Direct Application Of Electrical, Magnetic, Wave, Or Particulate Energy Patents (Class 427/457)
  • Patent number: 11819843
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: November 21, 2023
    Assignee: Illumina, Inc.
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Patent number: 11772404
    Abstract: The present invention relates to the field of and processes and printing apparatuses for producing optical effect layers (OEL) comprising magnetically oriented platelet-shaped magnetic or magnetizable pigment particles on a substrate. In particular, the present invention relates to processes using printing apparatuses comprising a first magnetic-field-generating device mounted on a transferring device (TD) and a static second magnetic-field-generating device for producing said OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: October 3, 2023
    Assignee: SICPA HOLDING SA
    Inventors: Mathieu Schmid, Evgeny Loginov, Claude-Alain Despland
  • Patent number: 11691449
    Abstract: The present invention relates to the field of and processes and printing apparatuses for producing optical effect layers (OEL) comprising magnetically oriented platelet-shaped magnetic or magnetizable pigment particles on a substrate. In particular, the present invention relates to processes using printing apparatuses comprising a first magnetic-field-generating device mounted on a transferring device (TD) and a static second magnetic-field-generating device for producing said OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 4, 2023
    Assignee: SICPA HOLDING SA
    Inventors: Mathieu Schmid, Evgeny Loginov, Claude-Alain Despland
  • Patent number: 11634429
    Abstract: Chromophores with large hyperpolarizabilities, films with electro-optic activity comprising the chromophores, and electro-optic devices comprising the chromophores are disclosed.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: April 25, 2023
    Assignee: University of Washington
    Inventors: Delwin Elder, Lewis Johnson, Bruce Robinson, Huajun Xu
  • Patent number: 11383252
    Abstract: Provided in certain embodiments herein are gas controlled electrospray systems and processes for manufacturing depositions, such as thin layer films. In some embodiments, processes and systems provided herein are suitable for and configured to manufacture uniform depositions, such as having uniform thickness.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: July 12, 2022
    Assignee: CORNELL UNIVERSITY
    Inventors: Yong Lak Joo, Yevgen Zhmayev
  • Patent number: 11364492
    Abstract: A digital dispense apparatus comprising a plurality of fluid dispense devices, at least one reservoir connected to the plurality of fluid dispense devices to deliver fluid to the plurality of fluid dispense devices, at least one contact pad array, and a single monolithic carrier structure.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: June 21, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey A. Nielsen, Michael W. Cumbie, Devin Alexander Mourey, Silam J. Choy, Christie Dudenhoefer, Kenneth Ward
  • Patent number: 11130109
    Abstract: Apparatuses and methods for making uniform spherical beads are disclosed. Specifically, the uniform spherical beads are made by dropping droplets on a droplet rolling part, creating beads by rolling the droplets on the droplet rolling part from one spot to another spot, and collecting the beads by a beads collector.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 28, 2021
    Inventors: Ke Lin, Carol A Ellis-Terrell, Ronghua Wei
  • Patent number: 11127922
    Abstract: A display device includes a first substrate including a display area and a non-display area around the display area; a pad portion at an end part of the first substrate in the non-display area; a power voltage transmitting line electrically connected to the pad portion and surrounding at least part of the display area; a second substrate facing the first substrate; and a sealant between the first substrate and the second substrate and surrounding the display area. In the end part, the power voltage transmitting line includes a first portion overlapping the sealant and extending in a first direction and a second portion not overlapping the sealant, and the second portion includes a first protrusion protruded from the first portion in a second direction crossing the first direction, and a second protrusion protruded in a direction opposite to the second direction.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: September 21, 2021
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung Jae Lee, Han Soo Kim, Kyung Min Park
  • Patent number: 11101452
    Abstract: Provided are a packaging device and a display panel packaging method. The device includes: a guide line, a container for containing a package adhesive, a rotary worktable for placing a to-be-packaged device and a winding device for driving the guide line to move. The guide line is mounted on the winding device, and part of the guide line is immerged into the package adhesive so the guide line adhered by the package adhesive passes through the rotary worktable when moving. The to-be-packaged display device is disposed on rotary worktable, thus the guide line contacts with the frit. When the rotary worktable rotates, the guide line moves and passes through the container containing package adhesive. When part of the guide line adhered by package adhesive passes through the rotary worktable, the package adhesive is coated on the frit, thereby achieving uniform coating of the package adhesive under surface tension of frit.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 24, 2021
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., ORDOS YUANSHENG OPTOELECTRONICS CO., LTD.
