Metal, Metal Alloy, Or Metal Oxide Coating Patents (Class 427/584)
  • Patent number: 11484866
    Abstract: Disclosed herein are composite materials and methods of making and use thereof. The composite materials disclosed herein can comprise: a first metal oxide particle having a thermal stability and a specific reversible oxygen storage capacity, wherein the first metal oxide particle comprises a first metal oxide comprising a transition metal oxide; and a second metal oxide disposed on the first metal oxide particle; wherein the composite material has a thermal stability and a specific reversible oxygen storage capacity; and wherein the thermal stability of the composite material is greater than the thermal stability of the first metal oxide particle. The methods of use of the composite materials described herein can comprise using the composite material as a catalyst, as an oxygen carrier, as a catalyst support, in a fuel cell, in a catalytic converter, or a combination thereof.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: November 1, 2022
    Assignee: The Board of Trustees of The University of Alabama
    Inventors: Qing Peng, Ruigang Wang, Haoming Yan, Zhongqi Liu
  • Patent number: 10895014
    Abstract: A method of processing a metal member having a passivation film on its surface is provided. The method includes a step of heating the metal member for a predetermined period at a temperature of 300° C. or higher.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: January 19, 2021
    Assignee: Tokyo Electron Limited
    Inventor: Hiroshi Nagaike
  • Patent number: 9200369
    Abstract: An apparatus and method for treating a thin film on a substrate is presented. The substrate is loaded on a fixed stage adapted to receive the substrate. An energy source is aligned through a space in a gas shield so as to face a thin film on the substrate to be repaired after the substrate is loaded. A protective insulating layer is removed by radiation from the energy source, a reaction gas is supplied to the space, and an open and/or short circuit in the thin film is repaired. The energy source and/or gas shield is moved during the repair, rather than the stage. If the energy source and gas shield are both moved, they are moved in opposite directions, either independently or dependent on each other, by first and second operating units, respectively.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: December 1, 2015
    Assignee: LG DISPLAY CO. LTD.
    Inventors: Jong-Chul Lee, Sang-Hyuck Park
  • Patent number: 9045509
    Abstract: Disclosed are hafnium- and zirconium-containing precursors and methods of providing the same. The disclosed precursors include a ligand and at least one aliphatic group as substituent selected to have greater degrees of freedom than the usual substituents. The disclosed precursors may be used to deposit hafnium- or zirconium-containing layers using vapor deposition methods such as chemical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: June 2, 2015
    Assignee: American Air Liquide, Inc.
    Inventors: Christian Dussarrat, Vincent M. Omarjee, Venkateswara R. Pallem
  • Patent number: 8673407
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: March 18, 2014
    Assignee: NeoPhotonics Corporation
    Inventors: Xiangxin Bi, Elizabeth Anne Nevis, Ronald J. Mosso, Michael Edward Chapin, Shivkumar Chiruvolu, Sardar Hyat Khan, Sujeet Kumar, Herman Adrian Lopez, Nguyen Tran The Huy, Craig Richard Horne, Michael A. Bryan, Eric Euvrard
  • Patent number: 8629076
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicon carbide, improving the thermal stability of the carbon aerogel.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Joshua D. Kuntz, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Patent number: 8541066
    Abstract: In various exemplary embodiments, the present invention provides a system for the light-induced directed self-assembly (LIDSA) of periodic sub-wavelength nanostructures, including: a light source for delivering a beam of photons; a reaction chamber disposed adjacent to the light source; a gas including one or more precursor materials disposed within the reaction chamber; and a substrate disposed within the reaction chamber, wherein the substrate is positioned and configured to receive the beam of photons; wherein the beam of photons causes a periodic sub-wavelength nanostructure of one or more constituents of the one or more precursor materials to form on a surface of the substrate. In various exemplary embodiments, the present invention also provides an associated method.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: September 24, 2013
    Assignee: University of North Carolina at Charlotte
    Inventors: Tsing-Hua Her, Haitao Zhang, Mingzhen Tang
  • Patent number: 8512798
    Abstract: The present invention is a high-throughput, ultraviolet (UV) assisted metalorganic chemical vapor deposition (MOCVD) system for the manufacture of HTS-coated tapes. The UV-assisted MOCVD system of the present invention includes a UV source that irradiates the deposition zone and improves the thin film growth rate. The MOCVD system further enhances the excitation of the precursor vapors and utilizes an atmosphere of monatomic oxygen (O) rather than the more conventional diatomic oxygen (O2) in order to optimize reaction kinetics and thereby increase the thin film growth rate. In an alternate embodiment, a microwave plasma injector is substituted for the UV source.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 20, 2013
    Assignee: SuperPower, Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Patent number: 8465811
    Abstract: A thin film is formed by alternating multiple times, respectively, a process of adsorbing a precursor onto a substrate and a process of treating the adsorbed surface using a reactant gas and a plasma, wherein the reactant gas is supplied substantially uniformly over the substrate, and the plasma is pulse-time-modulated and applied in the process of supplying the reactant gas.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 18, 2013
    Assignee: ASM Japan K.K.
