Free Metal In Coating Patents (Class 428/381)
  • Patent number: 10279435
    Abstract: The exposed metal tip of the strike end of an SMAW welding electrode is covered with a protective coating formed from a binder and metal particles. Because metal particles rather than graphite particles are used to provide electrical conductivity to this protective coating, flare-up of the arc when initially struck is eliminated substantially completely. In addition, the potential for weld porosity problems is also eliminated, because the metal particles of the inventive electrode do not produce CO2 as a reaction by-product which can ultimately lead to improper welding technique.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: May 7, 2019
    Assignee: LINCOLN GLOBAL, INC.
    Inventors: Joseph Kenneth Zalokar, Matthew Jay James, David Christopher Fedor, Janet Michelle Morse
  • Publication number: 20150091004
    Abstract: A metal wire included in a display device, the metal wire includes a first metal layer including a nickel-chromium alloy, a first transparent oxide layer disposed on the first metal layer, and a second metal layer disposed on the first transparent oxide layer.
    Type: Application
    Filed: September 22, 2014
    Publication date: April 2, 2015
    Inventors: Kyung-Seop Kim, Byeong-Beom Kim, Sang-Won Shin, Dae-Young Lee, Chang-Oh Jeong, Joon-Yong Park, Dong-Min Lee
  • Publication number: 20150086784
    Abstract: The present invention provides a method for manufacturing an optical fiber base material and an optical fiber base material, the method including: arranging a rod containing SiO2 family glass for core, in a container; pouring a SiO2 glass raw material solution for cladding layer and a hardener into the container, the glass raw material solution containing a hardening resin; solidifying the glass raw material solution through a self-hardening reaction; and then drying the solidified material and heating the solidified material in chlorine gas, to manufacture an optical fiber base material in which a SiO2 cladding layer is formed in an outer periphery of the rod containing SiO2 family glass for core.
    Type: Application
    Filed: January 17, 2013
    Publication date: March 26, 2015
    Applicant: KOHOKU KOGYO CO., LTD.
    Inventors: Katsuyuki Imoto, Futoshi Ishii
  • Patent number: 8728959
    Abstract: The present invention relates to a textile digital band which is capable of providing a high-speed communication path with surrounding computing devices, through easy and convenient attachment thereof to a conventional garment, and a fabrication method thereof. For this purpose, disclosed herein is a textile digital band comprising a plurality of warps formed parallel to each other in the first direction, and a plurality of wefts formed parallel to each other in the second direction perpendicular to the first direction, wherein the warp includes at least one digital yarn through which electrical currents can flow.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: May 20, 2014
    Assignee: Korea Institute of Industrial Technology
    Inventors: Gi Soo Chung, Dae Hoon Lee, Jae Sang An
  • Patent number: 8722186
    Abstract: A yarn or multi-fiber formed of a plurality of micron diameter stainless steel monofilaments which have been rendered more conductive by one or more coatings of electrolytically-deposited metal or metal alloy materials. The metallized yarn provided by the invention has a very low electrical resistance, with consequent benefit in electrical performance, and is particularly useful as an RFI/EMI shielding material.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 13, 2014
    Assignee: Micrometal Technologies, Inc.
    Inventors: Thomas F. Burke, James E. Haller
  • Publication number: 20140093731
    Abstract: The invention relates to a conductive fiber material comprising a base fiber material (1) including a textile fiber, a plurality of nanoparticles (20) deposited on an external surface (10) of said base fiber material, said nanoparticles including one or more metals or metal oxides and a conductive polymer layer deposited on said external surface including nanoparticles.