    Inventors: Zhiliang Jiang, Zhenli Zhou
  • Patent number: 10858258
    Abstract: A reaction furnace for producing a polycrystalline silicon according to the present invention is designed so as to have an in-furnace reaction space in which a reaction space cross-sectional area ratio (S=[S0?SR]/SR) satisfies 2.5 or more, which is defined by an inner cross-sectional area (So) of a reaction furnace, which is perpendicular to a straight body portion of the reaction furnace, and a total sum (SR) of cross-sectional areas of polycrystalline silicon rods that are grown by precipitation of polycrystalline silicon, in a case where a diameter of the polycrystalline silicon rod is 140 mm or more. Such a reaction furnace has a sufficient in-furnace reaction space even when the diameter of the polycrystalline silicon rod has been expanded, and accordingly an appropriate circulation of a gas in the reaction furnace is kept.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: December 8, 2020
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shigeyoshi Netsu, Naruhiro Hoshino, Tetsuro Okada, Hiroshi Saito
  • Patent number: 10828878
    Abstract: Systems, devices, and related methods are disclosed for electromechanical transfer printing of 2D materials disposed on one substrate to another. The printing device can be configured to transfer a 2D material from a source substrate to the target substrate by applying a combination of mechanical and electrostatic forces to facilitate electromechanical adhesion between the 2D material layer and the target substrate. Some embodiments of the printing device can effect direct transfer printing of a 2D material from a source substrate to a target substrate without the use of etchants and adhesives.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 10, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Sanha Kim, Anastasios John Hart, Piran Ravichandran Kidambi, Dhanushkodi Durai Mariappan
  • Patent number: 10624205
    Abstract: The present invention relates to a metallic nano structure including a plurality of metallic nano materials; and a junction locally disposed in a region where the metallic nano materials adjacent to each other among the plurality of metallic nano materials are in contact with each other in order to bond the adjacent metallic nano materials.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 14, 2020
    Assignee: UNIVERSITY-INDUSTRY FOUNDATION (UIF), YONSEI UNIVERSITY
    Inventors: Dahl-Young Khang, Sung-Soo Yoon
  • Patent number: 9914122
    Abstract: A sample ampoule for calorimetric measurements includes a vial, a lid and a sealing member. The vial, lid and sealing member are adapted to form a hermetically sealed sample ampoule. The vial has a first contact surface and the lid has a second contact surface, the first and second contact surfaces are in contact with each other in a sealed position of the ampoule, and the vial and lid are formed out of materials with different strength.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: March 13, 2018
    Assignee: SYMCEL SVERIGE AB
    Inventors: Christer Wallin, Magnus Jansson
  • Patent number: 9604880
    Abstract: A method of controlling the setting time of a geopolymer by coating aluminosilicate particles with nanoparticles to slow the geopolymerization reaction. The coating effectiveness of the nanoparticles may be enhanced by pretreating the aluminosilicate particles with a layer-by-layer assembly of polyelectrolytes. A geopolymer is formed by mixing about 39% to about 66% by weight aluminosilicate source, about 0% to about 40% by weight sand, about 19% to about 33% by weight of alkali activator solution, and about 1% to about 4% nanoparticles.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 28, 2017
    Assignee: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Yuri Lvov, Carlos Montes, Anupam Joshi
  • Patent number: 9418979
    Abstract: Disclosed herein is a method of assembling an array of light emitting diode (LED) dies on a substrate comprising: positioning dies in fluid; exposing the dies to a magnetic force to attract the dies onto magnets that are arranged at pre-determined locations either on or near the substrate; and forming permanent connections between the dies and the substrate thereby constituting an array of LED dies on a substrate.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: August 16, 2016