    Inventor: Shintaro Ueda
  • Patent number: 8349409
    Abstract: A liquid droplet of a first liquid and a liquid droplet of a second liquid are mixed upon landing on a substrate, and then the reaction is initiated between the first and second liquid droplets. Accordingly, it is possible to avoid the problem which would have been caused when the two liquids are mixed in advance before the usage that the reaction between the two liquids is advanced before the liquids are actually coated. Further, since the ink-jet system is employed, it is possible to precisely control the liquid-droplet amount and the landing position, thereby landing the first and second liquids on a same position with high precision. Accordingly, a highly integrated pattern can be formed. Furthermore, since the mixing ratio of the first and second liquids can be precisely controlled, the film quality can be stabilized.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: January 8, 2013
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Masanori Tsuruko
  • Patent number: 8192595
    Abstract: A transition metal/carbon nanotube composite includes a carbon nanotube and a transition metal oxide coating layer disposed on the carbon nanotube. The transition metal oxide coating layer includes a nickel-cobalt oxide.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: June 5, 2012
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Ho-jung Yang, Hyo-rang Kang, Kwang-bum Kim, Jin-go Kim
  • Patent number: 8017238
    Abstract: To provide a tungsten oxide photocatalyst which shows a high photocatalytic activity by irradiating with visible light even under the environment where ultraviolet light is not irradiated, the tungsten oxide photocatalyst has tungsten oxide particles and Pt particles having a primary particle size of 3 to 20 nm supported on the surface of the tungsten oxide particles in an amount of 0.03 to 5 parts by weight based on 100 parts by weight of the tungsten oxide particles.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 13, 2011
    Assignees: National University Corporation Hokkaido University, Sumitomo Chemical Company, Limited
    Inventors: Bunsho Ohtani, Ryu Abe, Yoshiaki Sakatani, Makoto Murata, Hiroaki Nishimine
  • Patent number: 7985449
    Abstract: A process is described for depositing a metal film on a substrate surface having a diffusion barrier layer deposited thereupon. In one embodiment of the present invention, the process includes: providing a surface of the diffusion barrier layer that is substantially free of an elemental metal and forming the metal film on at least a portion of the surface via deposition by using a organometallic precursor. In certain embodiments, the diffusion barrier layer may be exposed to an adhesion promoting agent prior to or during at least a portion of the forming step. Suitable adhesion promoting agents include nitrogen, nitrogen-containing compounds, carbon-containing compounds, carbon and nitrogen containing compounds, silicon-containing compounds, silicon and carbon containing compounds, silicon, carbon, and nitrogen containing compounds, or mixtures thereof. The process of the present invention provides substrates having enhanced adhesion between the diffusion barrier layer and the metal film.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Hansong Cheng, John Anthony Thomas Norman, Eduardo Machado, Pablo Ordejon
  • Patent number: 7910176
    Abstract: An electrode is used to perform discharge surface treatment of a work piece. The electrode is made of a green compact obtained by compression-molding an electrode material including powder of any of a metal, a metallic compound, and ceramics. The discharge surface treatment includes generating an electric discharge between the electrode and the work piece in an atmosphere of a machining medium and forming a film consisting of a machining material on a surface of a work piece using energy produced by the electric discharge. The powder has an average particle diameter of 5 micrometer to 10 micrometers, and contains 40 volume percent or more of a component not forming or less easily forming carbide as a component for forming the film on the work piece. The electrode has a hardness in a range of B to 8B tested with a pencil scratch test for a coating film.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: March 22, 2011
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Akihiro Goto, Masao Akiyoshi, Katsuhiro Matsuo, Hiroyuki Ochiai, Mitsutoshi Watanabe, Takashi Furukawa
  • Patent number: 7879400
    Abstract: There is provided a substrate processing apparatus equipped with a metallic component, with at least a part of its metallic surface exposed to an inside of a processing chamber and subjected to baking treatment at a pressure less than atmospheric pressure. As a result of this baking treatment, a film which does not react with various types of reactive gases, and which can block the out diffusion of metals, is formed on the surface of the above-mentioned metallic component.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Kokusal Electric Inc.