    Type: Application
    Filed: March 6, 2012
    Publication date: April 3, 2014
    Applicants: ALMA MATER STUDIORUM - UNIVERSITA` DI BOLOGNA, CNR - CONSIGLIO NAZIONALE DELLE RICERCHE
    Inventors: Annalisa Bonfiglio, Beatrice Fraboni, Giorgio Mattana
  • Publication number: 20140079952
    Abstract: The invention relates to semiconducting shield compositions for electric power cables having a base polymer system, nano-talc, and carbon black. The invention also relates to such semiconducting shield compositions and the use of these semiconducting shield compositions to manufacture semiconductive shields for use in electric cables, electric cables made from these compositions and methods of making electric cables from these semiconducting shield compositions. The semiconducting shield compositions of the invention may be used as strippable “semiconducting” dielectric shields (also referred to as the core shields, dielectric screen and core screen materials) in power cables with cross linked polymeric insulation, primarily with medium voltage cables having a voltage from about 5 kV up to about 100 kV, preferably up to about 35 kV.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 20, 2014
    Applicant: GENERAL CABLE TECHNOLOGIES CORPORATION
    Inventor: Sean W. CULLIGAN
  • Publication number: 20140079950
    Abstract: A moldable capsule includes a conductive element core and a resin-based material radially surrounding the conductive element core. The base resin host may include a single resin-based polymer material. The capsule may have a length of approximately 2-14 millimeters.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 20, 2014
    Applicant: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 8673438
    Abstract: A solid electrolyte and a piezoelectric material are incorporated into composite shaped articles to provide them with self-healing and adaptive qualities. The piezoelectric constituent converts the mechanical energy concentrated in critical areas into electrical energy which, in turn, guides and drives electrolytic transport of mass within the solid electrolyte towards, and its electrodeposition at critical areas to render self-healing and adaptive effects.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: March 18, 2014
    Inventors: Parviz Soroushian, Anagi Manjula Balachandra
  • Publication number: 20140037956
    Abstract: A high temperature, high voltage cable having at least one multi-strand conductor whose resistance is controlled by tightness or looseness of pitch. Also, a high temperature, high voltage cable having at least one layer of ceramifiable polymer, and at least one layer of mica/glass. Also, a high temperature, high voltage cable including at least one layer of non-conductive inorganic material, and at least one layer of mica/glass tape. Also, a high temperature, high voltage sleeve having at least one layer of ceramifiable polymer and at least one layer of mica/glass. Also, a high temperature, high voltage sleeve including at least one layer of non-conductive inorganic material and at least one layer of mica/glass. Also a heating cable having at least one layer of mica/glass and at least one layer of thermally conductive and electrically insulating inorganic materials.
    Type: Application
    Filed: July 26, 2013
    Publication date: February 6, 2014
    Inventor: Umesh Kumar Sopory
  • Publication number: 20140025007
    Abstract: Disclosed are fibers that include a composite of at least three different materials, where the at least three different materials include a conductor, an insulator, and a non-centrosymmetric material, and where each material is disposed in one or more different cross-sectional regions of the fiber, with each region extending along a common length of the fiber.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 23, 2014
    Applicant: Massachusetts Institute of Technology
    Inventor: Massachusetts Institute of Technology
  • Patent number: 8361618
    Abstract: A composite configured to release refrigerant therefrom comprises a substrate material comprising polarized fibers of glass, polyamide, phenylene sulfide, carbon or graphite or combinations of two or more thereof having bonded thereon a metal compound comprising a complex compound of a polar gaseous refrigerant and a metal salt and/or a hydrated metal hydroxide and/or a metal hydroxide of a metal comprising alkali metal, alkaline earth metal, transition metal, zinc, cadmium, tin, aluminum, or two or more thereof, at a concentration of at least about 0.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: January 29, 2013
    Assignee: Rocky Research
    Inventors: Uwe Rockenfeller, Kaveh Khalili
  • Patent number: 8222166
    Abstract: Membranes suitable for microfiltration, ultrafiltration (UF) and nanofiltration (NF) filters are provided. Such membranes may include a nanofibrous scaffold, optionally in combination with a non-woven substrate and/or a coating of a polymer and a functionalized nanofiller. Suitable membranes may also include a coating of a polymer and a functionalized nanofiller on a substrate, which can include a non-woven membrane, a nanofibrous scaffold, or both.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: July 17, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Benjamin Chu, Benjamin S. Hsiao, Dufei Fang, Kwang-Sok Kim
  • Patent number: 8173260