    Assignee: RENSSEALER POLYTECHNIC INSTITUTE
    Inventors: Robert F. Karlicek, Jr., James Jian-Qiang Lu, Charles Sanford Goodwin, Anton Tkachenko
  • Patent number: 9276293
    Abstract: A dynamic formation protocol for a lithium-ion battery cell. An “SEI formation end voltage” is identified, which is the voltage reached during formation at which the SEI layer is substantially formed. Charge rates are selected for the formation, with a first charge current rate to be used until the SEI formation end voltage is reached, and a second charge current rate, faster than the first charge current rate, to be used thereafter the SEI formation end voltage. These charge rates are applied to the cell for at least a first cycle of the dynamic formation process.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: March 1, 2016
    Assignee: SOUTHWESTERN RESEARCH INSTITUTE
    Inventor: Jeff Qiang Xu
  • Patent number: 9245875
    Abstract: Disclosed herein is a method of assembling an array of light emitting diode (LED) dies on a substrate comprising: positioning dies in fluid; exposing the dies to a magnetic force to attract the dies onto magnets that are arranged at pre-determined locations either on or near the substrate; and forming permanent connections between the dies and the substrate thereby constituting an array of LED dies on a substrate.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: January 26, 2016
    Assignee: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Robert F. Karlicek, James Jian-Qiang Lu, Charles Sanford Goodwin, Anton Tkachenko
  • Publication number: 20150140230
    Abstract: A machine tool arranged to deliver an energy source through a processing head onto a work-piece, wherein; the machine-tool has a clamping mechanism arranged to temporarily receive the processing-head, or another machining or processing-head, to process a work-piece; the processing-head comprising one or more guiding mechanisms arranged to direct the energy source onto a work-piece and a processing-head docking-manifold arranged to have connected thereto one or more media to be, in use, supplied to the processing-head to facilitate processing of the work-piece; wherein the processing-head docking-manifold allows the one or more media to be supplied to the processing-head when the processing-head is connected to the clamping mechanism; and wherein the machine-tool also comprises at least one mechanism arranged to move a supply docking-manifold into and/or out of connection with the processing-head docking-manifold such that when the two manifolds are connected the or each media is supplied to the processing
    Type: Application
    Filed: December 10, 2014
    Publication date: May 21, 2015
    Inventors: Jason B. Jones, Peter Coates
  • Patent number: 9022228
    Abstract: A domestic appliance filter for use in a laundry treatment device includes a basic filter material with a hydrophobic coating for filtering out matter from a process water duct or a process air duct. The basic filter material includes a material which is resistant to temperatures of 160° C. or more and the hydrophobic coating on the basic filter material effects a surface energy of less than 35 mN/m.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: May 5, 2015
    Assignee: BSH Bosch und Siemens Hausgeräte GmbH
    Inventor: Klaus Grunert
  • Publication number: 20150105863
    Abstract: A fiber-reinforced hydrogel composite is provided. The composite includes a hydrogel and a fibrous component containing a plurality of fibers. Length of each of the plurality of fibers is less than about 1,000 ?m. A method of preparing a fiber-reinforced hydrogel composite is also provided. The method includes coating a hydrogel precursor solution on a substrate to form a hydrogel precursor film, depositing the plurality of fibers onto the hydrogel precursor film, and allowing the hydrogel precursor film to form a hydrogel film, (ii) thereby forming the fiber-reinforced hydrogel composite. A scaffold containing the fiber-reinforced composite, and a tissue repair method (iii) using the fiber-reinforced composite are also provided.