    Inventors: Takahiro Maeda, Kiyohiko Maeda, Takashi Ozaki
  • Publication number: 20100297447
    Abstract: An object of the present invention is to produce core-shell structured metal oxide particles having a high refractive index and low photocatalytic activity. For this purpose, a method for producing core-shell structured metal oxide particles is provided in which shells composed of a metal oxide are formed on surfaces of core particles while exposing the core particles to light having the intensity of 0.1 mW/cm2 or more.
    Type: Application
    Filed: September 18, 2008
    Publication date: November 25, 2010
    Inventor: Yoshio Tadakuma
  • Publication number: 20090255581
    Abstract: A thin film silicon solar cell comprises a front transparent electrode, a p-type window layer, a buffer layer, an i-type absorber layer, an n-type layer and a metal rear electrode. The front transparent electrode is stacked on a transparent substrate. The p-type window layer is stacked on the front transparent electrode, and has a thickness in a range of 12 nm to 17 nm. The buffer layer is stacked on the p-type window layer, and has a carbon concentration in a range of 0.5 to 3.0 atomic % and a thickness in a range of 3 to 8 nm. The i-type absorber layer is stacked on the buffer layer. The n-type layer is stacked on the i-type absorber layer. The metal rear electrode is stacked on the n-type layer.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 15, 2009
    Inventor: Seung-Yeop Myong
  • Publication number: 20090214885
    Abstract: In various exemplary embodiments, the present invention provides a system for the light-induced directed self-assembly (LIDSA) of periodic sub-wavelength nanostructures, including: a light source for delivering a beam of photons; a reaction chamber disposed adjacent to the light source; a gas including one or more precursor materials disposed within the reaction chamber; and a substrate disposed within the reaction chamber, wherein the substrate is positioned and configured to receive the beam of photons; wherein the beam of photons causes a periodic sub-wavelength nanostructure of one or more constituents of the one or more precursor materials to form on a surface of the substrate. In various exemplary embodiments, the present invention also provides an associated method.
    Type: Application
    Filed: November 26, 2008
    Publication date: August 27, 2009
    Inventors: TSING-HUA HER, HAITAO ZHANG, MINGZHEN TANG
  • Patent number: 7524533
    Abstract: A process is described for depositing a metal film on a substrate surface having a diffusion barrier layer deposited thereupon. In one embodiment, the process includes: providing a surface of the diffusion barrier layer that is substantially free of an elemental metal and forming the metal film on at least a portion of the surface via deposition by using a organometallic precursor. In certain embodiments, the surface of the diffusion barrier layer may be exposed to an adhesion promoting agent prior to or during at least a portion of the forming step. Suitable adhesion promoting agents include nitrogen, nitrogen-containing compounds, carbon-containing compounds, carbon and nitrogen containing compounds, silicon-containing compounds, silicon and carbon containing compounds, silicon, carbon, and nitrogen containing compounds, and mixtures thereof. The process of the present invention provides substrates having enhanced adhesion between the diffusion barrier layer and the metal film.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: April 28, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Hansong Cheng, John Anthony Thomas Norman, Eduardo Machado, Pablo Ordejon
  • Patent number: 7491431
    Abstract: Methods for forming coated substrates can be based on depositing material from a flow onto a substrate in which the coating material is formed by a reaction within the flow. In some embodiments, the product materials are formed in a reaction driven by photon energy absorbed from a radiation beam. In additional or alternative embodiments, the flow with the product stream is directed at the substrate. The substrate may be moved relative to the flow. Coating materials can be formed with densities of 65 percent to 95 percent of the fully densified coating material with a very high level of coating uniformity.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: February 17, 2009
    Assignee: NanoGram Corporation
    Inventors: Shivkumar Chiruvolu, Michael Edward Chapin
  • Publication number: 20090011147
    Abstract: The preferred embodiments provide a method for forming at least one metal comprising elongated nanostructure on a substrate. The method comprises exposing a metal halide compound surface to a photon comprising ambient to initiate formation of the at least one metal comprising elongated nanostructure. The preferred embodiments also provide metal comprising elongated nanostructures obtained by the method according to preferred embodiments.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 8, 2009