    Abstract: The present invention features additions of nano-structures to interconnect conductor fine particles (spheres) to: (1) reduce thermal interface resistance by using thermal interposers that have high thermal conductivity nano-structures at their surfaces; (2) improve the anisotropic conductive adhesive interconnection conductivity with microcircuit contact pads; and (3) allow lower compression forces to be applied during the microcircuit fabrication processes which then results in reduced deflection or circuit damage. When pressure is applied during fabrication to spread and compress anisotropic conductive adhesive and the matrix of interconnect particles and circuit conductors, the nano-structures mesh and compress into a more uniform connection than current technology provides, thereby eliminating voids, moisture and other contaminants, increasing the contact surfaces for better electrical and thermal conduction.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: May 8, 2012
    Assignee: The Research Foundation of State University of New York
    Inventors: Bahgat Sammakia, Wayne E. Jones, Ganesh Subbarayan
  • Publication number: 20110045292
    Abstract: An abrasive article includes an elongated body, a bonding layer including a metal overlying a surface of the elongated body, and a coating layer including a polymer material overlying the boding layer. The abrasive article further includes abrasive grains contained within the bonding layer and coating layer, and wherein the bonding layer comprises an average thickness (tbl) at least about 40% of the average grit size of the abrasive grains.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 24, 2011
    Applicants: SAINT-GOBAIN ABRASIVES, INC., SAINT-GOBAIN ABRASIFS
    Inventors: Yinggang Tian, Ran Ding, Susanne Liebelt, Krishnamoorthy Subramanian
  • Patent number: 7851062
    Abstract: A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: December 14, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Erik S. Weiser
  • Patent number: 7785699
    Abstract: A protective covering constructed from an electrostatically charged sheet having a top and bottom surface and an absorbent layer. The absorbent layer has top and bottom surfaces, the bottom surface of the absorbent layer being bonded to the top surface of the electrostatically charged sheet. The absorbent layer is divided into a plurality of cells for containing liquid spilled on the absorbent layer. The absorbent layer can be constructed from paper, open cell foam, fibrous mat, or any other absorbent material. In the preferred embodiment of the present invention, the cells are constructed by providing hydrophobic barriers in the absorbent layer. The barriers can be constructed from paraffin, plastic, or any other material that can penetrate the absorbent layer. In one embodiment of the present invention, a hydrophobic layer is bonded to the top surface of the absorbent layer.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: August 31, 2010
    Inventor: Calvin B. Ward
  • Patent number: 7722952
    Abstract: A composite configured to release refrigerant therefrom comprises a substrate material comprising polarized fibers of glass, polyamide, phenylene sulfide, carbon or graphite having bonded thereon a metal compound comprising a complex compound of a polar gaseous refrigerant and a metal salt and/or a hydrated metal hydroxide and/or a metal hydroxide of a metal selected from the group consisting of alkali metal, alkaline earth metal, transition metal, zinc, cadmium, tin, aluminum, or two or more thereof, at a concentration of at least about 0.3 grams/cc of open substrate material volume, and a coating composition thereon configured to prevent release of internal gaseous refrigerant therethrough at ambient temperatures and pressure and capable of penetration of gaseous refrigerant therethrough from the composite interior at temperatures causing internal gas pressures of 15% or more above exterior pressure for such refrigerant release.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: May 25, 2010
    Assignee: Rocky Research
    Inventors: Uwe Rockenfeller, Kaveh Khalili
  • Patent number: 7705077
    Abstract: The present invention provides a rubber composition for coating a steel cord in a belt layer which can decrease a decreasing rate of tensile properties caused by deterioration of thermal oxidation, inhibiting peeling from the steel cord and further reducing a rubber flow, and a steel cord coated with a carcass layer comprising the same. The present invention relates to a rubber composition for coating a steel cord comprising (A) at least 3 parts by weight and less than 5 parts by weight of sulfur, (B) 0.1 to 1 part by weight of hexamethylenebisthiosulfate disodium salt dihydrate, and (C) a cobalt salt of an organic acid containing boron based on 100 parts by weight of a rubber component, wherein the amount of cobalt in the cobalt salt of a boron containing organic acid (C) is 0.05 to 0.25 part by weight based on 100 parts by weight of the rubber component, and a steel cord coated with a carcass layer comprising the same.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: April 27, 2010
    Assignee: Sumitomo Rubber Industries, Ltd.
    Inventor: Tatsuya Miyazaki
  • Publication number: 20100035006
    Abstract: An elongated product is formed such that first a core is formed, the outer surface of the core being made of plastic. Thereafter, a tubular metal layer is extruded such that the layer is seamless. When the metal layer is extruded, a clearance is allowed between the metal layer and the core. After the metal layer has cooled, the diameter of the metal layer is reduced such that the metal layer contacts the plastic core. Thereafter, the metal is annealed such that the flexibility of the metal layer increases.
