Electromagnetic Or Particulate Radiation Utilized (e.g., Ir, Uv, X-ray, Gamma Ray, Actinic, Microwave, Radio Wave, Atomic Particle; I.e., Alpha Ray, Beta Ray, Electron, Etc.) Patents (Class 427/595)
  • Publication number: 20130017344
    Abstract: A method and a system is provided to form deletion windows on a glass substrate. The method includes the steps of applying a provisional masking substance of the glass substrate for masking preestablished regions of said glass substrate. The method also includes applying a reflective material on the glass substrate including the provisional masking substance. The method further includes applying heat to the glass substrate for removing the provisional masking substance of the glass substrate forming the deletion windows.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Inventors: Alberto HERNANDEZ DELSOL, Jesús Alberto GONZALEZ RODRIGUEZ, Miguel ARROYO ORTEGA
  • Publication number: 20130016022
    Abstract: Disclosed and claimed herein is a hollow core coaxial cable, having a dielectric capillary with an inside wall and an outside wall, an inner conductive layer on the inside wall of the hollow core coaxial cable and an outer conductive layer on the outside wall of the hollow core coaxial cable, the conductive layers may be patterned. Further disclosed is a method of making the hollow core coaxial cable. Further disclosed are holey fiber coaxial cables, having a holey fiber capillary having an inside wall and an outside wall, an inner conductive layer on the inside wall of the hollow core coaxial cable and an outer conductive layer on the outside wall of the hollow core coaxial cable, the conductive layers may be patterned.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventors: Noel Heiks, David Sherrer
  • Publication number: 20120327685
    Abstract: A light guide plate for a backlight. The light guide plate includes: a light source unit for generating light; a light guide plate proximate to the light source unit and including an upper surface and a lower surface; and a light emission pattern configured to diffuse a portion of the light directed toward an image display panel, and a first straight pattern configured to channel the light along a direction substantially parallel to a direction of propagation of the light generated by the light source unit, both the light emission pattern and the first straight pattern being disposed on one of the upper surface and the lower surface of the light guide plate, in which the first straight pattern has peaks and valleys formed in alternating and repeating manner in a direction substantially perpendicular to a direction of propagation of the light generated by the light source unit.
    Type: Application
    Filed: November 1, 2011
    Publication date: December 27, 2012
    Inventors: Min-Young SONG, Seong-Yong Hwang, Joong-Hyun Kim, Sang-Won Lee, Jin-Sung Choi, Ju-Hwa Ha, Jin Seo, Yong-Kyu Kang
  • Patent number: 8323752
    Abstract: The present invention provides a novel carbon-based material in which carbons different in property are combined in such a manner as to be applicable to a device. The carbon-based thin film provides a carbon-based thin film 10 including first phases 1 that contain amorphous carbon and extend in a film thickness direction, and a second phase 2 that contains a graphite structure and intervenes between the first phases 1. In the thin film, at least one selected from the group consisting of the following a) to e) is satisfied: a) the second phase contains more graphite structures per unit volume than the first phases; b) a density of the second phase is larger than that of the first phases; c) an electric resistivity of the second phase is lower than that of the first phases; d) an elastic modulus of the second phase is higher than that of the first phases; and e) in the second phase, a basal plane of the graphite structure is oriented along the film thickness direction.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: December 4, 2012
    Assignee: Japan Science and Technology Agency
    Inventor: Eiji Iwamura
  • Patent number: 8318263
    Abstract: Described herein is a method for coating an object with a polymer layer. The method includes contacting the object with a first solution comprising a non-polymeric grafting initiator comprising at least one photoinitiator group capable of generating a free radical active species upon absorption of electromagnetic energy, wherein the photoinitiator group is selected from the group consisting of an initiator that is insoluble in polar solvent; and a negatively charged initiator; irradiating the first solution and the object, resulting in the grafting initiator binding to the object; removing the first solution; contacting the object with a second solution comprising a polymerizable monomer having at least one free-radical polymerizable group; and irradiating the second solution and the object, wherein the non-polymeric grafting initiator acts as a photoinitiator for a free-radical polymerization reaction.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: November 27, 2012
    Assignee: SurModics, Inc.