    Applicants: Interuniversitair Microelektronica Centrum vzw (IMEC), Katholieke Universiteit Leuven, K.U.LEUVEN R&D
    Inventor: Dries Dictus
  • Patent number: 7459187
    Abstract: An object of the present invention is to make it possible to uniformly supply of a gas onto a base material in a way simpler and lower in cost, and thus, to realize a high-quality surface treatment. For that purpose, in surface treatment of a base material (12) by supplying a surface-treating gas on the surface of the base material (12) while conveying it in a particular direction, the peripheral surface of a rotor having a cylindrical peripheral surface (24) is made to face, via a gap (23), the surface of the base material (12) or an opposing member (20) formed at a position separated from the base material and the rotor is rotated around the axis in the direction almost perpendicular to the base material (12)-conveying direction, as the means for supplying the surface-treating gas. By the rotation, the surface-treating gas is dragged in by the peripheral surface of the rotor (24), guided into the gap (23), and then, fed from the gap (23) onto the surface of the base material (12).
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: December 2, 2008
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Asahi Glass Co., Ltd.
    Inventors: Kazushi Hayashi, Toshihiro Kugimiya, Takashi Kobori, Junichi Ebisawa, Kazuo Sato, Yukio Yoshikawa
  • Patent number: 7390731
    Abstract: The process according to the invention makes it possible to deposit a transparent conductive oxide film on a toughened glass substrate placed inside a chamber. It consists in providing sources containing an oxygen-based liquid compound, a liquid compound of the metal intended to form the oxide, and a dopant in gaseous or liquid form, respectively; establishing a temperature between 130 and 300° C. and a pressure between 0.01 and 2 mbar in the chamber; and then bringing said sources into communication with the chamber, which has the effect of vaporizing the liquids at their surface, of drawing them up into the chamber without having to use a carrier gas, and of making them react therein with the dopant so that the oxide layer is formed on the substrate.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: June 24, 2008
    Assignee: Universite de Neuchatel, Institut de Microtechnique
    Inventors: Ulrich Kroll, Johannes Meier
  • Patent number: 7341959
    Abstract: A method for depositing a film on a substrate using a plasma enhanced atomic layer deposition (PEALD) process includes disposing the substrate in a process chamber configured to facilitate the PEALD process, wherein the process chamber includes a substrate zone proximate the substrate and a peripheral zone proximate to a peripheral edge of the substrate. Also included is introducing a first process material within the process chamber, introducing a second process material within the process chamber and coupling electromagnetic power to the process chamber during introduction of the second process material in order to generate a plasma that facilitates a reduction reaction between the first and the second process materials at a surface of the substrate.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: March 11, 2008
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Patent number: 7338582
    Abstract: It is an object of the present invention to provide an oxygen reduction electrode having excellent oxygen reduction catalysis ability. In a method of manufacturing a manganese oxide nanostructure having excellent oxygen reduction catalysis ability and composed of secondary particles which are aggregations of primary particles of manganese oxide, a target plate made of manganese oxide is irradiated with laser light to desorb the component substance of the target plate, and the desorbed substance is deposited on a substrate facing substantially parallel to the aforementioned target plate.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: March 4, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Nobuyasu Suzuki, Yasunori Morinaga, Hidehiro Sasaki, Yuka Yamada
  • Patent number: 7311946
    Abstract: A process is described for depositing a metal film on a substrate surface having a diffusion barrier layer deposited thereupon. In one embodiment of the present invention, the process includes: providing a surface of the diffusion barrier layer that is substantially free of an elemental metal and forming the metal film on at least a portion of the surface via deposition by using a organometallic precursor. In certain embodiments, the diffusion barrier layer may be exposed to an adhesion promoting agent prior to or during at least a portion of the forming step. Suitable adhesion promoting agents include nitrogen, nitrogen-containing compounds, carbon-containing compounds, carbon and nitrogen containing compounds, silicon-containing compounds, silicon and carbon containing compounds, silicon, carbon, and nitrogen containing compounds, or mixtures thereof. The process of the present invention provides substrates having enhanced adhesion between the diffusion barrier layer and the metal film.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 25, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Hansong Cheng, John Anthony Thomas Norman, Eduardo Machado, Pablo Ordejon
