Multilayer Patents (Class 427/97.1)
  • Patent number: 11631648
    Abstract: The present disclosure relates to an integrated chip structure having a first copper pillar disposed over a metal pad of an interposer substrate. The first copper pillar has a sidewall defining a recess. A nickel layer is disposed over the first copper pillar and a solder layer is disposed over the first copper pillar and the nickel layer. The solder layer continuously extends from directly over the first copper pillar to within the recess. A second copper layer is disposed between the solder layer and a second substrate.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: April 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Horng Chang, Tin-Hao Kuo, Chen-Shien Chen, Yen-Liang Lin
  • Patent number: 11419242
    Abstract: A negative pressure liquid cooling system and a method for controlling a negative pressure liquid cooling system are provided, and the negative pressure liquid cooling system separately controls pressures at an inlet and an outlet of a cold plate, so that the pressures at the inlet and the outlet of the cold plate remain negative. In this way, when a pipeline between the inlet and the outlet of the cold plate is perforated, a pressure at the outlet of the cold plate can be separately controlled to remain negative, so that a coolant is suppressed in the pipeline, and a coolant leakage phenomenon is avoided. Therefore, damage or a security threat to a to-be-cooled electronic device that is caused by leakage of a conductive operating medium such as water is avoided.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: August 16, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Junfeng Ding
  • Patent number: 11075275
    Abstract: Certain embodiments of a semiconductor device and a method of forming a semiconductor device comprise forming a high-k gate dielectric layer over a short channel semiconductor fin. A work function metal layer is formed over the high-k gate dielectric layer. A seamless metal fill layer is conformally formed over the work function metal layer.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: July 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Ching-Hwanq Su, Da-Yuan Lee, Ji-Cheng Chen, Kuan-Ting Liu, Tai-Wei Hwang, Chung-Yi Su
  • Patent number: 10580830
    Abstract: A method of fabricating an electrical circuit assembly on a flexible substrate comprises: identifying one or more bending-sensitive elements of an electrical circuit assembly, each bending-sensitive element having a performance that varies when said bending-sensitive element is flexed; splitting said one or more bending-sensitive elements into a first portion and a second portion, wherein the first portion and the second portion are functionally equivalent and together equate to said bending-sensitive element; printing the first portion of said bending-sensitive element on a first surface of the flexible substrate; printing the second portion of said bending-sensitive element on a second surface of the flexible substrate, diametrically opposite the first portion such that bending of the flexible substrate has an opposite effect on each of the first and second portions thereby serving to substantially cancel the effect on each portion out; and electrically connecting the first portion and the second portion.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 3, 2020
    Assignee: Nanyang Technological University
    Inventors: Joseph Chang, Tong Ge, Tong Lin, Jia Zhou
  • Patent number: 10065274
    Abstract: A flux comprising one or more amines which is especially useful as a solder flux in soldering operations involving reactive metals such as aluminum; and a process for making aluminum surfaces solderable using the flux and conventional solders.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: September 4, 2018
    Inventors: Ranjit Pandher, Bawa Singh, Rahul Raut, Sanyogita Arora, Ravindra Bhatkal, Bin Mo
  • Patent number: 9230912
    Abstract: A method for manufacturing a semiconductor device and a device manufactured using the same are provided. According to the embodiment, substrate with a dielectric layer formed thereon is provided. Plural trenches are defined in the dielectric layer, and the trenches are isolated by the dielectric layer. A first barrier layer is formed in the trenches as barrier liners of the trenches, followed by filling the trenches with a conductor. Then, the conductor in the trenches is partially removed to form a plurality of recesses, wherein remained conductor has a flat surface. Next, a second barrier layer is formed in the recesses as barrier caps of the trenches.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: January 5, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hsin-Kuo Hsu, Li-Chieh Hsu, Hsiang-Hao Chen, Chung-Wei Hsueh
  • Patent number: 9214437
    Abstract: A package method comprises the steps of: providing a metal carrier having a first surface and a second surface opposite to the first surface; forming a first wiring layer on the second surface of the metal carrier; forming a first conductive pillar layer on the first wiring layer; forming a dielectric material layer covering the first wiring layer, the first conductive pillar layer and the second surface of the metal carrier; exposing one end of the first conductive pillar layer; forming a second wiring layer on the exposed end of the first conductive pillar layer; forming a solder resist layer on the dielectric material layer and the second wiring layer; removing the metal carrier.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: December 15, 2015
    Assignee: PHOENIX PIONEER TECHNOLOGY CO., LTD.