    Inventors: Mark F. Carlson, Steven J. Porter, Sean M. Stucke, Ralph A. Chappa
  • Publication number: 20120292500
    Abstract: A mass spectrometer includes an ion source, which includes a coating or surface formed of a metallic carbide, a metallic boride, a ceramic or DLC, or an ion-implanted transition metal.
    Type: Application
    Filed: November 11, 2011
    Publication date: November 22, 2012
    Applicant: MICROMASS UK LIMITED
    Inventors: Gordon A. Jones, David S. Douce, Amir Farooq
  • Patent number: 8308897
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 13, 2012
    Assignees: Rohm Co., Ltd.
    Inventors: Tadahiro Ohmi, Kazuhide Ino, Takahiro Arakawa
  • Publication number: 20120273257
    Abstract: A transparent conductive structure applied to a touch panel includes a substrate unit, a first coating unit, a transparent conductive unit, and a second coating unit. The substrate unit includes a transparent substrate. The first coating unit includes a first coating layer formed on the top surface of the transparent substrate. The transparent conductive unit includes a transparent conductive layer formed on the top surface of the first coating layer. The transparent conductive layer includes a plurality of embedded conductive circuits embedded into the first coating layer and arranged to form a predetermined embedded circuit pattern. The second coating unit includes a second coating layer formed on the top surface of the transparent conductive layer. The second coating layer has a touching surface formed on the top side thereof, and the touching surface allows an external object (such as user's finger, any type of touch pen, or etc.) to touch.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: INNOVATION & INFINITY GLOBAL CORP.
    Inventor: CHAO-CHIEH CHU
  • Publication number: 20120276303
    Abstract: A method of manufacturing a metal oxide film is disclosed. The method includes the steps of soaking a substrate on which the metal oxide film is formed in a precursor solution for forming the metal oxide film; and irradiating and scanning a light, the light being collected at an interface between the substrate and the precursor solution, wherein the light is transmitted through the precursor solution, and the metal oxide film is formed on the substrate.
    Type: Application
    Filed: April 24, 2012
    Publication date: November 1, 2012
    Applicants: TOHOKU UNIVERSITY, RICOH COMPANY, LTD.
    Inventors: Akira WATANABE, Eiichi OHTA, Akira SHIMOFUKU
  • Patent number: 8293319
    Abstract: By irradiating a first substrate which is an evaporation donor substrate including a function layer in which films having different refractive indexes (high-refractive index films and low refractive index films) are stacked with first light (wavelength=?1), a material layer over the first substrate is patterned, and by irradiating the first substrate with second light (wavelength=?2) which is different from ?1, the material layer which is patterned is evaporated onto a second substrate which is a deposition target substrate.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hisao Ikeda, Takahiro Ibe
  • Publication number: 20120261644
    Abstract: Disclosed is a ribbon of graphene less than 3 nm wide, more preferably less than 1 nm wide. In a more preferred embodiment, there are multiple ribbons of graphene each with a width of one of the following dimensions: the length of 2 phenyl rings fused together, the length of 3 phenyl rings fused together, the length of 4 phenyl rings fused together, and the length of 5 phenyl rings fused together. In another preferred embodiment the edges of the ribbons are parallel to each other. In another preferred embodiment, the ribbons have at least one arm chair edge and may have wider widths. The invention further comprises a method of making a ribbon of graphene comprising the steps of: a. placing one or more polyaromatic hydrocarbon (PAH) precursors on a substrate; b. applying UV light to the PAH until one or more intermolecular bonds are formed between adjacent PAH molecules; and c. applying heat to the PAH molecules to increase the number of intermolecular bonds that are formed to create a ribbon of graphene.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 18, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Christos Dimitrakopoulos
  • Publication number: 20120257644
    Abstract: The laser light emitting device includes a glass rod having an input end and an output end. The glass rod has a core provided along the central axis thereof and a cladding covering the core. The refractive index of the core on the side of the input end is higher than the refractive index of the cladding. A value given through subtraction of the refractive index of the cladding from the refractive index of the core on the side of the output end is smaller than a value given through subtraction of the refractive index of the cladding from the refractive index of the core on the side of the input end.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 11, 2012
    Applicant: FUJIKURA LTD.