    Type: Application
    Filed: May 15, 2013
    Publication date: April 16, 2015
    Applicant: National University of Singapore
    Inventors: Eyal Zussman, Srinivasa Reddy Chaganti, Jayarama Reddy Venugopal, Seeram Ramakrishna, Omri Regev
  • Publication number: 20150083978
    Abstract: There are provided a composite perovskite powder, a preparation method thereof, and a paste composition for an internal electrode having the same, the composite perovskite powder capable of preventing ions from being eluted from an aqueous system at the time of synthesis while being ultra-atomized, such that when the composite perovskite powder is used as an inhibitor powder for an internal electrode, sintering properties of the internal electrode may be deteriorated, and sintering properties of a dielectric material may be increased; accordingly, connectivity of the internal electrode may be improved, and permittivity and reliability of a multilayer ceramic capacitor (MLCC) may be increased.
    Type: Application
    Filed: January 13, 2014
    Publication date: March 26, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kum Jin PARK, Chang Hak CHOI, Sang Min YOUN, Kwang Hee NAM, Ki Myoung YUN, Hyung Joon JEON, Jong Hoon YOO
  • Publication number: 20150064602
    Abstract: Disclosed are a polymer electrolyte membrane, a method for manufacturing the same and a membrane-electrode assembly comprising the same, the polymer electrolyte membrane includes a hydrocarbon-containing ion conductive layer; and a fluorine-containing ion conductor discontinuously dispersed on the hydrocarbon-containing ion conductive layer.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 5, 2015
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Moo Seok Lee, Yong Cheol Shin, Na Young Kim, Dong Hoon Lee
  • Patent number: 8967079
    Abstract: This impregnation device comprises at least a first dielectric insulating screen and first and second opposite-facing electrodes which are separated by a passage for the porous material to be impregnated provided with powder and are capable of producing an alternating electric field in this passage after having been connected to an alternating voltage generator. At least first electrode comprises at least two conducting strips, each of which has an internal face covered by the first dielectric screen and, overall, is turned towards the second electrode and also a longitudinal edge running along a separating slot, which strips are separated from each other by this separating slot and are electrically connected to one another.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: March 3, 2015
    Assignee: Fibroline France
    Inventor: Joric Marduel
  • Patent number: 8940266
    Abstract: The present invention provides a method for producing a large substrate of single-crystal diamond, including the steps of preparing a plurality of single-crystal diamond layers separated form an identical parent substrate, placing the single-crystal diamond layers in a mosaic pattern on a flat support, and growing a single-crystal diamond by a vapor-phase synthesis method on faces of the single-crystal diamond layers where they have been separated from the parent substrate. According to the method of the invention, a mosaic single-crystal diamond having a large area and good quality can be produced relatively easily.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 27, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hideaki Yamada, Akiyoshi Chayahara, Yoshiaki Mokuno, Shinichi Shikata
  • Patent number: 8932682
    Abstract: It is an object of the present invention to provide a deposition device that can selectively form a thin film without using a shadow mask with respect to a substrate having a large size. In the deposition device, an evaporation source is provided with a cylinder cell, a heater for heating a lower part of the cylinder cell, and a heater for heating an upper part of the cylinder cell. A hot plate can control a temperature by a heater provided inside thereof. The hot plate heats an evaporation material supplied into the cylinder cell from a material supply portion that is connected to the cylinder cell, and vaporizes the evaporation material by evaporation or sublimation. A rotating mechanism for rotating the hot plate in the cylinder cell may be provided to achieve uniformity of a temperature. A heater for heating the material supply potion may be provided to raise a temperature of the evaporation material supplied into the cylinder cell.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: January 13, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuyuki Arai
  • Patent number: 8906791