    Type: Application
    Filed: February 2, 2007
    Publication date: February 11, 2010
    Applicant: UPNOR INNOVATION AB
    Inventors: Jyri Järvenkylä, Franz-Josef Riesselmann, Ralf Winterstein, Reinhold Freermann, Lars Hoving
  • Patent number: 7645512
    Abstract: The present invention features additions of nano-structures to interconnect conductor fine particles (spheres) to: (1) reduce thermal interface resistance by using thermal interposers that have high thermal conductivity nano-structures at their surfaces; (2) improve the anisotropic conductive adhesive interconnection conductivity with microcircuit contact pads; and (3) allow lower compression forces to be applied during the microcircuit fabrication processes which then results in reduced deflection or circuit damage. When pressure is applied during fabrication to spread and compress anisotropic conductive adhesive and the matrix of interconnect particles and circuit conductors, the nano-structures mesh and compress into a more uniform connection than current technology provides, thereby eliminating voids, moisture and other contaminants, increasing the contact surfaces for better electrical and thermal conduction.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: January 12, 2010
    Assignee: The Research Foundation of the State University of New York
    Inventors: Bahgat Sammakia, Wayne E. Jones, Jr., Ganesh Subbarayan
  • Publication number: 20090288747
    Abstract: A rubber-cord complex having an improved wet heat adhesive property between a rubber and a cord comprising a drawn plated wire, and including a metal cord comprising a drawn plated wire prepared by providing a brass plated layer on the surface of an element wire and drawing the resulting plated wire, and a rubber vulcanized and bonded to the cord, wherein in a wet heat deterioration state of the drawn plated wire after being subjected to the vulcanization to bond the rubber thereto and further held under an atmosphere having a temperature of 50 to 100° C. and a humidity of 60 to 100% for one hour to 20 days, the average grain size of crystal grains present in the brass plated layer is not more than 50 nm, and the grain boundary of the crystal grains has a fractal dimension of 1.001 to 1.500.
    Type: Application
    Filed: November 30, 2006
    Publication date: November 26, 2009
    Applicants: Sumitomo Rubber Industriesm, Ltd., Nippon Steel Corporation, Sumitomo (SEI) Steel Wire Corp.
    Inventors: Shinichi Miyazaki, Junichi Kodama, Yasuo Sakai, Keisuke Aramaki, Yuichi Sano, Kenichi Okamoto
  • Patent number: 7435380
    Abstract: A pseudo-plastic or thixotropic carrier having anti-malodorous components dissolved or suspended therein is sprayed on the internal surfaces of an ostomy bag or pouch. The viscoelastic properties of the carrier allow the composition to be conveniently dispensed from a spray bottle into the ostomy bag and retained on the inner walls thereof without being displaced therefrom by incoming waste during use of the ostomy bag. This allows the composition to continue to deodorize the ostomy bag headspace even after waste material begins to fill the bag.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: October 14, 2008
    Assignee: Church & Dwight Co., Inc.