    Inventor: Shinichi Sakamoto
  • Publication number: 20120258262
    Abstract: Methods and apparatuses for a deposition system are provided to deposit a thin coating layer on flat substrates, such as semiconductors or panels. In an embodiment, liquid supplied rollers accepting liquid media provide liquid chemicals to the substrates for coating the substrates. The liquid delivery system can control the flow and the pressure of the liquid to achieve optimum process condition with minimum excess waste. In another embodiment, rollers with non-uniform distribution of liquid media provide a non-uniform thickness profile on the substrates, which can be used to compensate for the non-uniformity of subsequent processes.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: Dynamic Micro Systems, Semiconductor Equipment GmbH
    Inventors: Lutz Rebstock, Klaus Conrad Wolke
  • Publication number: 20120251772
    Abstract: The present invention relates to a donor substrate and a method of manufacturing a light-emitting device. The donor substrate includes a reflective layer including an opening portion, a light absorption layer covering the opening portion of the reflective layer over the reflective layer, a heat insulating layer including an opening portion in a position overlapped with the opening portion of the reflective layer over the light absorption layer, and a material layer including a light-emitting material covering the opening portion of the heat insulating layer over the heat insulating layer. A target substrate and the donor substrate are disposed to face each other, and an EL layer is formed over the target substrate by performing light irradiation from a rear surface of the donor substrate.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 4, 2012
    Inventors: Tomoya Aoyama, Yosuke Sato, Kohei Yokoyama, Rena Takahashi
  • Publication number: 20120251824
    Abstract: Example embodiments relate to stretchable conductive nanofibers including at least one stretchable nanofiber and a conductive layer on a structure of the stretchable nanofiber. The conductive layer may include carbon nanotubes and metal nanoparticles on the surface of the stretchable nanofiber. The carbon nanotubes and metal nanoparticles may form a percolation network. The stretchable nanofiber includes stretchable polymers.
    Type: Application
    Filed: November 16, 2011
    Publication date: October 4, 2012
    Applicants: Industry-Academic Cooperation Foundation, Yonsei University, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-hyun Hur, Jong-jin Park, Kyu-hyun Im, Un-yong Jeong, Min-woo Park
  • Patent number: 8277902
    Abstract: A method for forming a film in which throughput is improved and a desired pattern is obtained smoothly in stacking a plurality of material layers over a substrate and a method for manufacturing a light emitting device are provided. In advance, a material layer is formed selectively by a droplet discharge method to be in contact with a light absorption layer on a first substrate. A second substrate is disposed so that the material layer faces the second substrate. The light absorption layer is irradiated with a laser light so that a film containing a material included in the material layer is formed on the second substrate. When the light absorption layer have a desired pattern, a film reflecting the pattern of the light absorption layer that has undergone the laser light irradiation is formed on the second substrate.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 2, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Seo
  • Patent number: 8273318
    Abstract: A carbon nanotube material is exposed to ultraviolet rays, and a silicon-containing compound capable of modifying the surface of the carbon nanotube material in combination with the ultraviolet rays is supplied to thereby modify the surface of the carbon nanotube material.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: September 25, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Koji Asano
  • Publication number: 20120238454
    Abstract: A substrate for an oxide superconductor including: a metal base; an interlayer of MgO formed on the metal base by ion beam assisted deposition method (IBAD METHOD); and a cap layer that is formed directly on the interlayer and has a higher degree of crystal orientation than that of the interlayer, in which the interlayer of MgO is subjected to a humidity treatment prior to formation of the cap layer.
    Type: Application
    Filed: April 25, 2012
    Publication date: September 20, 2012
    Applicants: INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER, FURUKAWA ELECTRIC CO., LTD., FUJIKURA LTD.