    Inventors: Che-Wei Hsu, Shih-Ping Hsu
  • Patent number: 9038266
    Abstract: A multilayer printed wiring board including a first interlayer resin insulation layer, a first conductive circuit formed on the first interlayer resin insulation layer, a second interlayer resin insulation layer formed on the first interlayer resin insulation layer and the first conductive circuit and having an opening portion exposing a portion of the first conductive circuit, a second conductive circuit formed on the second interlayer resin insulation layer, a via conductor formed in the opening portion of the second interlayer resin insulation layer and connecting the first conductive circuit and the second conductive circuit, and a coating layer having a metal layer and a coating film and formed between the first conductive circuit and the second interlayer resin insulation layer. The metal layer is formed on the surface of the first conductive circuit and the coating film is formed on the metal layer.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 26, 2015
    Assignee: IBIDEN CO., LTD.
    Inventors: Sho Akai, Tatsuya Imai, Iku Tokihisa
  • Publication number: 20150138741
    Abstract: There are provided a chip embedded board and a method of manufacturing the same. The chip embedded board includes: a core substrate; a first build-up layer formed on one surface of the core substrate and having a cavity formed therein; a chip disposed in the cavity; and an insulating layer filled in the cavity in which the chip is disposed, wherein one surface of the chip is positioned in a circuit layer positioned at the outermost layer of the first build-up layer.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 21, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Seon Hee Moon, Young Do Kweon, Jeong Ho Lee
  • Publication number: 20150116971
    Abstract: An electronic device of the present invention includes an insulating base substrate in which a plurality of through electrodes are formed, an electronic element which is electrically connected to the through electrodes and is mounted on one surface of the base substrate, a lid which accommodates the electronic element and is bonded to the one surface of the base substrate, and an external electrode which covers a region from an end face of the through electrode, which is exposed by the other surface of the base substrate, to the other surface in the vicinity of the end face. The external electrode includes a conductive film which covers a region ranging from the end face to the other surface in the vicinity of the end face, and a paste film which covers a surface of the conductive film and is formed of a conductive paste. The paste film is formed by a printing method and is formed of tin or a tin alloy.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 30, 2015
    Inventors: Atsushi KOZUKI, Hideshi HAMADA, Yoshifumi YOSHIDA
  • Publication number: 20150104562
    Abstract: A fully additive method for forming multilayer electrical interconnects for printed electronic and/or optoelectronic devices is disclosed. Electrical interconnects are fabricated by directly ink-jet printing a dielectric material with selective interconnection holes, and then ink jet printing conductive patterns and filling the interconnection holes with conductive material to form multilayer interconnects. A method for manufacturing a multilayer printed electronic system utilizing the invention is also disclosed. Other embodiments are described and claimed.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Applicant: OMEGA OPTICS, INC.