  • Patent number: 7211300
    Abstract: An element is deposited by flowing a gas through a solid donor compound that includes the element, and over a substrate. The flow of gas deposits a film of a few monolayers of donor compound on the substrate. An optical radiation source (e.g., a femtosecond laser) which produces optical radiation at an instantaneous intensity sufficient to cause non linear or otherwise enhanced interaction between optical radiation photons and the donor compound is used to decompose the donor compound and deposit the metal on the substrate. After an initial deposit of the donor compound is produced, optical radiation can be absorbed and heat the substrate in the localized area of the deposit in order to accelerate the deposition process by thermally decomposing the donor compound.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: May 1, 2007
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Haight, Peter P. Longo, Alfred Wagner
  • Patent number: 7125588
    Abstract: A method of forming an insulating ceramic film or a metallic film by a plasma CVD process in which a high density plasma is generated in the presence of a magnetic field wherein the electric power for generating the plasma has a pulsed waveform. The electric power typically is supplied by microwave, and the pulsed wave may be a complex wave having a two-step peak, or may be a complex wave obtained by complexing a pulsed wave with a stationary continuous wave.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: October 24, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akiharu Miyanaga, Tohru Inoue, Shunpei Yamazaki
  • Patent number: 7112453
    Abstract: This invention provides methods of retentate chromatography for resolving analytes in a sample. The methods involve adsorbing the analytes to a substrate under a plurality of different selectivity conditions, and detecting the analytes retained on the substrate by desorption spectrometry. The methods are useful in biology and medicine, including clinical diagnostics and drug discovery.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 26, 2006
    Assignee: Ciphergen Biosystems, Inc.
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7037560
    Abstract: A film forming and film modifying method utilizing a film forming apparatus which has an alcohol supply unit to form a metal oxide film on a semiconductor wafer in a vacuum atmosphere in which a vaporized metal oxide film material and a vaporized alcohol exist. The film modifying method irradiates a UV ray on ozone to generate active oxygen atoms, thus modifying the metal oxide film by exposing the metal oxide film to the active oxygen atoms in a vacuum atmosphere.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 2, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Hiroshi Shinriki, Masahito Sugiura
  • Patent number: 6887595
    Abstract: A thermal barrier coatings for the underlying substrate of articles that operate at, or are exposed to, high temperatures. The thermal barrier coating includes a zirconia-containing upper layer wherein the zirconia is stabilized in the cubic crystalline phase to reduce the thermal conductivity of the coating. The thermal barrier coating further includes a zirconia-containing lower layer stabilized in the tetragonal crystalline phase that increases the adherence of the upper layer to the bond coat layer that overlies the substrate of the article to improve the resistance of the coating to spallation.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: May 3, 2005
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Allen Boutwell, Mark Daniel Gorman, Robert William Bruce
  • Patent number: 6808758
    Abstract: A process for producing thin layers in electronic devices such as integrated circuit chips, is provided. The process includes the steps of injecting a precursor fluid into a thermal processing chamber containing a substrate, such as a semiconductor wafer. The precursor fluid is converted into a solid which forms a layer on the substrate. In accordance with the present invention, the precursor fluid is pulsed into the process chamber in a manner such that the fluid is completly exhausted or removed from the chamber in between each pulse. Light energy can be used in forming the solid layers.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: October 26, 2004
    Assignee: Mattson Technology, Inc.