    Abstract: Methods, apparatus, and systems for depositing materials with gaseous precursors are provided. In certain implementations, the methods involve providing a wafer substrate to a chamber of an apparatus. The apparatus includes a showerhead to deliver a gas to the chamber, a volume, and an isolation valve between the volume and the showerhead. A gas is delivered the volume when the isolation valve is closed, pressurizing the volume. The isolation valve is opened to allow the gas to flow to the showerhead when the gas is being delivered to the volume. A material is formed on the wafer substrate using the gas. In some implementations, releasing the pressurized gas from the volume reduces the duration of time to develop a spatially uniform gas flow across the showerhead.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: December 9, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Kie-Jin Park, Karl Leeser, Frank Greer, David Cohen
  • Patent number: 8906735
    Abstract: A donor substrate includes a base layer, a light to heat conversion layer on the base layer, an interlayer on the light to heat conversion layer, a low molecular weight transfer layer on the interlayer and an organic transfer layer on the low molecular weight transfer layer. The low molecular weight transfer layer includes an element in Group I or a compound of elements in Group I and Group VII.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 9, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ha-Jin Song, Sang-Woo Pyo, Byeong-Wook Yoo, Hyo-Yeon Kim, Ji-Young Kwon, Kwan-Hee Lee
  • Patent number: 8906611
    Abstract: The present invention generally relates to devices and methods for immobilizing nucleic acids on a substrate. In certain embodiments, devices of the invention include a voltage source, and a substrate coupled to the voltage source, in which hydrophobicity of the substrate changes in response to an applied electric field and a surface of the substrate is coated with a substance that retains nucleic acids.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: December 9, 2014
    Assignee: OpGen, Inc.
    Inventor: Wenlong Jiang
  • Publication number: 20140355184
    Abstract: Disclosed herein is a method of forming a multilayer thin film by depositing target particles, detached from a target by plasma discharge of inert gas, on a metal object using a multilayer thin film deposition apparatus and a multilayer thin film formed by the method. More specifically, a sputtering deposition apparatus is used as the multilayer thin film deposition apparatus. The method includes coating a metal object with a coating layer, depositing at least one hardness-enhancing layer on the coating layer, and depositing a color layer on the at least one hardness-enhancing layer.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin Sub KIM, Hyong Jun YOO, Min Chul JUNG, Hyun Jun JUNG, Jin Hyun CHO
  • Patent number: 8900471
    Abstract: Methods and apparatus for in-situ plasma cleaning of a deposition chamber are provided. In one embodiment a method for plasma cleaning a deposition chamber without breaking vacuum is provided. The method comprises positioning a substrate on a susceptor disposed in the chamber and circumscribed by an electrically floating deposition ring, depositing a metal film on the substrate and the deposition ring in the chamber, grounding the metal film deposited on the deposition ring without breaking vacuum, and removing contaminants from the chamber with a plasma formed in the chamber without resputtering the metal film on the grounded deposition ring and without breaking vacuum.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: December 2, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Richard J. Green, Cheng-hsiung Tsai, Shambhu N. Roy, Puneet Bajaj, David H. Loo
  • Patent number: 8903464
    Abstract: An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.
    Type: Grant
    Filed: October 23, 2010
    Date of Patent: December 2, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Ganapati Rao Myneni, John P. Wallace
  • Publication number: 20140342441
    Abstract: The present invention provides, among others, apparatus for detecting a disease, comprising a system delivery biological subject and a probing and detecting device, wherein the probing and detecting device includes a first micro-device and a first substrate supporting the first micro-device, the first micro-device contacts a biologic material to be detected and is capable of measuring at the microscopic level an electric, magnetic, electromagnetic, thermal, optical, acoustical, biological, chemical, physical, or mechanical property of the biologic material.
    Type: Application
    Filed: April 4, 2013
    Publication date: November 20, 2014
    Applicant: ANPAC BIO-MEDICAL SCIENCE CO., LTD.