    Inventors: Masateru YOSHIZUMI, Hiroyuki FUKUSHIMA, Hideyuki HATAKEYAMA, Yutaka YAMADA, Hiroshi TOBITA, Teruo IZUMI
  • Publication number: 20120225219
    Abstract: Provided are atomic layer deposition apparatus and methods including a gas distribution plate with a thermal element. The thermal element is capable of locally changing the temperature of a portion of the surface of the substrate by temporarily raising or lowering the temperature.
    Type: Application
    Filed: July 25, 2011
    Publication date: September 6, 2012
    Applicant: Applied Materials, Inc.
    Inventor: Joseph Yudovsky
  • Patent number: 8252362
    Abstract: Evaluation methods that employ the near infrared spectrum have generally had a low specificity and in particular have encountered difficulty in the evaluation of trace components, and the accurate measurement of coating quantity by methods using the near infrared spectrum has been quite problematic. The quantity of coating applied to a coating target, such as granules or uncoated tablets, is measured based on the absorption or scattering of light in the 800 to 1100 nm wavelength region by an additive coated on the coating target. The use of polyethylene glycol or a long-chain hydrocarbyl-containing compound as the additive is preferred.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: August 28, 2012
    Assignee: Eisai R&D Management Co., Ltd.
    Inventors: Makoto Yokoyama, Koji Ukai
  • Publication number: 20120213950
    Abstract: A device and process for positioning individual particles on a substrate is proposed. The device is equipped with at least one particle source which isolates particles of a defined material, with a focusing unit with an entry window facing the particle source and an exit window facing away from the particle source, with a substrate holder to hold the substrate, wherein the focusing unit guides the particles entering through its entry window into defined positions on the substrate, with at least one deflection unit arranged between the particle source and the focusing unit with an entry window facing the particle source and an exit window on the deflector unit facing away from the particle source, wherein the deflector unit preconditions the particles entering through its entry window before they reach the focusing unit.
    Type: Application
    Filed: March 13, 2012
    Publication date: August 23, 2012
    Inventor: Markus Robert MUELLER
  • Patent number: 8247019
    Abstract: The present invention provides an apparatus and a method for modifying a structure such as a medical device through the selective application of a coating. A coating sleeve may comprise an elastomeric wall that may be permeable or impermeable to a coating material and may be porous so as to allow for patterned coating of the device. The coating sleeve may contain surface protrusions that facilitate manipulation by providing sites for grasping and pulling. In operation the coating sleeve may be fitted on the device prior to application of a coating and removed subsequent to application of the coating.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: August 21, 2012
    Assignee: Harland Medical Systems, Inc.
    Inventors: Jonathan D. Anderson, Dale L. Anderson, Aaron J. Anderson
  • Publication number: 20120201977
    Abstract: A process and apparatus for producing a gradient nanovoided article, a gradient nanovoided coating, and a gradient low refractive index coating is described. The process includes providing a first solution of a polymerizable material in a solvent, and providing a first environment proximate a first region of the coating and a different second environment proximate an adjacent region of the coating. The process further includes at least partially polymerizing the polymerizable material to form a composition that includes an insoluble polymer matrix and a second solution. The insoluble polymer matrix includes a plurality of nanovoids that are filled with the second solution, and a major portion of the solvent from the second solution is removed. A first volume fraction of the plurality of nanovoids proximate the first region of the coating is less than a second volume fraction of the plurality of nanovoids proximate an adjacent of the coating.
    Type: Application
    Filed: October 22, 2010
    Publication date: August 9, 2012
    Inventors: Adam D. Haag, William F. Edmonds, Jason S. Petaja, Eric W. Nelson, William Blake Kolb, Encai Hao, Fei Lu, Michael Benton Free
  • Patent number: 8237296
    Abstract: Organic anti-stiction coatings such as, for example, hydrocarbon and fluorocarbon based self-assembled organosilanes and siloxanes applied either in solvent or via chemical vapor deposition, are selectively etched using a UV-Ozone (UVO) dry etching technique in which the portions of the organic anti-stiction coating to be etched are exposed simultaneously to multiple wavelengths of ultraviolet light that excite and dissociate organic molecules from the anti-stiction coating and generate atomic oxygen from molecular oxygen and ozone so that the organic molecules react with atomic oxygen to form volatile products that are dissipated, resulting in removal of the exposed portions of the anti-stiction coating. A hybrid etching process using heat followed by UVO exposure may be used. A shadow mask (e.g., of glass or quartz), a protective material layer, or other mechanism may be used to selective expose the portions of the anti-stiction coating to be UVO etched.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: August 7, 2012
    Assignee: Analog Devices, Inc.
