Differing Compositions In Plurality Of Magnetic Layers (e.g., Layer Compositions Having Differing Elemental Components, Different Proportions Of Elements, Etc.) Patents (Class 428/829)
  • Patent number: 11804321
    Abstract: A device including a templating structure and a magnetic layer on the templating structure is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. Further, E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir, D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. The magnetic layer includes at least one of a Heusler compound and an L10 compound, the magnetic layer being in contact with the templating structure.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: October 31, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaewoo Jeong, Panagiotis Charilaos Filippou, Yari Ferrante, Chirag Garg, Stuart Stephen Papworth Parkin, Mahesh Samant
  • Patent number: 10793944
    Abstract: Apparatus for recording data and method for making the same. In accordance with some embodiments, a magnetic layer is supported by a substrate and comprises a magnetic magnetic material, a non-magnetic material, and an energy assisted segregation material. The segregation material enhances segregation of the non-magnetic material into grain boundaries within the layer at an elevated, moderate energy level.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 6, 2020
    Assignee: Seagate Technology LLC
    Inventors: Chun Wang, Connie Liu, Thomas P. Nolan, Kueir-Weei Chour
  • Patent number: 10636633
    Abstract: Provided is a sputtering target with which it is possible to form a magnetic thin film having a high coercive force Hc and a process for production thereof. The sputtering target is a sputtering target comprising metallic Co, metallic Pt, and an oxide, wherein the sputtering target does not contain metallic Cr, and the oxide is WO3 and wherein the sputtering target comprises 25 to 50 at % of metallic Co relative to a total of metallic Co and metallic Pt.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: April 28, 2020
    Assignees: TANAKA KIKINZOKU KOGYO K.K., TOHOKU UNIVERSITY
    Inventors: Kim Kong Tham, Toshiya Yamamoto, Shin Saito, Shintaro Hinata, Migaku Takahashi
  • Patent number: 10276201
    Abstract: Magnetic media having dual phase MgO-X seed layers with both MgO grains and segregants are provided. One such magnetic medium includes a substrate, a heatsink layer on the substrate, a dual phase seed layer on the heatsink layer, where the dual phase seed layer comprises MgO and a segregant, where a concentration of the MgO is greater than 50 percent by volume in the dual phase seed layer, and a magnetic recording layer including FePt on the dual phase seed layer.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: April 30, 2019
    Assignee: WD MEDIA, LLC
    Inventors: Kumar Srinivasan, Tomoko Seki, Rui Zhang, Antony Ajan, Paul C. Dorsey
  • Patent number: 9672855
    Abstract: A perpendicular magnetic recording medium includes at least a nonmagnetic substrate and a magnetic recording layer. The magnetic recording layer is constituted by a plurality of layers that includes at least a first magnetic recording layer and a second magnetic recording layer. The first magnetic recording layer has a granular structure that includes first magnetic crystal grains and first nonmagnetic crystal grain boundaries surrounding the first magnetic crystal grains. The first magnetic crystal grains include an ordered alloy, and the first nonmagnetic crystal grain boundaries are constituted by carbon. The second magnetic recording layer has a granular structure that includes second magnetic crystal grains and a second nonmagnetic crystal grain boundaries that surround the second magnetic crystal grains. The second magnetic crystal grains include an ordered alloy, and the second nonmagnetic crystal grain boundaries are constituted by a carbon-containing nonmagnetic material.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: June 6, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Hiroyasu Kataoka, Hiroto Kikuchi, Akira Furuta, Shinji Uchida, Takehito Shimatsu
  • Patent number: 9607644
    Abstract: A magnetic recording medium having a thick magnetic recording layer of excellent magnetic characteristics is provided. The magnetic recording medium includes a non-magnetic substrate and a magnetic recording layer. The magnetic recording layer includes a plurality of first magnetic recording layers located at odd-numbered positions from the non-magnetic substrate, and one or more second magnetic recording layers located at even-numbered positions from the non-magnetic substrate. The first magnetic recording layers each have a granular structure that has first magnetic crystal grains with an ordered alloy and a first non-magnetic portion surrounding the first magnetic crystal grains and formed of a material having carbon as main component.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: March 28, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tomohiro Moriya
  • Patent number: 9361913
    Abstract: Apparatuses and methods of recording read heads with a multi-layer anti-ferromagnetic (AFM) layer are provided. The AFM layer has gradient Manganese (Mn) compositions. A multi-layer AFM layer comprises a plurality of sub-layers having different Mn compositions. An upper sub-layer has a higher Mn composition than an lower sub-layer. Different types of gases may be used to deposit each sub-layer and the flow of each gas may be adjusted.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: June 7, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yuankai Zheng, Qunwen Leng