    Inventors: Harish Subbaraman, Ray T. Chen
  • Publication number: 20150101849
    Abstract: A transparent electrical conductor with a transparent substrate and an electrically conductive layer on the substrate are provided. The conductive layer has a plurality of electrically conductive nanoscale additives. The additives are in electrically conductive contact with one another, in order to form the electrically conductive layer. The substrate is formed from a glass or glass-ceramic material or a composite material having a glass and/or glass-ceramic. The additives are embedded in a matrix layer at least in some regions. The matrix layer is formed by a transparent matrix material. In order to make such a transparent electrical conductor useful, particularly for application in a display, as a touch sensor, or the like for cooking surfaces, the transparent electrical conductor exhibits a temperature resistance of at least 140° C. The additives are dispersed in a matrix material, which is applied as a coating material onto the substrate in one coating step.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Matthias Bockmeyer, Ulf Hoffmann, Franziska Riethmueller
  • Patent number: 8999432
    Abstract: A cap metal forming method capable of obtaining a uniform film thickness on the entire surface of a substrate is provided. A method for forming a cap metal on a processing surface of a substrate provided with two or more regions having different water-repellent properties, includes: holding the substrate horizontally by a rotatable holding mechanism installed in an inner chamber; supplying a gas between the inner chamber and an outer chamber covering the inner chamber via a gas supply hole provided in a top surface of the outer chamber; forming a pressure gradient between the inner chamber and the outer chamber; and supplying a plating solution to a preset position on the processing surface of the substrate after a pressure of the gas inside the inner chamber reaches a preset value so as to form the cap metal on at least one of the regions.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: April 7, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Tanaka, Yusuke Saito, Mitsuaki Iwashita
  • Patent number: 8986819
    Abstract: A non-catalytic palladium precursor composition is disclosed, including a palladium salt and an organoamine, wherein the composition is substantially free of water. The composition permits the use of solution processing methods to form a palladium layer on a wide variety of substrates, including in a pattern to form circuitry or pathways for electronic devices.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: March 24, 2015
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Ping Liu
  • Patent number: 8981232
    Abstract: A multi-layer substrate includes a ground structure, a plurality of dielectric layers on the ground structure and a plurality of conductive layers separating the plurality of dielectric layers. The conductive layers include a first conductive layer and a second conductive layer and a connection electrically coupling the first conductive layer and the second conductive layer. The first conductive layer and the ground structure are configured to define a first parasitic capacitance there between and the first conductive layer and the second conductive layer are configured to define a second, negating parasitic capacitance there between.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: March 17, 2015
    Assignee: Aerojet Rocketdyne of DE, Inc.
    Inventors: Thomas A. Hertel, Erich H. Soendker, Horacio Saldivar
  • Publication number: 20150060119
    Abstract: A conductive structure comprises a plurality of first nanowires and a plurality of second nanowires. The first nanowires extend along a first direction substantially. The second nanowires extend along a second direction substantially, and at least a part of the second nanowires electrical connect to the first nanowires. The included angle between the first and second directions is nonzero. A manufacturing method of the conductive structure is also disclosed.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 5, 2015
    Applicant: National Tsing Hua University
    Inventors: Hao-Wu LIN, Kai-Ming CHIANG, Jung-Hao CHANG, Cheng-Yu HUANG, Chih-Wei LU
  • Publication number: 20150047882
    Abstract: Different kinds of printing pastes or inks are utilized in various combinations to develop multiple ceramic dielectric layers on graphitic substrates in order to create effective dielectric ceramic layers that combine good adhesion to both graphitic substrates and printed copper traces, and strong insulating capability. The pastes or inks may comprise a high thermal conductivity powder.
    Type: Application
    Filed: February 26, 2013
    Publication date: February 19, 2015
    Applicant: Applied Nanotech Holdings, Inc.
    Inventors: Nan Jiang, Zvi Yaniv
  • Publication number: 20150027760
    Abstract: A printed circuit board includes an insulating layer; a metal pad formed on the insulating layer; a surface treatment layer formed on the metal pad; a solder layer formed on the surface treatment layer and the insulating layer; and an intermetallic compound layer formed between the solder layer and the surface treatment layer. Further, a printed circuit board may include an insulating layer; a metal seed layer formed on the insulating layer; a metal pad formed on the metal seed layer; a surface treatment layer formed on the metal pad and the metal seed layer; a solder layer formed on the surface treatment layer of the metal pad and the surface treatment layer of the metal seed layer; and an intermetallic compound layer formed between the solder layer and the surface treatment layer.
    Type: Application
    Filed: November 21, 2013
    Publication date: January 29, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS., LTD.
    Inventors: Seong Min CHO, Jung Youn PANG, Eun Heay LEE, Seung Min KANG
  • Publication number: 20140374150
    Abstract: A package substrate includes an outermost interlayer resin insulation layer, an outermost conductive layer formed on a first surface of the outermost interlayer resin insulation layer and including first pads positioned to mount a first electronic component and second pads positioned to mount a second electronic component, a first conductive layer including first conductive circuits and formed on a second surface of the outermost interlayer resin insulation layer on the opposite side with respect to the first surface, first via conductors penetrating through the outermost interlayer resin insulation layer such that the first via conductors are connecting the first conductive layer and the first pads, and second via conductors penetrating through the outermost interlayer resin insulation layer such that the second via conductors are connecting the first conductive layer and the second pads. The first conductive circuits in the first conductive layer are connecting the first and second pads, respectively.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Applicant: IBIDEN CO., LTD.