    Inventor: Mehmet Hancer
  • Publication number: 20120196155
    Abstract: A method and apparatus for forming magnetic media substrates is provided. A patterned resist layer is formed on a substrate having a magnetically susceptible layer. A conformal protective layer is formed over the patterned resist layer to prevent degradation of the pattern during subsequent processing. The substrate is subjected to an energy treatment wherein energetic species penetrate portions of the patterned resist and conformal protective layer according to the pattern formed in the patterned resist, impacting the magnetically susceptible layer and modifying a magnetic property thereof. The patterned resist and conformal protective layers are then removed, leaving a magnetic substrate having a pattern of magnetic properties with a topography that is substantially unchanged.
    Type: Application
    Filed: July 28, 2011
    Publication date: August 2, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Christopher D. Bencher, Roman Gouk, Steven Verhaverbeke, Li-Qun Xia, Yong-Won Lee, Matthew D. Scotney-Castle, Martin A. Hilkene, Peter I. Porshnev
  • Publication number: 20120196062
    Abstract: Provided are: a conducting polymer composite structure, which does not require any separator between electrodes, can be reduced in size, can be produced at reduced cost and with improved workability, and has excellent impact resistance; a process for producing the conducting polymer composite structure; and an actuator element using the conducting polymer composite structure. The conducting polymer composite structure includes at least one conducting polymer layer, and is a structure in which a surface layer of the conducting polymer layer is an insulating layer.
    Type: Application
    Filed: August 5, 2010
    Publication date: August 2, 2012
    Applicant: EAMEX CORPORATION
    Inventors: Yuichi Sato, Noboru Tanaka, Minoru Nakayama
  • Patent number: 8231710
    Abstract: A process for preparing a membrane comprising the steps of providing a composition comprising a polymerizable compound having at least 25 oxyethylene groups and at least two non-substituted vinyl groups, applying the composition to a support thereby forming a continuous layer on the support, and polymerizing the composition thereby forming a non-porous polymer film. Also claimed are the resultant membranes and their uses, e.g. for separating polar and non-polar gases.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: July 31, 2012
    Assignee: Fujifilm Manufacturing Europe B.V.
    Inventors: Akira Kase, Yujiro Itami
  • Patent number: 8222125
    Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: July 17, 2012
    Assignee: Ovshinsky Innovation, LLC
    Inventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
  • Publication number: 20120178162
    Abstract: Synthetic cell culture surfaces, including a hydrophobe modified cellulose or an hydroxylated acrylate polymer composition and optionally including a silica source, cell culture coating and cell culture articles incorporating the composition, and methods of making and using the articles for cell culture, as defined herein.
    Type: Application
    Filed: October 11, 2011
    Publication date: July 12, 2012
    Inventors: Wendy Annette Baker, Theresa Chang, Robert Randall Hancock, JR.
  • Publication number: 20120176681
    Abstract: Embodiments of the present system and method are useful for chemical deposition, particularly continuous deposition of anti-reflective films. Disclosed systems typically comprise a micromixer and a microchannel applicator. A deposition material or materials is applied to a substrate to form a nanostructured, anti-reflective coating. Uniform and highly oriented surface morphologies of films deposited using disclosed embodiments are clearly improved compared to films deposited by a conventional batch process. In some embodiments, a scratch-resistant, anti-reflective coating is applied to a polycarbonate substrate, such as a lens. In certain embodiments, an anti-reflective coating is applied to a surface of a solar catalytic microreactor suitable for performing endothermic reactions, where energy is provided to the reactor by absorption of solar radiation. The composition and morphology of the material deposited on a substrate can be tailored.