  • Patent number: 9245564
    Abstract: According to one embodiment, a soft underlayer structure includes a coupling layer, at least one outer soft underlayer positioned above and below the coupling layer, and at least one inner soft underlayer positioned above and below the coupling layer between the coupling layer and the associated outer soft underlayer, where the inner soft underlayers have a saturation magnetic flux density and/or a thickness that is different than a saturation magnetic flux density and/or a thickness of the outer soft underlayers.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: January 26, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Thomas C. Arnoldussen, Jack Jyh-Kau Chang, Arien M. Ghaderi, Zhupei Shi
  • Patent number: 9240204
    Abstract: A perpendicular magnetic disk is provided. The disk includes, on a base and in the order from bottom, a first granular magnetic layer group including a plurality of magnetic layers each having a granular structure, a non-magnetic layer having Ru or a Ru alloy as a main component, a second granular magnetic layer group including a plurality of magnetic layers each having the granular structure, and an auxiliary recording layer having a CoCrPtRu alloy as a main component. Layers closer to a front surface among the plurality of magnetic layers included in the first granular magnetic layer group having an equal or smaller content of Pt. Layers closer to the front surface among the plurality of magnetic layers included in the second granular magnetic layer group having an equal or smaller content of Pt and having an equal or larger content of an oxide.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: January 19, 2016
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Teiichiro Umezawa, Takenori Kajiwara, Tokichiro Sato
  • Patent number: 9196281
    Abstract: A perpendicular magnetic recording medium is disclosed. The perpendicular magnetic recording medium includes a first layer, and a second layer positioned immediately below the first layer. Among the materials in the first layer and the second layer, if the interface energy when two different materials—material a and material b—are in contact is defined as Ei(a//b), the surface energy when material a exists independently is defined as Es(a), and the energy resulting by subtracting the sum of the respective surface energies (?Es) from the interface energy is defined as G(a//b), then when G(1//3)<G(1//4) holds, either G(2//4) or G(1//3) is the minimum among G(1//3), G(1//4), G(2//3) and G(2//4), and when G(1//3)<G(1//4) does not hold, G(2//4) is the minimum among G(1//3), G(1//4), G(2//3) and G(2//4).
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: November 24, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yuki Inaba, Takayuki Hirose
  • Publication number: 20150138939
    Abstract: In one embodiment, a magnetic media suitable for HAMR recording includes a recording layer having first and second magnetic layers. The first magnetic layer has a first segregant between magnetic grains thereof, the first segregant being primarily C. Moreover, the second magnetic layer is formed above the first magnetic layer. The second magnetic layer has a second segregant between magnetic grains thereof, the second segregant being primarily C and a second component. Additional systems and methods are also described herein.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Oleksandr Mosendz, Simone Pisana, Dieter K. Weller
  • Patent number: 9034492
    Abstract: Systems and methods for controlling the damping of magnetic media for heat assisted magnetic recording are provided. One such system includes a heat sink layer, a growth layer on the heat sink layer, a magnetic recording layer on the growth layer, where the growth layer is configured to facilitate a growth of a preselected crystalline structure of the magnetic recording layer, and a capping magnetic recording layer on the magnetic recording layer, the capping recording layer including a first material configured to increase a damping constant of the capping recording layer to a first preselected level.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: May 19, 2015
    Assignee: WD Media, LLC
    Inventors: Michael L. Mallary, Gerardo A. Bertero, Kumar Srinivasan
  • Publication number: 20150132608
    Abstract: A perpendicular magnetic recording medium includes at least a nonmagnetic substrate and a magnetic recording layer. The magnetic recording layer is constituted by a plurality of layers that includes at least a first magnetic recording layer and a second magnetic recording layer. The first magnetic recording layer has a granular structure that includes first magnetic crystal grains and first nonmagnetic crystal grain boundaries surrounding the first magnetic crystal grains. The first magnetic crystal grains include an ordered alloy, and the first nonmagnetic crystal grain boundaries are constituted by carbon. The second magnetic recording layer has a granular structure that includes second magnetic crystal grains and a second nonmagnetic crystal grain boundaries that surround the second magnetic crystal grains. The second magnetic crystal grains include an ordered alloy, and the second nonmagnetic crystal grain boundaries are constituted by a carbon-containing nonmagnetic material.