    Inventors: Yasushi INAGAKI, Yasuhiro Takahashi, Satoshi Kurokawa
  • Publication number: 20140374140
    Abstract: Any one of the fan-out leads includes a first metal strip portion having a predetermined number, located on a glass substrate, disposed along an extension direction of the fan-out lead and is spaced apart; an insulation layer covering each of the first metal strip portion, and disposed with a first through bole and a second through hole; and a second metal strip portion located on the insulation layer and being contacted with each of the first metal strip portion by the first through hole and the second through hole. Wherein, the lengths of the first metal strip portions of the fan-out leads are gradually increased along the direction which is from the center to the edge of the fan shape such that impedances of the fan-out leads are consistent.
    Type: Application
    Filed: July 1, 2013
    Publication date: December 25, 2014
    Applicant: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Li Chai
  • Patent number: 8911608
    Abstract: The present invention provides a circuit creation technology that improves conductive line manufacture by adding active and elemental palladium onto the surface of a substrate. The palladium is disposed in minute amounts on the surface and does not form a conductive layer by itself, but facilitates subsequent deposition of a metal onto the surface, according to the pattern of the palladium, to form the conductive lines.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: December 16, 2014
    Assignee: SRI International
    Inventors: Sunity Sharma, Jaspreet Singh Dhau
  • Publication number: 20140357147
    Abstract: Disclosed herein is a core made of a glass material so as to be capable of preventing generation of warpage in a printed circuit board due to a difference in a coefficient of thermal expansion at the time of manufacturing the printed circuit board. The core includes: an organic cloth; and a glass having the organic cloth formed therein. The core is manufactured in a form in which rigidity thereof is increased by impregnating the organic cloth having a negative coefficient of thermal expansion is impregnated in a liquid-phase glass, thereby making it possible to effectively prevent generation of warpage in the printed circuit board due to the difference in a coefficient of thermal expansion.
    Type: Application
    Filed: October 31, 2013
    Publication date: December 4, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Tae Hong MIN, Sang Hoon KIM, Hye Jin KIM
  • Patent number: 8883016
    Abstract: Disclosed is a carrier for manufacturing a printed circuit board, which includes a first carrier including a first binder having a first opening and a first metal layer formed in the first opening of the first binder, and a second carrier, stacked with the first carrier and including a second binder having a second opening and a second metal layer which is formed in the second opening of the second binder and which partially overlaps with the first metal layer, so that the carrier is simply configured and the binders are formed not only on the lateral surfaces of the metal layers but also on the upper surfaces thereof, thus improving the reliability of bonding of the carrier at the periphery. A method of manufacturing the carrier and a method of manufacturing a printed circuit board using the carrier are also provided.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 11, 2014
    Inventors: Jae Joon Lee, Jin Yong Ahn, Suk Hyeon Cho, Ki Hwan Kim, Seok Kyu Lee
  • Publication number: 20140321071
    Abstract: A printed circuit board includes an insulation layer adjacent to a high-speed signal wire layer. A low-loss material layer is provided between the high-speed signal wire layer and the insulation layer. As a result, it is possible to reduce frequency loss of a high-speed signal wire layer and improve reliability of the printed circuit board.
    Type: Application
    Filed: October 15, 2013
    Publication date: October 30, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: You Bean KIM, Seock-Hwan KANG, Jong Seo LEE
  • Publication number: 20140262440
    Abstract: A multi-layer core organic package substrate includes: a multi-layer core comprising at least two organic core layers, wherein two of the at least two organic core layers are separated by a core metal layer; a first plurality of build-up layers formed on top of the multi-core layer; and a second plurality of build-up layers formed below the multi-core layer.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: XILINX, INC.
    Inventor: Xilinx, Inc.