    Inventors: Chris C. Yu, Xuedong Du, He Yu
  • Patent number: 8883266
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 11, 2014
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Patents & Technologies North America, LLC
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20140318836
    Abstract: A conductive glass substrate includes a glass substrate, a silicon dioxide layer, and a conductive mesh line, the glass substrate defines a meshed groove on a surface thereof; the silicon dioxide layer is attached to the surface of the glass substrate having the groove; the conductive mesh line have a shape adapted to that of the groove, the conductive mesh line is deposited in the groove and attached to the glass substrate via the silicon dioxide layer. In the conductive glass substrate, the conductive mesh line is received in the groove, compared with the conventional conductive glass substrate, a flexible substrate as a supporting body is not needed, the cost is down, and the structure of the conductive glass substrate is simple, further reducing the process, saving manpower and resources. A method of preparing the conductive glass substrate is provided.
    Type: Application
    Filed: July 5, 2013
    Publication date: October 30, 2014
    Inventor: Zhao He
  • Publication number: 20140313574
    Abstract: Disclosed are methods for forming nanoparticle films using electrophoretic deposition. The methods comprise exposing a substrate to a solution, the solution comprising substantially dispersed nanoparticles, an organic solvent, and a polymer characterized by a backbone comprising Si—O groups. The methods further comprise applying an electric field to the solution, whereby a nanoparticle film is deposited on the substrate. Suitable polymers include polysiloxanes, polysilsesquioxanes and polysilicates. Coated glass windows and methods of forming the coated glass windows using the solutions are also disclosed.
    Type: Application
    Filed: January 14, 2014
    Publication date: October 23, 2014
    Applicant: SOUTH DAKOTA STATE UNIVERSITY
    Inventors: Braden Bills, Nathan Morris, Qi Hua Fan, Mukul Dubey, David Galipeau
  • Publication number: 20140302595
    Abstract: A nanosensor and methods to manufacture are disclosed. For example, a detection system for detecting the presence of a target substance can include a nanosensor that includes a sensing layer, and a plurality of sockets embedded within the body of the sensing layer, each socket having a physical profile matching a shape of the target substance such that, when target substances occupy the sockets, at least one measurable physical characteristic of the sensing layer changes.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: Lockheed Martin Corporation
    Inventors: Rebecca Schwartz, John Arthur Wood
  • Publication number: 20140295198
    Abstract: Described are coating materials comprising (a) at least one polymeric polyol selected from the group consisting of poly(meth)acrylate polyols, polyester polyols, polyurethane polyols and polysiloxane polyols, (b) at least one crosslinking agent selected from the group consisting of blocked and nonblocked polyisocyanates, amino resin crosslinkers, and TACT, and (c) at least one glycerol diester of the general formula (I) wherein one of the two radicals R1 or R2 is hydrogen and the radical of the two radicals R1 and R2 that is not hydrogen is a radical the radicals R3, R4, R5, R6, R7, and R8 independently of one another are hydrogen or a saturated, aliphatic radical having 1 to 20 carbon atoms, with the proviso that the radicals R3, R4 and R5 together contain at least 5 carbon atoms and the radicals R6, R7 and R8 together contain at least 5 carbon atoms. Also described are multicoat paint systems and their production, the use of the coating materials, and substrates coated therewith.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 2, 2014
    Inventors: Peter Hoffmann, Sebastien Porcher, Jean-Francois Stezycki
  • Patent number: 8846421
    Abstract: A method of manufacturing a lead frame for a light-emitting device package and a light-emitting device package are provided. The method of manufacturing a lead frame for a light-emitting device package includes: preparing a base substrate for the lead frame; forming diffusion roughness on the base substrate; and forming a reflective plating layer on the diffusion roughness formed base substrate.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 30, 2014
    Assignee: MDS Co. Ltd.