    Inventor: Anthony E. Winston
  • Patent number: 7431838
    Abstract: An improved two-step replication process for fabrication of porous metallic membranes is provided. A negative of a porous non-metallic template is made by infiltration of a liquid precursor into the template, curing the precursor to form a solid negative, and removing the template to expose the negative. Metal is deposited to surround the exposed negative. Removal of the negative provides a porous metallic membrane having pores which replicate the pores of the original template membrane. The negative is kept immersed in a liquid at all times between removing the template and depositing the metal. This immersion eliminates damage to the negative that would be incurred in drying the negative out between these processing steps. Another aspect of the invention is metallic membranes prepared according to the preceding method. For example, metallic membranes having pores smaller on one side than on the other side of the membrane are provided.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: October 7, 2008
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Sangkyun Kang, Yong-Il Park, Friedrich B. Prinz, Suk-Won Cha, Yuji Saito, Ali Farvid, Pei-Chen Su
  • Patent number: 7419720
    Abstract: The present invention relates to a plastics molding composition based on polyarylene sulfide and/or on liquid-crystalline plastic, where the molding composition comprises carbon black and graphite and/or metal powder, the carbon black has a specific surface area of from 500 to 1500 m2/g, and a dibutyl phthalate value of from 100 to 700 ml/100 g, and the graphite has a specific surface area of from 1 to 35 m2/g. The molding compositions of the invention have good conductivities, and better flowabilities and mechanical properties.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: September 2, 2008
    Assignee: TICONA GmbH
    Inventors: Achim Hofmann, Hans-Gerhard Fritz, Ralf Kaiser
  • Patent number: 7332101
    Abstract: One aspect of the present invention relates to a permanently linked, rigid, magnetic chain of particles prepared by sol-gel methods. A second aspect of the present invention relates to a method of preparing a permanently linked, rigid, magnetic chain of particles comprising: coating a core material with one or more polyelectrolyte layers resulting in a coated particle; further coating the coated particle with a layer of magnetic nanoparticles resulting in a magnetic particle; coating the magnetic particle with a layer of a polycationic polyelectrolyte resulting in a coated magnetic particle; and applying a magnetic field to the coated magnetic particle in the presence of a metal oxide or metal oxide precursor capable of undergoing hydrolysis.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: February 19, 2008
    Assignee: Massachusetts Institute of Technology
    Inventors: Harpreet Singh, T. Alan Hatton
  • Patent number: 7223469
    Abstract: Moldable capsules of a conductive loaded resin-based material are created. The moldable capsules include a conductive element core radially surrounded by a resin-based material. The conductive loaded resin-based material includes micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The conductive element core includes between about 20% and about 50% of the total weight of the moldable capsule in one embodiment, between about 20% and about 40% in another embodiment, between about 25% and about 35% in another embodiment, and about 30% in another embodiment. The micron conductive powders are formed from non-metals, that may also be metallic plated, or from metals, that may also be metallic plated, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: May 29, 2007
    Assignee: Integral Technologies, Inc.
    Inventor: Thomas Aisenbrey
  • Patent number: 6930606
    Abstract: A security device, such as a security thread, uses multiple security detection features provided by combining metal and metal/magnetic security features on a carrier substrate. The security detection features basically comprise an optionally repeating pattern of discrete metal/magnetic indicia and discrete metal or metal-dot formed indicia. The security detection features may also include at least one metal strip extending along the length of the carrier substrate and/or a plurality of metal dots located on metal-free portions of at least one surface of the substrate.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: August 16, 2005
    Assignees: Crane & Co., Inc., Technical Graphics Security Products, LLC
    Inventors: Timothy T. Crane, Paul F. Cote, Stephen B. Curdo, Gerald J. Gartner, Gary R. Wolpert
  • Publication number: 20040206266
    Abstract: Coatings containing particulate metal alloy are disclosed. The coatings provide corrosion protection to a substrate, such as a metal substrate. The coatings contain zinc-metal-containing alloy in flake form, most particularly an alloy flake of zinc and aluminum. The coating can be from compositions that are water-based or solvent-based. The compositions for providing the coating may also contain a substituent such as a water-reducible organofunctional silane, or a hexavalent-chromium-providing substance, or a titanate polymer, or a silica substance constituent. the coating may desirably be topcoated.
    Type: Application
    Filed: May 13, 2004
    Publication date: October 21, 2004
    Applicant: Metal Coatings International Inc.
    Inventors: Etienne Georges Maze, Gilbert Louis Lelong, Terry E. Dorsett, Donald J. Guhde, Toshio Nishikawa
  • Patent number: 6770366
    Abstract: The invention relates to a cored wire for introducing additives into a molten metal bath comprising a metallic sheath (5) containing an additive (6), which metallic sheath is covered by a wrapping (7) which, being combustible without leaving harmful residues, momentarily retards the propagation of heat to the core of the cored wire, this cored wire being characterized in that on top of this combustible wrapping, a protective metallic casing encloses the assembly thus constituted by the additive, the metallic sheath and the combustible wrapping.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: August 3, 2004
    Assignee: Affival S.A.