  • Publication number: 20140251655
    Abstract: Boric acid has been found to provide anticorrosion properties when incorporated into silver nanowire containing films. Such compounds may be incorporated into one or more silver nanowire containing layers or in one or more layers disposed adjacent to the silver nanowire containing layers.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 11, 2014
    Inventors: James B. Philip, JR., Chaofeng Zou
  • Publication number: 20140251674
    Abstract: A bridge structure for electrically connecting to a second direction meshed conductive trace disposed on a substrate surface, where a first direction meshed conductive trace disposed on the same surface, which includes a first bridging wire, a second bridging wire, an insulating layer, and a conductive bridge. The first bridging wire and the second bridging wire are disposed on the second direction meshed conductive trace, and the first bridging wire and the second bridging wire are connected via the conductive bridge, thereby connecting to the second direction meshed conductive trace. when the conductive bridge is directly connected to the second direction meshed conductive trace, the risk of the conductive bridge being connected to blank area between the meshed conductive lines is avoided, when the bridge structure is applied to the touch screen, the thickness of the touch screen and the cost are reduced and the production efficiency is improved.
    Type: Application
    Filed: August 16, 2013
    Publication date: September 11, 2014
    Applicant: NANCHANG O-FILM TECH. CO., LTD.
    Inventors: YULONG GAO, FEI ZHOU
  • Publication number: 20140246224
    Abstract: The present invention provides a substrate for suspension that includes a first structural part including a metal supporting substrate, an insulating layer, a wiring layer, and a cover layer, and a second structural part formed so as to extend continuously from the first structural part and has no metal supporting substrate. A position of an edge of an upper surface of the insulating layer coincides with a position of an edge of the lower surface of the cover layer or the position of the edge of the upper surface of the insulating layer is positioned on a side closer to the wiring layer than to the position of the edge of the lower surface of the cover layer at a boundary region between the first structural part and the second structural part.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: DAI NIPPON PRINTING CO., LTD.
    Inventors: Yoichi MIURA, Tsuyoshi YAMAZAKI
  • Publication number: 20140232951
    Abstract: The substrate with a transparent electrode includes a first dielectric material layer mainly composed of SiOx, a second dielectric material layer mainly composed of a metal oxide, a third dielectric material layer mainly composed of SiOy, and a transparent electrode layer, in this order on a transparent film substrate. The transparent electrode layer is patterned to have an electrode layer-formed part and an electrode layer non-formed part. The transparent electrode layer is a layer mainly composed of an indium-tin composite oxide and having a thickness of 20 nm to 35 nm. The refractive index n1 of the first dielectric material layer, the refractive index n2 of the second dielectric material layer, and the refractive index n3 of the third dielectric material layer satisfy n3<n1<n2. The first dielectric material layer, the second dielectric material layer and the third dielectric material layer each have specific thicknesses.
    Type: Application
    Filed: November 11, 2011
    Publication date: August 21, 2014
    Applicant: KANEKA CORPORATION
    Inventors: Hiroaki Ueda, Takahisa Fujimoto, Kozo Kondo, Kenji Yamamoto
  • Patent number: 8808791
    Abstract: A method is provided which includes forming a metal layer and converting at least a portion of the metal layer to a hydrated metal oxide layer. Another method is provided which includes selectively depositing a dielectric layer upon another dielectric layer and selectively depositing a metal layer adjacent to the dielectric layer. Consequently, a microelectronic topography is formed which includes a metal feature and an adjacent dielectric portion comprising lower and upper layers of hydrophilic and hydrophobic material, respectively. A topography including a metal feature having a single layer with at least four elements lining a lower surface and sidewalls of the metal feature is also provided herein. The fluid/s used to form such a single layer may be analyzed by test equipment configured to measure the concentration of all four elements. In some cases, the composition of the fluid/s may be adjusted based upon the analysis.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 19, 2014
    Assignee: Lam Research Corporation
    Inventors: Igor C. Ivanov, Weiguo Zhang, Artur Kolics
  • Patent number: 8802183
    Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: August 12, 2014
    Assignee: Proteus Digital Health, Inc.
    Inventors: Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
  • Publication number: 20140220316
    Abstract: A substrate for biochips, which does not induce autofluorescence, which can immobilize a biologically relevant substance(s) easily, which can prevent the undesirable spread of a liquid spot which is added dropwise on the biochips when using the biochips, in which the adhesion between a carbon-containing layer and an aluminum material is high, and which can be produced at lower cost than the known substrate for biochips; a method for producing the substrate; and a biochip including the substrate are disclosed. The substrate for biochips comprises a carbon-coated aluminum material, wherein the carbon-coated aluminum material comprises an aluminum material and a carbon-containing layer formed on at least one surface of the aluminum material, and further comprises an interposing layer which is formed between the aluminum material and the carbon-containing layer, and which interposing layer contains aluminum element and carbon element.