    Type: Application
    Filed: July 22, 2011
    Publication date: July 12, 2012
    Inventors: Chih-hung Chang, Seung-Yeol Han, Brian K. Paul
  • Patent number: 8216353
    Abstract: An ink-jet ink comprising at least water, a water-soluble solvent, a radically polymerizable compound, and a photoinitiator, wherein the photoinitiator is a benzyl ketal compound incorporating a pendent water-soluble group via an oxygen atom or a sulfur atom.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 10, 2012
    Assignee: Konica Minolta Holdings, Inc.
    Inventor: Masaki Nakamura
  • Publication number: 20120167962
    Abstract: A method of fabricating a film. The method comprises directing onto a substrate a pulsed supersonic beam of a molecular precursor characterized by kinetic energy of at least 1 eV per molecule, such that non-volatile species of molecules of the precursor are deposited on the substrate.
    Type: Application
    Filed: June 30, 2010
    Publication date: July 5, 2012
    Applicant: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Uzi Even, Nachum Lavie, Fernando Patolsky
  • Publication number: 20120164413
    Abstract: There is provided an inorganic particle composite body comprising a layer of a substrate formed of a plastically deformable solid material and an inorganic particle layer that is composed of inorganic particles that do not plastically deform under a condition under which the solid material plastically deforms, that contains gaps defined by the inorganic particles, and that adjoins the layer of the substrate, wherein part of the solid material is in at least part of the gaps in the inorganic particle layer.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 28, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Makiko Hara, Makoto Nagata, Taiichi Sakaya, Naoko Sakaya
  • Publication number: 20120164478
    Abstract: A process is described for coating parts (1) made of an aluminium alloy, in particular made of a die-cast aluminium alloy, comprising the steps of; pre-treating the parts (1); washing the pre-treated parts (1); and depositing the parts on at least one first layer (3) and at least one second layer (5), each one of the first and the second layer (3, 5) being composed of a mixture of two constituents with variable relative molar fractions: 1) a metallic material, and 2) an oxide-based material of an element of Group IVA of the Periodic Table. A part (1) made of an aluminium alloy is further described, made through the above process.
    Type: Application
    Filed: February 22, 2010
    Publication date: June 28, 2012
    Inventors: Daniele Ugues, Daniel Milanese, Diego Chiaretta, Luciana Doglione
  • Patent number: 8206829
    Abstract: Plasma resistant coating materials, plasma resistant coatings and methods of forming such coatings on hardware components. In one embodiment, hardware component is an electrostatic chuck (ESC) and the plasma resistant coating is formed on a surface of the ESC. The plasma resistant coatings are formed by methods other than thermal spraying to provide plasma resistant coatings having advantageous material properties.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 26, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Xiao-Ming He, Senh Thach
  • Patent number: 8206792
    Abstract: A method for forming a ceramic containing composite structure is proposed comprising the steps of (a) feeding a ceramic component that sublimes and a metallic or semi-conductor material that does not sublime into a thermal spray apparatus, (b) spraying the ceramic component and the metallic or semi-conductor material onto a substrate, whereby the ceramic component and the metallic or semi-conductor material deposit on the surface of the substrate, and (c) keeping the metallic or semi-conductor material on the substrate surface plastic during spraying at least in the region where the metallic or semi-conductor material actually strikes the surface.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 26, 2012
    Assignee: Sulzer Metco (US) Inc.
    Inventors: David S. Gollob, Thomas H. Piquette, James Derby, Omar Basil Al-Sabouni, Richard Karl Schmid, Jacobus Cornelis Doesburg
  • Publication number: 20120157561
    Abstract: The present invention provides a method comprising: applying a UV-curable ink to a substrate; partially curing the ink by exposing the ink to UV radiation from an LED source; and exposing the partially cured ink to UV radiation from a flash lamp. The flash lamp is a xenon or krypton flash lamp. An apparatus for performing the method and an ink adapted for use in the method are also provided.