    Inventors: Dominique Bernard Riche, Jean-Claude Becart
  • Patent number: 6703123
    Abstract: A white conductive fiber is manufactured at an inexpensive cost having superior conductivity and high degree of whiteness, in which a metal coating plated on the fiber has superior adhesiveness. A method for manufacturing the white conductive fiber comprises the steps of mounting a wound fiber body formed by winding a continuous fiber to the fixing shaft, a step of flowing a plating solution from the fixing shaft to a plating bath via the wound fiber body so as to infiltrate the plating solution into the wound fiber body, and a step of performing electroless plating of silver, platinum, or the like on the fiber material while the plating solution flows.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: March 9, 2004
    Assignees: Mitsubishi Materials Corporation, Japan Electric Metals Corporation, Ltd. Akita Plant
    Inventors: Daisuke Shibuta, Hiroyuki Imai, Masahiro Yokomizo, Makoto Tsunashima, Yusuke Maeda, Nobuo Furuya
  • Patent number: 6699589
    Abstract: In carbon reinforcements, in particular when used in carbon-fiber reinforced materials, sulfur-complex forming substances are chemically adsorbed, at least in part, at potential oxidation locations of an hexagonal carbon lattice to provide internal protection against oxidation.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: March 2, 2004
    Inventors: Mathias Woydt, Michael Dogigli
  • Patent number: 6627312
    Abstract: A reinforcing fiber, in particular for fiber composite materials, has a core which is provided with a layer of a pyrolysable binder. A coating of pyrolytic carbon or sugar is provided between the core and the layer fiber strands are provided with reinforcing fibers of this type and fiber strands are coated in this way. Fiber composite materials can be prepared with these reinforcing fibers. Processes for producing reinforcing fibers and composite materials involve coating fiber strands.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: September 30, 2003
    Assignee: DaimlerChrysler AG
    Inventors: Thomas Behr, Gerd Dietrich, Tilmann Haug, Kolja Rebstock, Christian Schwarz, BJörn Spangemacher
  • Patent number: 6544645
    Abstract: Composite wire comprising polycrystalline &agr;-Al2O3 fibers within a matrix of aluminum, or an alloy of aluminum and up to about 2% copper. The resulting materials are characterized by their high strength and low weight are particularly well suited for applications in various industries including high voltage power transmission.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: April 8, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Colin McCullough, Andreas Mortensen, Paul S. Werner, Herve E. Deve, Tracy L. Anderson
  • Patent number: 6534196
    Abstract: The present invention relates to articles, having an extended useful life, which are used in contact with high temperature molten aluminum or molten zinc baths. One aspect of the invention encompasses articles, such as bearings, bushings, couplings or rollers, used in contact with molten aluminum or molten zinc which is coated with a high density coating consisting of a metal selected from Groups Vb, VIb, or VIIb metals (preferably molybdenum or tungsten), in pure or alloyed form. These coatings generally have a thickness of from about 0.06 to about 0.30 inch. Another aspect of the present invention encompasses a roll for guiding steel strip through a high temperature aluminizing bath, which utilizes a multi-layer structure, the first primer layer being a Group Vb, VIb or VIIb metal, preferably tungsten or molybdenum (in pure or alloyed form), the second layer comprising MCrAlY in which M is either nickel or cobalt, and the third layer comprising a refractory metal oxide of Al, Zr, Si or Cr.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: March 18, 2003
    Assignee: Cincinnati Thermal Spray
    Inventor: Robert K. Betts
  • Patent number: 6479144
    Abstract: Polyurethane elastomer yams (particularly spandex) containing certain silver-based antimicrobial formulations therein are provided. This invention relates to polyurethane elastomer yams (particularly spandex) containing certain silver-based antimicrobial formulations therein. Such formulations comprise antimicrobial compounds, such as, preferably, triclosan and/or silver-containing ion-exchange resins, such as zirconium phosphate, glass, and/or zeolite compounds. The inventive spandex yarns exhibit excellent antimicrobial qualities as well as surprisingly good anti-tack/frictional characteristics. As a result, antimicrobial spandex yams are provided which exhibit ease in processing, particularly in further knitting, weaving, etc., to produce fabrics therefrom. Such fabrics are also encompassed within this invention.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: November 12, 2002
    Assignee: Milliken & Company
    Inventors: Randy D. Petrea, Robert L. Schuette, Leland G. Close, Jr., Shirley Anne Whiteside
  • Patent number: 6368687
    Abstract: A low trauma pressure-sensitive adhesive coated substrate comprising a sheet material, tape or laminate structure designed to adhere to skin or like surfaces. The pressure-sensitive adhesive layer of this adhesive coated substrate is a fibrous adhesive layer generally having a basis weight of from 5 to 200 g/m2 applied to a conformable backing or substrate. The fibrous adhesive layer has a textured outer face and persistent porosity between discrete adhesive fibers. Generally, the fibrous adhesive layer has a MVTR (measured by ASTM E 96-80 at 40° C.) of at least 1000 g/m2/day, preferably at least 6000 g/m2/day.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: April 9, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Eugene G. Joseph, Richard Ferber, Donald Battles, Joseph Tucker, James K. Young
  • Publication number: 20020037376
    Abstract: Heat shrinkable compositions comprising metal plated carbon, glass, polymer or metal fibers incorporated into an insulating polymer matrix in an amount effective to shield against EMI and RFI, articles made therefrom and methods of producing such articles.