    Type: Application
    Filed: August 22, 2012
    Publication date: August 7, 2014
    Applicants: NIPPON LIGHT METAL COMPANY, LTD., TOYO ALUMINIUM KABUSHIKI KAISHA
    Inventors: Hidetoshi Inoue, Zenya Ashitaka, Hiroyuki Kusai, Yasushi Takebayashi, Ryo Morishita, Yasuo Oka
  • Publication number: 20140202746
    Abstract: Various embodiments include interconnect structures and methods of forming such structures. The interconnect structures can include a composite copper wire which includes at least two distinct copper sections. The uppermost copper section can have a thickness of approximately 1 micrometer or less, which inhibits surface roughening in that uppermost section, and helps to enhance cap adhesion with overlying layers.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Inventor: INTERNATIONAL BUSINESS MACHINES CORPORATION
  • Patent number: 8784931
    Abstract: A method of manufacturing ULSI wiring in which wiring layers are separately formed via a diffusion prevention layer and an insulating interlayer portion made of SiO2. The method comprises the steps of treating, with a silane compound, a SiO2 surface of the insulating interlayer portion on which the diffusion layer is to be formed, performing catalyzation with an aqueous solution containing a palladium compound, forming the diffusion prevention layer by electroless plating, and then forming the wiring layer on this diffusion prevention layer. A capping layer may be formed on the wiring layer by electroless plating. Consequently, a diffusion prevention layer having good adhesive properties can be formed through a simple wet process, and, the wiring layer can directly be formed on this diffusion prevention layer by a wet process. The capping layer can also be directly formed on the wiring layer by electroless plating.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: July 22, 2014
    Assignees: Waseda University, Renesas Electronics Corporation
    Inventors: Kazuyoshi Ueno, Tetsuya Osaka, Nao Takano
  • Publication number: 20140174812
    Abstract: A method of reducing crosstalk. The method may include forming a first contact over a first vertical conductor. The method may include forming a second contact over a second vertical conductor. The method may include forming a third contact over a third vertical conductor. The method may include forming a capacitive coupler between the first contact, the second contact, and the third contact, wherein the capacitive coupler is to cancel crosstalk received at the second vertical conductor and third vertical conductor from the first vertical conductor.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Inventors: Raul Enriquez Shibayama, Kai Xiao, Nicte A. Zavala Castro, Mauro Lai, Yanjie Zhu
  • Patent number: 8709141
    Abstract: Disclosed are heat releasable multi-component composite coatings. These coatings include an under coating and an over coating deposited over at least a portion of the under coating. The under coating is deposited from a coating composition that includes a film-forming resin and thermally expandable capsules having an average diameter of 5 to 25 ?m. The over coating layer has a 60 degree gloss of no more than 60 gloss units.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: April 29, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Richard J. Foukes, Ken W. Niederst, Kevin P. Gallagher, Jackie L. Kulfan
  • Patent number: 8709551
    Abstract: Methods and hardware for depositing ultra-smooth silicon-containing films and film stacks are described. In one example, an embodiment of a method for forming a silicon-containing film on a substrate in a plasma-enhanced chemical vapor deposition apparatus is disclosed, the method including supplying a silicon-containing reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a co-reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a capacitively-coupled plasma to a process station of the plasma-enhanced chemical vapor deposition apparatus, the plasma including silicon radicals generated from the silicon-containing reactant and co-reactant radicals generated from the co-reactant; and depositing the silicon-containing film on the substrate, the silicon-containing film having a refractive index of between 1.4 and 2.1, the silicon-containing film further having an absolute roughness of less than or equal to 4.5 ? as measured on a silicon substrate.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 29, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Keith Fox, Dong Niu, Joe Womack, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk, Jennifer O'Loughlin
  • Publication number: 20140087205
    Abstract: There is provided an electrode pad including: a connection terminal part; a first plating layer including palladium phosphorus (Pd—P) formed on the connection terminal part; and a second plating layer including palladium (Pd) formed on the first plating layer.