    Inventor: Randhir P. S. Thakur
  • Patent number: 6683198
    Abstract: A compound of formula (I) wherein X is aluminium, gallium or indium; each Y, which may be the same or different, is nitrogen or phosphorus; R1 and R2, which may be the same or different, are hydrogen, halogen or alkyl; and R3 to R7, which may be the same or different, are hydrogen or a saturated group, or R3 and R4, or R5 and R6 together represent a saturated divalent link thus completing a ring.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: January 27, 2004
    Assignee: Isis Innovation Limited
    Inventors: Anthony John Downs, Hans-Jörg Himmel
  • Patent number: 6664030
    Abstract: An exemplary method of constructing an alternating phase-shifting mask is described. This method can include providing a vapor in a vapor chamber containing a mask blank, and applying a laser to selected areas of the mask blank to deposit material on the integrated circuit substrate. The material is configured to cause a 180° phase shift at the wavelengths the mask is designed for such as 248 nm, 193 nm or 157 nm.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: December 16, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kouros Ghandehari, Bruno LaFontaine, Bhanwar Singh
  • Patent number: 6656539
    Abstract: An element is deposited by flowing a gas through a solid donor compound that includes the element, and over a substrate. The flow of gas deposits a film of a few monolayers of donor compound on the substrate. An optical radiation source (e.g., a femtosecond laser) which produces optical radiation at an instantaneous intensity sufficient to cause non linear or otherwise enhanced interaction between optical radiation photons and the donor compound is used to decompose the donor compound and deposit the metal on the substrate. After an initial deposit of the donor compound is produced, optical radiation can be absorbed and heat the substrate in the localized area of the deposit in order to accelerate the deposition process by thermally decomposing the donor compound.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: December 2, 2003
    Assignee: International Business Machines Corporation
    Inventors: Richard A. Haight, Peter P. Longo, Alfred Wagner
  • Patent number: 6511718
    Abstract: A venturi mist generator creates a mist comprising droplets having a mean diameter less than one micron from liquid precursors containing multi-metal polyalkoxide compounds. The mist is mixed and then passed into a gasifier where the mist droplets are gasified at a temperature of between 100° C. and 250° C., which is lower than the temperature at which the precursor compounds decompose. The gasified precursor compounds are transported by carrier gas through insulated tubing at ambient temperature to prevent both condensation and premature decomposition. The gasified precursors are mixed with oxidant gas, and the gaseous reactant mixture is injected through a showerhead inlet into a deposition reactor in which a substrate is heated at a temperature of from 300° C. to 600 ° C. The gasified precursors decompose at the substrate and form a thin film of solid material on the substrate. The thin film is treated at elevated temperatures of from 500° C. to 900° C.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: January 28, 2003
    Assignee: Symetrix Corporation
    Inventors: Carlos A. Paz de Araujo, Larry D. McMillan, Narayan Solayappan, Jeffrey W. Bacon
  • Publication number: 20020146648
    Abstract: An exemplary method of forming an attenuating extreme ultraviolet (EUV) phase-shifting mask is described. This method can include providing a multi-layer mirror over an integrated circuit substrate or a mask blank, providing a buffer layer over the multi-layer mirror, providing a dual element material layer over the buffer layer, and selectively growing features on the integrated circuit substrate or mask blank using a photon assisted chemical vapor deposition (CVD) process when depositing the dual element layer.
    Type: Application
    Filed: February 9, 2001
    Publication date: October 10, 2002
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Kouros Ghandehari, Bruno LaFontaine, Bhanwar Singh
  • Patent number: 6391528
    Abstract: A method for making wire grid optical elements by preferentially depositing material on a substrate is disclosed. Material can be preferentially deposited by directing an electromagnetic interference pattern on to a substrate to selectively heat areas of the substrate coincident with the interference pattern maxima. The substrate can then be exposed to gas phase material that is capable of preferentially accumulating on surfaces based on surface temperature.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: May 21, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Robert S. Moshrefzadeh, Patrick A. Thomas
  • Publication number: 20020040847
    Abstract: A method of forming an insulation film includes the steps of forming an insulation film on a substrate, and modifying a film quality of the insulation film by exposing the insulation film to atomic state oxygen O* or atomic state hydrogen nitride radicals NH* formed with plasma that uses Kr or Ar as inert gas.