    Inventors: Jin-Woo Lee, Jae-Hoon Jang, Dong-Hoon Lee, Jae-Ha Kim
  • Patent number: 8846537
    Abstract: A mold having an open interior volume is used to define patterns. The mold has a ceiling, floor and sidewalls that define the interior volume and inhibit deposition. One end of the mold is open and an opposite end has a sidewall that acts as a seed sidewall. A first material is deposited on the seed sidewall. A second material is deposited on the deposited first material. The deposition of the first and second materials is alternated, thereby forming alternating rows of the first and second materials in the interior volume. The mold and seed layer are subsequently selectively removed. In addition, one of the first or second materials is selectively removed, thereby forming a pattern including free-standing rows of the remaining material. The free-standing rows can be utilized as structures in a final product, e.g., an integrated circuit, or can be used as hard mask structures to pattern an underlying substrate. The mold and rows of material can be formed on multiple levels.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 30, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Publication number: 20140272314
    Abstract: Certain example embodiments involve the production of a broadband and at least quasi-omnidirectional antireflective (AR) coating. The concept underlying certain example embodiments is based on well-established and applied mathematical tools, and involves the creation of nanostructures that facilitate these and/or other features. Finite element (FDTD) simulations are performed to validate the concept and develop design guidelines for the nanostructures, e.g., with a view towards improving visible transmission. Certain example embodiments provide such structures on or in glass, and other materials (e.g., semiconductor materials that are used to convert light or EM waves to electricity) alternatively or additionally may have such structures formed directly or indirectly thereon.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Vijayen S. VEERASAMY
  • Publication number: 20140272172
    Abstract: A method of producing a transparent and conductive film, comprising (a) forming aerosol droplets of a first dispersion comprising a first conducting nano filaments in a first liquid; (b) forming aerosol droplets of a second dispersion comprising a graphene material in a second liquid; (c) depositing the aerosol droplets of a first dispersion and the aerosol droplets of a second dispersion onto a supporting substrate; and (d) removing the first liquid and the second liquid from the droplets to form the film, which is composed of the first conducting nano filaments and the graphene material having a nano filament-to-graphene weight ratio of from 1/99 to 99/1, wherein the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Aruna Zhamu, Yi-jun Lin, Bor Z. Jang
  • Patent number: 8819930
    Abstract: The invention addresses the problem of improving the adhesion between silver surfaces and resin materials, such as epoxy resins and mold materials, used in the production of electronic devices. The invention provides a method for improving the adhesion between a silver surface and a resin material comprising a step of electrolytically treating the silver surface with a solution containing a hydroxide selected from alkali metal hydroxides, alkaline earth metal hydroxides, ammonium hydroxides and mixtures thereof, wherein the silver surface is the cathode.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: September 2, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Christian Wunderlich, Robert Rüther, Jürgen Barthelmes, Sia-Wing Kok, Nadine Menzel
  • Publication number: 20140242417
    Abstract: A method for the photocatalytically active coating of surfaces is presented and described, as well as an article (1) photocatalytically actively coated according to this method. The object of providing a method for the photocatalytically active coating of, in particular, metallic surfaces, whereby a permanently stable coating is produced without negatively affecting the photocatalytic activity of the layer, is achieved by a method, in which a substrate article is prepared which has a surface, a metallic adhesion-promoting layer is applied to the surface of the substrate article, a photocatalytically active layer consisting of one or more metal oxides is applied to the adhesion-promoting layer, wherein the metallic adhesion-promoting layer and the surface of the substrate article consist of a different material and the adhesion-promoting layer is selected such that it is not oxidized or reduced by the photocatalytically active layer.