    Type: Application
    Filed: December 6, 2012
    Publication date: March 27, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jung Youn PANG, Shimoji Teruaki, Eun Heay Lee, Seong Min Cho, Chi Seong Kim
  • Publication number: 20140054068
    Abstract: A printed wiring board includes a core substrate including resin and inorganic fiber, a first buildup layer formed on a first surface of the substrate and including resin insulating layers and first conductive layers, and a second buildup layer formed on a second surface of the substrate on the opposite side of the core substrate with respect to the first surface and including resin insulating layers and second conductive layers. The first conductive layers in the first buildup have sum V1 of volumes which is greater than sum V2 of volumes of the second conductive layers in the second buildup, and the substrate has a first-surface side portion which has resin amount greater than resin amount of a second-surface side portion of the substrate where boundary between the first-surface and second-surface side portions is set with respect to the center line in the thickness direction of the substrate.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 27, 2014
    Applicant: IBIDEN CO., LTD.
    Inventors: Hisashi Kato, Ryojiro Tominaga, Tetsuya Nobutoki
  • Patent number: 8647577
    Abstract: The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: February 11, 2014
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, John Matthew Mauro, Shifeng Li, James Bustillo
  • Publication number: 20140035168
    Abstract: A bonding pad for thermocompression bonding of a carrier material to a further carrier material includes a base layer and a top layer. The base layer is made of metal, is deformable, and is connected to the carrier material. The metal is nickel-based. The top layer is metallic and is connected directly to the base layer. The top layer is arranged at least on a side of the base layer which faces away from the carrier material. The top layer has a smaller layer thickness than the base layer. In at least one embodiment, the top layer has a greater oxidation resistance than the base layer.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 6, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Christoph Schelling, David Borowsky
  • Patent number: 8642116
    Abstract: A cartridge block for screening a multilayer ceramic with a conductive paste includes a threaded paste cartridge attachment located at a top of the cartridge block, the threaded paste cartridge attachment being configured to receive a paste cartridge containing the conductive paste; a paste routing section, the paste routing section located underneath the threaded paste cartridge attachment, the paste routing section comprising a flared section located at a bottom of the cartridge block, the paste routing section being configured to receive the conductive paste from the threaded paste cartridge attachment and route the paste through the flared section.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: February 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: William W. Harkins, Christos T. Kapogiannis, Gerald H. Leino, Robert Weiss
  • Publication number: 20140030425
    Abstract: Compositions and methods for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board. Conditioning compositions contain a functional organic compound and preferably a transition metal ion. The functional organic compound, e.g., a purine derivative, is capable of forming a self-assembled monolayer. Adhesion promoting compositions contain an acid, preferably an inorganic acid, and an oxidant. The latter compositions may also contain a corrosion inhibitor and/or a transition metal ion selected from among Zn, Ni, Co, Cu, Ag, Au, Pd or another Pt group metal. The corrosion inhibitor may comprise a nitrogen-containing aromatic heterocyclic compound.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: ENTHONE INC.
    Inventors: Abayomi I. OWEI, Joseph A. ABYS, Theodore ANTONELLIS, Eric WALCH
  • Publication number: 20140020932
    Abstract: The purpose of the present invention is to provide a printed circuit board wherein a resin layer exhibits excellent adhesion and a method for manufacturing said printed circuit board. This printed circuit board is provided with an insulating substrate, metal wiring laid out on said insulating substrate, and an insulating layer disposed on top of said metal wiring. A layer consisting of a thiol compound having at least four functional groups represented by formula (1) is interposed between the metal wiring and the insulating layer at the interface therebetween.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: FUJIFILM Corporation
    Inventor: Koichi MINAMI
  • Patent number: 8628818
    Abstract: A system and method for forming conductive lines on a substrate comprising depositing a precursor onto at least a portion of the substrate, depositing a thin layer of conductive material over the precursor, forming a negative-patterned mask over a portion of the thin layer of conductive material to form an exposed pattern, forming conductive lines in the exposed pattern, removing the patterned mask thereby uncovering an exposed portion of the conductive layer that substantially corresponds to the negative pattern portion, and removing the exposed portion of the conductive layer so as to uncover substrate that substantially corresponds to the exposed portion.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: January 14, 2014