    Type: Application
    Filed: June 25, 2010
    Publication date: June 21, 2012
    Inventors: Nigel Gould, Barry Michael McGregor
  • Publication number: 20120156390
    Abstract: A method for manufacturing a magnetic sensor that result in improved magnetic bias field to the sensor, improved shield to hard bias spacing and a flatter top shield profile. The method includes a multi-angled deposition of the hard bias structure. After forming the sensor stack a first hard bias layer is deposited at an angle of about 70 degrees relative to horizontal. This is a conformal deposition. Then, a second deposition is performed at an angle of about 90 degrees relative to horizontal. This is a notching deposition, that results in notches being formed adjacent to the sensor stack. Then, a hard bias capping layer is deposited at an angle of about 55 degrees relative to horizontal. This is a leveling deposition that further flattens the surface on which the top shield can be electroplated.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Satoru Araki, Shin Funada, Insik Jin, Quang Le, Simon H. Liao, Chang-Man Park
  • Publication number: 20120156397
    Abstract: A method of manufacturing an optical lens that is configured to correct high order aberrations. One embodiment is a method of customizing optical correction in an optical system. The method includes measuring optical aberration data of the optical system. The method further includes calculating a lens definition based on the optical aberration data. Calculating the lens definition may include calculating a correction of at least one high order optical aberration. The method further includes fabricating a correcting lens based on the lens definition.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Applicant: Ophthonix, Inc.
    Inventors: Jagdish M. JETHMALANI, Laurence Warden, Shui T. Lai, Andreas W. Dreher
  • Publication number: 20120148949
    Abstract: Disclosed is a polymer having excellent solvent resistance which can be produced by using a polycarbonate diol having a repeating unit represented by the formula (1) and/or (2), having a hydroxyl group at both termini, and having a number average molecular weight of from 300 to 50,000: wherein R1 represents a linear or branched hydrocarbon group having 2 to 50 carbon atoms; and n represents an integer of 2 to 50, wherein R2 represents a linear or branched hydrocarbon group having 10 to 50 carbon atoms.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Inventor: Katsuya SHIMIZU
  • Publication number: 20120148762
    Abstract: The present disclosure relates to a method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Ronghua Wei, Christopher Rincon, Kent E. Coulter
  • Patent number: 8192809
    Abstract: The present invention is a method for localized chemical vapor deposition (CVD) for localized growing for example for carbon nanotubes (CNT), nanowires, and oxidation using a heated tip or an array of heated tips to locally heat the area of interest. As the tips moved, material such as CNTs grows in the direction of movement. The Scanning Probe Growth (SPG) or nanoCVD technique has similarities to the CVD growth; however it allows for controlled synthesis and direction and eliminates the need for masks.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: June 5, 2012
    Assignee: Picocal, Inc
    Inventors: Angelo Gaitas, Bhaskar Mitra, Amar Basu, Weibin Zhu
  • Publication number: 20120132534
    Abstract: Methods, apparatus and systems form structures from nanoparticles by providing a source of nanoparticles, the particles being capable of being moved by application of a field, such as an electrical field, magnetic field and even electromagnetic radiation or fields such as light, UV, IR, radiowaves, radiation and the like; depositing the nanoparticles to a surface in a first distribution of the nanoparticles; applying a field to the nanoparticles on the surface that applies a force to the particles; and rearranging the nanoparticles on the surface by the force from the field to form a second distribution of nanoparticles on the surface. Nanoparticle catalysts can be deposited on the surfaces. The second distribution of nanoparticles is more ordered or more patterned than the first distribution of nanoparticles as a result of the rearranging. Nanotubes can then be grown on the ordered nanoparticle deposited catalysts.
