sensing applications of metal-enhanced fluorescence.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 22, 2012
    Assignee: University of Maryland, Baltimore County
    Inventors: Chris D. Geddes, Kadir Aslan