    Assignee: SRI International
    Inventors: Sunity K. Sharma, Francesco Fornasiero, Jaspreet Singh Dhau
  • Patent number: 8623449
    Abstract: A method for producing a laminated base material includes applying a liquid composition containing a solvent and a liquid crystal polyester to a substrate; and forming a covering material by removing the solvent. The substrate includes a conductor forming a circuit pattern on an insulating layer. The liquid composition covers the conductor. The polyester includes 30-50 mol % of (1), 25-35 mol % of (2), and 25-35 mol % of (3): -0-Ar1-00-??(1) —CO—Ar2-00-??(2) —X—Ar3—Y—??(3) wherein Ar1 is a phenylene or naphthylene group, Ar2 is a phenylene or naphthylene group, or (4), Ar3 is a phenylene group or (4), and X and Y each independently represent 0 or NH; and hydrogen atoms in Ar1, Ar2, or Ar3 are each substitutable with a halogen atom, or an alkyl or aryl group; —Ar11—Z—Ar12—??(4) wherein Ar11 and Ar12 each independently represent a phenylene or naphthylene group and Z represents 0, CO, or SO2.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 7, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toyonari Ito, Changbo Shim
  • Patent number: 8623458
    Abstract: A layered structure comprising a self-assembled material is formed by a method that includes forming a photochemically, thermally and/or chemically treated patterned photoresist layer disposed on a first surface of a substrate. The treated patterned photoresist layer comprises a non-crosslinked treated photoresist. An orientation control material is cast on the treated patterned photoresist layer, forming a layer containing orientation control material bound to a second surface of the substrate. The treated photoresist and, optionally, any non-bound orientation control material are removed by a development process, resulting in a pre-pattern for self-assembly. A material capable of self-assembly is cast on the pre-pattern. The casted material is allowed to self-assemble with optional heating and/or annealing to produce the layered structure.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, Matthew E. Colburn, Stefan Harrer, William D. Hinsberg, Steven J. Holmes, Ho-Cheol Kim, Daniel Paul Sanders
  • Patent number: 8603588
    Abstract: Disclosed is a composition comprising a hydrolysate of an alkoxysilane compound, a hydrolysate of a siloxane compound represented by Formula (1), a surfactant, and an element having an electronegativity of 2.5 or less. In Formula (1), RA and RB independently represent a hydrogen atom, a phenyl group, —CaH2a+1, —(CH2)b(CF2)cCF3 or —CdH2d?1, RA and RB are not both hydrogen atoms simultaneously, RC and RD independently represent a single bond that links a silicon atom and an oxygen atom to form a cyclic siloxane structure, or each independently represent a hydrogen atom, a phenyl group, —CaH2a+1, —(CH2)b(CF2)cCF3, or —CdH2d?1, a represents an integer of 1 to 6, b represents an integer of 0 to 4, c represents an integer of 0 to 10, d represents an integer of 2 to 4, and n represents an integer of 3 or greater.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 10, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuo Kohmura, Hirofumi Tanaka
  • Publication number: 20130306885
    Abstract: An assembly includes an integrated circuit, a film layer disposed over the integrated circuit and having a thickness of at least 50 microns, and a thermal neutron absorber layer comprising at least 0.5% thermal neutron absorber. The thermal neutron absorber layer can be a glass layer or can include a molding compound.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicant: SPANSION LLC
    Inventors: Richard C. Blish, Timothy Z. Hossain
  • Patent number: 8586133
    Abstract: A method is provided which includes forming a metal layer and converting at least a portion of the metal layer to a hydrated metal oxide layer. Another method is provided which includes selectively depositing a dielectric layer upon another dielectric layer and selectively depositing a metal layer adjacent to the dielectric layer. Consequently, a microelectronic topography is formed which includes a metal feature and an adjacent dielectric portion comprising lower and upper layers of hydrophilic and hydrophobic material, respectively. A topography including a metal feature having a single layer with at least four elements lining a lower surface and sidewalls of the metal feature is also provided herein. The fluid/s used to form such a single layer may be analyzed by test equipment configured to measure the concentration of all four elements. In some cases, the composition of the fluid/s may be adjusted based upon the analysis.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 19, 2013
    Assignee: Lam Research Corporation
    Inventors: Igor C. Ivanov, Weiguo Zhang, Artur Kolics