    Type: Application
    Filed: November 8, 2007
    Publication date: May 31, 2012
    Inventor: Biswajit Das
  • Publication number: 20120135159
    Abstract: This disclosure describes a method for nano-patterning by incorporating one or more block copolymers and one or more nano-imprinting steps in the fabrication process. The block copolymers may be comprised of organic or organic components, and may be lamellar, spherical or cylindrical. As a result, a patterned medium may be formed having one-dimensional or two-dimensional patterns with a feature pitch of 5-100 nm and/or a bit density of at least 1 Tdpsi.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: Seagate Technology LLC
    Inventors: Shuaigang Xiao, Renè Johannes Marinus Van De Veerdonk, Kim Yang Lee, David Kuo, XiaoMin Yang, Wei Hu
  • Publication number: 20120128933
    Abstract: The present invention relates to an anticorrosion layer and a manufacturing method thereof, wherein the anticorrosion layer is capable of being coated onto the surface of a substrate for preventing the substrate surface from corrosion, the anticorrosion layer comprises: a polymer material layer, coated on the substrate surface; and a continuous rough surface layer, formed on the surface of the polymer material layer, wherein the continuous rough surface layer has a surface roughness great than 10 nm. Moreover, through the manufacturing method, a protective layer (the anticorrosion layer) with excellent anticorrosion efficiency and low pollution property can be rapidly and massively formed on the substrate surface by way of using a replica mold.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Applicant: CHUNG-YUAN CHRISTIAN UNIVERSITY
    Inventors: Jui-Ming Yeh, Cheng-Jian Weng, Chih-Wei Peng, Chi-Hao Chang
  • Patent number: 8182862
    Abstract: An ion source impinging on the surface of the substrate to be coated is used to enhance a MOCVD, PVD or other process for the preparation of superconducting materials.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: May 22, 2012
    Assignee: SuperPower Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Patent number: 8182863
    Abstract: A first substrate including, on one of surfaces, a light absorption layer having metal nitride and a material layer which is formed so as to be in contact with the light absorption layer is provided; the surface of the first substrate on which the material layer is formed and a deposition target surface of a second substrate are disposed to face each other; and part of the material layer is deposited on the deposition target surface of the second substrate in such a manner that irradiation with laser light having a repetition rate of greater than or equal to 10 MHz and a pulse width of greater than or equal to 100 fs and less than or equal to 10 ns is performed from the other surface side of the first substrate to selectively heat part of the material layer which overlaps with the light absorption layer.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: May 22, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tomoya Aoyama, Takuya Tsurume, Takao Hamada
  • Publication number: 20120119202
    Abstract: Devices having a thin film or laminate structure comprising hafnium and/or zirconium oxy hydroxy compounds, and methods for making such devices, are disclosed. The hafnium and zirconium compounds can be doped, typically with other metals, such as lanthanum. Examples of electronic devices or components that can be made include, without limitation, insulators, transistors and capacitors. A method for patterning a device using the materials as positive or negative resists or as functional device components also is described. For example, a master plate for imprint lithography can be made. An embodiment of a method for making a device having a corrosion barrier also is described. Embodiments of an optical device comprising an optical substrate and coating also are described. Embodiments of a physical ruler also are disclosed, such as for accurately measuring dimensions using an electron microscope.
    Type: Application
    Filed: September 30, 2008
    Publication date: May 17, 2012
    Inventors: Douglas A. Keszler, Jeremy Anderson, Peter A. Hersh, Jason K. Stowers, Stephen T. Meyers
  • Patent number: 8178169
    Abstract: Methods of leveling ink on substrates and apparatuses useful in printing are provided. An exemplary embodiment of the methods includes irradiating ink disposed on a first surface of a porous substrate with radiation emitted by at least one flash lamp. The radiation flash heats the ink to at least a viscosity threshold temperature of the ink to allow the ink to flow laterally on the first surface to produce leveling of the ink. The ink is heated sufficiently rapidly that heat transfer from the ink to the substrate is sufficiently small during the leveling that ink at the substrate interface is cooled to a temperature below the viscosity threshold temperature thereby preventing any significant ink permeation into the substrate from the first surface.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: May 15, 2012
    Assignee: Xerox Corporation
    Inventors: Gerald A. Domoto, Nicholas P. Kladias, Stephan Drappel, Gregory J. Kovacs, Bryan J. Roof, Stephen T. Knapp
  • Patent number: 8177891
    Abstract: The present invention relates to a membrane wherein said membrane comprises a polymerized composition that comprised prior to polymerization at least one type of compound comprising at least 70 oxyethylene groups and at least two polymerizable groups. The invention further relates to the use of this membrane for separating polar gases and vapors.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: May 15, 2012
    Assignee: Fujifilm Manufacturing Europe B.V.
    Inventors: Akira Kase, Yujiro Itami