    Type: Application
    Filed: September 6, 2001
    Publication date: March 28, 2002
    Inventor: Ernest R. Fenton
  • Patent number: 6325875
    Abstract: A metal fiber of titanium or titanium alloy has given equivalent area diameter and specific surface area and is produced by a bundle drawing method wherein mild steel is used as a material for covering layer and outer housing and a composite wire is subjected to a heat treatment at a given temperature.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: December 4, 2001
    Assignee: Bridgestone Metalpha Corporation
    Inventor: Shuji Amamoto
  • Patent number: 6255948
    Abstract: A security device having multiple security features is used with an item, such as a secure document, ticket, label or tag, to authenticate the item and/or encode data pertaining to the item. One example of the security device includes a carrier substrate, a metallic layer disposed on the carrier substrate, and a magnetic layer disposed on the metallic layer in substantial registration with at least a portion of the metallic layer, thereby providing both metallic security features and magnetic security features. The metallic layer and the magnetic layer also form graphic or visually identifiable indicia on the carrier substrate to provide a visual security feature. According to one method, the metallic layer is applied to the carrier substrate, the magnetic layer is applied to the metallic layer, and the layers are etched to form the graphic indicia. The magnetic layer can, in one embodiment, include a magnetic chemical resist that is printed on the metallic layer in the form of the graphic indicia.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: July 3, 2001
    Assignee: Technical Graphics Security Products, LLC
    Inventors: Gary R. Wolpert, Gerald J. Gartner, Stephen B. Curdo, Paul F. Cote
  • Patent number: 6245425
    Abstract: Wire comprising polycrystalline &agr;-Al2O3 fibers within a matrix of substantially pure elemental aluminum, or an alloy elemental aluminum and up to about 2% copper.
    Type: Grant
    Filed: June 21, 1995
    Date of Patent: June 12, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Colin McCullough, Andreas Mortensen, Paul S. Werner, Herve′ E. Dève, Tracy L. Anderson
  • Patent number: 6194068
    Abstract: A wire for a wire saw apparatus for slicing a material includes an element wire, a binder coated on an outside circumferential surface of the element wire, and abrasive grains dispersed in the binder. The element wire is a high tensile strength metal wire, the binder is a material such as an organic or inorganic material other than a metal, and the abrasive grains are held on a surface of the element wire by the binder. The element wire is also made by either a natural quartz glass or a high purity synthesis quartz glass.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: February 27, 2001
    Assignee: Hitachi Cable Ltd.
    Inventors: Seishiro Ohashi, Shinichi Okada, Kenji Asano, Kazunori Suzuki, Masahiro Sakamoto
  • Patent number: 6180232
    Abstract: Overhead high power transmission cable comprising a plurality of wires comprising polycrystalline &agr;-Al2O3 fibers within a matrix of substantially pure elemental aluminum, or an alloy elemental aluminum and up to about 2% copper.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: January 30, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Colin McCullough, Andreas Mortensen, Paul S. Werner, Herve E. Deve, Tracy L. Anderson
  • Patent number: 6096423
    Abstract: A surface-treated metal component for reinforcing structures for manufactured products made of vulcanized elastomeric material, in which the said component is coated with a layer of metal alloy and in which the said alloy is an alloy ZnMoX in which X is a metal chosen from the group comprising cobalt, iron and nickel.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: August 1, 2000
    Assignee: Pirelli Pneumatici S.p.A.