    Type: Application
    Filed: May 31, 2001
    Publication date: April 11, 2002
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa
  • Patent number: 6299739
    Abstract: This invention provides a method of forming a metal wiring film excellent in EM resistance and low electric resistance. In a method of forming a wiring structure by filming and covering the surface of the insulating film of a substrate to be treated having a hole or groove formed thereon with a metallic material such as copper, aluminum, silver or the like, thereby filling the hole or groove inner part with the metallic material to form a wiring structure, the substrate to be treated is exposed to a high temperature under a high-pressure gas atmosphere after the continuous filming and covering with the metallic material along the inner surface profile of the hole or groove, whereby the surface diffusion phenomenon of the metallic material is promoted to reform the metal film into a film structure as the surface area of the metal film is minimized.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: October 9, 2001
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Takao Fujikawa, Takahiko Ishii, Yutaka Narukawa, Makoto Kadoguchi, Yasushi Mizusawa, Tomoyasu Kondou, Yuji Taguchi
  • Patent number: 6284655
    Abstract: The present invention provides a method for forming a substantially carbon- and oxygen-free conductive layer, wherein the layer can contain a metal and/or a metalloid material. According to the present invention, a substantially carbon- and oxygen-free conductive layer is formed in an oxidizing atmosphere in the presence of an organometallic catalyst using, for example, a chemical vapor deposition process. Such layers are particularly advantageous for use in memory devices, such as dynamic random access memory (DRAM) devices.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: September 4, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Eugene P. Marsh
  • Patent number: 6281125
    Abstract: The present invention provides methods for the preparation of ruthenium oxide films from liquid ruthenium complexes of the formula (diene)Ru(CO)3 wherein “diene” refers to linear, branched, or cyclic dienes, bicyclic dienes, tricyclic dienes, fluorinated derivatives thereof, combinations thereof, or derivatives thereof additionally containing heteroatoms such as halide, Si, S, Se, P, As, N, or O.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: August 28, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Brian A. Vaartstra, Eugene P. Marsh
  • Patent number: 6265033
    Abstract: A system for the depositing of insulating, conducting, or semiconducting thin films is disclosed, in which the sputtering plasma is irradiated with a transverse, adjustable ultraviolet emission produced by an ultraviolet optical cavity containing a lamp discharge. The cavity irradiates the sputtering plasma volume with a sufficiently high optical flux to enact significant changes in the film produced. This effect is enabled by the device geometry, which, in the preferred embodiment, provides uniquely high efficiency and stability in the optical coupling between the lamp discharge and the sputtering plasma, resulting in the ability to significantly alter ionized and excited state populations within and directly above the sputtering plasma. The design also allows the operator to significantly control the volume and species involved in the optical interaction.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: July 24, 2001
    Inventor: Donald Bennett Hilliard
  • Patent number: 6248658
    Abstract: Submicron-dimensioned metallization patterns are formed on a substrate surface by a photolytic process wherein portions of a metal-compound containing fluid layer on the substrate surface which are exposed through a pattern of submicron-sized openings in an overlying exposure mask are irradiated with UV to near X-ray radiation. Photo-decomposition of the metal-containing compound results in selective metal deposition on the substrate surface according to the exposure mask pattern. When liquid, the fluid layer is prevented from contacting the mask surfaces during photolysis in order to prevent closing off of the very small apertures by deposition thereon. The inventive method is of particular utility in forming multi-level, in-laid, “back-end” metallization of high density integrated circuit semiconductor devices.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: June 19, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Matthew S. Buynoski
  • Patent number: 6156165
    Abstract: An integrated circuit package derives increased mechanical robustness and electrical reliability consistent with increased heat dissipation capacity by edge bonding of integrated circuit chips onto a substrate such as a chip, board, module or another integrated circuit by forming a solder or conductive adhesive bond between a bonding/contact pad on the substrate and a metallization feature extending at least on limited opposing areas of major surfaces of the chip and, preferably, across the edge of the chip. Thermally conducting material contained in a cap may provide additional, distributed support for the chip by a combination of viscosity and density providing buoyancy of the chips. Alternatively, a cap may be provided which further stabilizes the edge-mounting of chips while increasing velocity of cooling fluid against the chips.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: December 5, 2000
    Assignee: International Business Machines Corporation
    Inventors: Mark Vincent Pierson, Thurston Bryce Youngs, Jr.