    Type: Application
    Filed: September 18, 2012
    Publication date: August 28, 2014
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Jan-Oliver Kliemann, Henning Gutzmann, Thomas Klassen, Frank Gaertner
  • Patent number: 8802970
    Abstract: Formulations and methods of making solar cell contacts and cells therewith are disclosed. The invention provides a photovoltaic cell comprising a front contact, a back contact, and a rear contact. The back contact comprises, prior to firing, a passivating layer onto which is applied a paste, comprising aluminum, a glass component, wherein the aluminum paste comprises, aluminum, another optional metal, a glass component, and a vehicle. The back contact comprises, prior to firing, a passivating layer onto which is applied an aluminum paste, wherein the aluminum paste comprises aluminum, a glass component, and a vehicle.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Nazarali Merchant, Aziz S. Shaikh, Srinivasan Sridharan
  • Publication number: 20140212594
    Abstract: An apparatus (20, 21) and method (80) operable to: feed (82) a granulated feedstock (26) into a chamber (22); apply (84) a melting or sintering energy (28) in programmable scans (30) producing a material deposit (32) overlaid with slag (34) in the chamber (22); position (86) a slag removal device (40, 52) such that its cutting surface (35) is coincident with a top surface (33) of the material deposit; cut or break the slag free (88) from the material deposit with the slag removal device; separate (92) the removed slag from a reusable portion of the granulated feedstock in a separator (42); and feed (94) the reusable portion of the granulated feedstock to the top surface of the material deposit for repeating (96) the above operations.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Inventors: Gerald J. Bruck, Ahmed Kamel
  • Publication number: 20140170330
    Abstract: An apparatus and method sinters or partially sinters green pellets in a selected temperature range to make proppant particles as the green pellets pass through a first central portion of the first vortex gas flow and exit the second end of the first cylindrical vessel and/or pass through a second central portion of the second vortex flow and exit the fourth end of the second cylindrical vessel.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: FORET PLASMA LABS, LLC
    Inventor: Todd Foret
  • Publication number: 20140151111
    Abstract: Carbon nanostructures can convey enhanced electrical conductivity to various substrates, while maintaining a high surface area and low density per unit area. Such substrates can provide good shielding against electromagnetic radiation over a wide range of frequencies. Electrically conductive structures can include a support layer containing a plurality of fibers having apertures defined between the fibers, and a plurality of carbon nanostructures at least partially conformally coating the fibers and bridging across the apertures defined between adjacent fibers to form a continuous carbon nanostructure layer. Each carbon nanostructure can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another.
    Type: Application
    Filed: November 25, 2013
    Publication date: June 5, 2014
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. Shah, Han Liu, Jess Michael Goldfinger, John J. Morber
  • Publication number: 20140154423
    Abstract: A deposition apparatus according to the embodiment includes a gas supply part for supplying a first gas; an ionization part connected to the gas supply part to supply a second gas, which is obtained by ionizing the first gas; and a reaction part into which the second gas is introduced to create a reaction. A deposition method according to the embodiment includes the steps of preparing a first gas; supplying a second gas, which is obtained by ionizing the first gas; and reacting the second gas with a substrate.
    Type: Application
    Filed: June 21, 2012
    Publication date: June 5, 2014
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Yeong Deuk Jo, Seok Min Kang, Moo Seong Kim
  • Publication number: 20140147609
    Abstract: A method for coating a substrate includes impacting a substrate with a plurality of particles such that the particles adhere to the substrate, bonding the particles to the substrate to form an overlayer, and crosslinking the particles in the overlayer to coat the substrate with a crosslinked polymer coating. The particles comprise a polyphenyl polymer. An article includes a substrate and a crosslinked polymer coating bonded to the substrate. The crosslinked polymer coating is a product of crosslinking polyphenylene sulfide, polyphenylsulfone, self-reinforced polyphenylene, or a combination thereof on a surface of the substrate.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Jiaxiang Ren, David Gerrard
  • Patent number: 8734899
    Abstract: The present invention relates to particles which have been modified by a modifier and a dispersion medium comprising the modified particles.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Imme Domke, Andrey Karpov, Hartmut Hibst, Radoslav Parashkov, Ingolf Hennig, Marcel Kastler, Friederike Fleischhaker, Lothar Weber, Peter Eckerle