    Inventor: Federico Pavan
  • Patent number: 6068917
    Abstract: A composite metallic wire includes: an inner layer having a cross-sectional shape of a rough circle; and a metal outer layer having a cross-sectional shape of a rough ring; wherein the composite metallic wire has a diameter of 15 .mu.m or less and an electric resistance of 300 .OMEGA./m or less. A composite type magnetic head using as a coil wire a composite wire comprising: (1) a composite metallic wire comprising: an inner layer having a cross-sectional shape of a rough circle; and a metal outer layer having a cross-sectional shape of a rough ring; wherein the composite metallic wire has a diameter of 15 .mu.m or less and an electric resistance of 300 .OMEGA./m or less, and (2) an insulating coat provided in the outer periphery of the outer layer.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: May 30, 2000
    Assignee: NGK Insulators, Ltd.
    Inventors: Nobuo Tsuno, Soichiro Matsuzawa
  • Patent number: 6068918
    Abstract: A corrosion inhibiting composition containing a carrier of an oily or waxy type together with active components including at least one corrosion-inhibitor of the azole-type and a co-corrosion-inhibitor, together with optional water repellants or certain alcohols alone or in admixture. The compositions are suitable for protecting from corrosion steel wire or steel cord composed of several steel filaments.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: May 30, 2000
    Assignee: N.V. Bekhaert S.A.
    Inventors: Jan Marcel Van Der Veer, Hendrik Laurens Mulder, Gerardus Johannes Joseph Streefland, Johan Vanbrabant, Frank Deruyck
  • Patent number: 6041202
    Abstract: A frangible tear strip for toner cartridges used in electro-photographic copying devices, in which bursting strength is increased without making it more difficult for the user to longitudinally tear the strip to create an opening for passage of toner prior to use. This is accomplished by providing multiple areas of transverse reinforcement of the strip either by increased local area fusing of the material, or the lamination of transversely extending reinforcements at spaced intervals. In a preferred embodiment, the reenforcing material extends the entire axial length of the seal. In a further embodiment, the reinforcing material includes a layer of foam material having a rectangular opening overlapping a corresponding opening in a toner cartridge.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: March 21, 2000
    Inventor: Lester Cornelius
  • Patent number: 6030691
    Abstract: An antifalsification paper having a security element in the form of a thread or band that consists of a translucent plastic film with an at least partly opaque coating. The coating has translucent areas in the form of visually and/or machine readable characters or patterns that form first information. In addition second information in the form of visually and/or machine readable characters or patterns is disposed on the plastic film, differing from the first information with respect to its size and/or visual impression.
    Type: Grant
    Filed: August 5, 1997
    Date of Patent: February 29, 2000
    Assignee: Giesecke & Devrient GmbH
    Inventors: Theo Burchard, Christian Schmitz, Michael Bohm
  • Patent number: 6021338
    Abstract: A radiation curable coating composition for superconducting wires including at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator. The coating composition is able to withstand repeated thermal cycling from the ambient temperature to the critical temperature of the superconducting wire and, because the composition is radiation cured, the superconducting wire is not heated, thus avoiding degrading the superconducting wire.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: February 1, 2000
    Assignee: DSM Desotech Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: RE39490
    Abstract: A security device having multiple security features is used with an item, such as a secure document, ticket, label or tag, to authenticate the item and/or encode data pertaining to the item. One example of the security device includes a carrier substrate, a metallic layer disposed on the carrier substrate, and a magnetic layer disposed on the metallic layer in substantial registration with at least a portion of the metallic layer, thereby providing both metallic security features and magnetic security features. The metallic layer and the magnetic layer also form graphic or visually identifiable indicia on the carrier substrate to provide a visual security feature. According to one method, the metallic layer is applied to the carrier substrate, the magnetic layer is applied to the metallic layer, and the layers are etched to form the graphic indicia. The magnetic layer can, in one embodiment, include a magnetic chemical resist that is printed on the metallic layer in the form of the graphic indicia.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: February 20, 2007
    Assignee: Technical Graphics, Inc.
    Inventors: Paul F. Cote, Stephen B. Curdo, Gerald J. Gartner, Gary R. Wolpert