  • Patent number: 6153529
    Abstract: The present invention provides a plasma processing system comprising a remote plasma activation region for formation of active gas species, a transparent transfer tube coupled between the remote activation region and a semiconductor processing chamber, and a source of photo energy for maintaining activation of the active species during transfer from the remote plasma activation region to the processing chamber. The source of photo energy preferably includes an array of UV lamps. Additional UV lamps may also be used to further sustain active species and assist plasma processes by providing additional in-situ energy through a transparent window of the processing chamber.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: November 28, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Vishnu K. Agarwal
  • Patent number: 6139697
    Abstract: The present invention relates generally to an improved process for providing complete via fill on a substrate and planarization of metal layers to form continuous, void-free contacts or vias in sub-half micron applications. In one aspect of the invention, a refractory layer is deposited onto a substrate having high aspect ratio contacts or vias formed thereon. A CVD metal layer, such as CVD Al or CVD Cu, is then deposited onto the refractory layer at low temperatures to provide a conformal wetting layer for a PVD Cu. Next, a PVD Cu is deposited onto the previously formed CVD Cu layer at a temperature below that of the melting point temperature of the metal. The resulting CVD/PVD Cu layer is substantially void-free.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: October 31, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Liang-Yuh Chen, Roderick Craig Mosely, Fusen Chen, Rong Tao, Ted Guo
  • Patent number: 6117487
    Abstract: A process for forming a metal oxide film by means of a chemical vapor deposition system, which comprises using a complex of a .beta.-diketone compound and a group IV metal glycolate, the complex being represented by formula (I): ##STR1## wherein M represents a metal atom of the group IV; R.sup.1 and R.sup.2 each represent a branched alkyl or cycloalkyl group having 4 to 8 carbon atoms; and R.sup.3 represents a straight-chain or branched alkylene group having 2 to 18 carbon atoms.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: September 12, 2000
    Assignee: Asahi Denka Kogyo Kabushiki Kaisha
    Inventors: Mitsuo Akutsu, Naohiro Kubota, Akifumi Masuko, Naoki Yamada
  • Patent number: 6063705
    Abstract: A method is provided for forming a film of ruthenium or ruthenium oxide on the surface of a substrate by employing the techniques of chemical vapor deposition to decompose precursors of ruthenium having the formula: L.sub.y RuX.sub.z where L is a neutral or monoanionic ligand selected from the group consisting essentially of linear hydrocarbyls, branched hydrocarbyls, cyclic hydrocarbyls, cyclic alkenes, dienes, cyclic dienes, trienes, cyclic trienes, bicyclic alkenes, bicyclic dienes, bicyclic trienes, tricyclic alkenes, tricyclic dienes, tricyclic trienes; fluorinated derivatives thereof; derivatives thereof additionally containing heteroatoms such as a halide, Si, S, Se, P, As, N or O; and combinations thereof; where X is a pi-bonding ligand selected from the group consisting of CO, NO, CN, CS, nitriles, isonitriles, trialkylphosphines, trialkylphosphites, trialkylamines, and isocyanide, and where subscripts y and z have a value of from one (1) to three (3); or L.sub.1 Ru(CO).sub.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: May 16, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 6059939
    Abstract: An integrated circuit package derives increased mechanical robustness and electrical reliability consistent with increased heat dissipation capacity by edge bonding of integrated circuit chips onto a substrate such as a chip, board, module or another integrated circuit by forming a solder or conductive adhesive bond between a bonding/contact pad on the substrate and a metallization feature extending at least on limited opposing areas of major surfaces of the chip and, preferably, across the edge of the chip. Thermally conducting material contained in a cap may provide additional, distributed support for the chip by a combination of viscosity and density providing buoyancy of the chips. Alternatively, a cap may be provided which further stabilizes the edge-mounting of chips while increasing velocity of cooling fluid against the chips.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: May 9, 2000
    Assignee: International Business Machines Corporation
    Inventors: Mark Vincent Pierson, Thurston Bryce Youngs, Jr.