    Type: Application
    Filed: December 4, 2014
    Publication date: May 14, 2015
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hiroyasu KATAOKA, Hiroto KIKUCHI, Akira FURUTA, Shinji UCHIDA, Takehito SHIMATSU
  • Patent number: 9028985
    Abstract: A magnetic recording (PMR) disk structure is described. The PMR disk structure may include a magnetic capping layer being substantially free of an oxide, an upper magnetic layer with an oxide content disposed directly below and in contact with the magnetic capping layer, and an upper exchange coupling layer disposed below the upper magnetic layer.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 12, 2015
    Assignee: WD Media, LLC
    Inventors: Mrugesh Desai, Kyongha Kang, Jian Zhou, B. Ramamurthy Acharya
  • Patent number: 9017833
    Abstract: A patterned magnetic media is disclosed. The patterned media includes etched recording portions including etched portions of a soft magnetic underlayer. In illustrated embodiments, the soft magnetic layer is etched to form recording bits or etched soft magnetic segments to enhance magnetic field strength in the magnetic recording portions. In other embodiments, soft magnetic layers are deposited in etched regions or areas of the media.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 28, 2015
    Assignee: Seagate Technology LLC
    Inventors: Mourad Benakli, Michael L. Mallary
  • Patent number: 8993133
    Abstract: A perpendicular magnetic recording (PMR) media including a non-magnetic or superparamagnetic grain isolation magnetic anisotropy layer (GIMAL) to provide a template for initially well-isolated small grain microstructure as well as improvement of Ku in core grains of a magnetic recording layer. The GIMAL composition may be adjusted to have lattice parameters similar to a bottom magnetic recording layer and to provide a buffer for reducing interface strains caused by lattice mismatch between the bottom magnetic recording layer and an underlying layer.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 31, 2015
    Assignee: WD Media, LLC
    Inventors: Shaoping Li, B. Ramamurthy Acharya
  • Patent number: 8988828
    Abstract: A magnetic recording medium includes a substrate, a magnetic layer including an alloy having an L10 type crystal structure, and a plurality of underlayers arranged between the substrate and the magnetic layer. At least one of the plurality of underlayers is a soft magnetic underlayer formed by an alloy having a hexagonal close packed (hcp) structure and including Co metal or Co as its main component, with a (11•0) plane oriented parallel to a surface of the substrate.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 24, 2015
    Assignee: Showa Denko K.K.
    Inventors: Tetsuya Kanbe, Kazuya Niwa, Yuji Murakami, Lei Zhang
  • Patent number: 8980447
    Abstract: A magnetic recording medium is disclosed. The magnetic recording medium includes at least a disc-shaped non-magnetic substrate having a hole at a center, a soft magnetic underlying layer, and a magnetic recording layer. Relative permeability of the soft magnetic underlying layer under a magnetic field having one of the frequencies 100 MHz to 700 MHz increases gradually from a disc outer circumference to a disc inner circumference and a characteristic frequency of the relative permeability increases gradually from the disc inner circumference to the disc outer circumference.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: March 17, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Shinji Uchida
  • Publication number: 20150062745
    Abstract: In one embodiment, a magnetic storage device includes at least one microwave assisted magnetic recording (MAMR) head, each MAMR head including a spin torque oscillator (STO), a magnetic recording medium, a drive mechanism for passing the magnetic medium over the at least one MAMR head, and a controller electrically coupled to the at least one MAMR head for controlling operation of the at least one MAMR head, wherein the magnetic recording medium includes a recording layer positioned directly or indirectly above a substrate and an assist layer positioned above the recording layer, wherein the recording layer includes at least Co, Pt, and an oxide or oxygen, wherein the assist layer is positioned closer to the at least one MAMR head and includes at least Co and Pt, and wherein at least a portion of the recording layer has a smaller anisotropic magnetic field than the assist layer.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Tatsuya Hinoue, Ichiro Tamai, Hiroaki Nemoto
  • Patent number: 8940418
    Abstract: A perpendicular magnetic recording (PMR) media structure with multiple exchange couple composite (ECC) layer structure is described. The PMR disk structure may include multiple soft magnetic layers with intervening hard magnetic layers and in between. The interface between the soft magnetic layers and the hard magnetic layers may be separated by exchange coupled layers.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: January 27, 2015
    Assignee: WD Media, LLC
    Inventor: Johannes van Ek
  • Publication number: 20150009786
    Abstract: A magnetic recording medium includes a substrate, a magnetic layer including an alloy having an L10 type crystal structure, and a plurality of underlayers arranged between the substrate and the magnetic layer. At least one of the plurality of underlayers is a soft magnetic underlayer formed by an alloy having a hexagonal close packed (hcp) structure and including Co metal or Co as its main component, with a (11•0) plane oriented parallel to a surface of the substrate.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 8, 2015
    Inventors: Tetsuya KANBE, Kazuya NIWA, Yuji MURAKAMI, Lei ZHANG
  • Publication number: 20140376127
    Abstract: A magnetic recording medium includes a substrate, a magnetic layer including a FePt alloy having a L10 type structure, and a plurality of underlayers arranged between the substrate and the magnetic layer, wherein at least one of the plurality of underlayers includes TiO2.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 25, 2014
    Inventors: Tetsuya KANBE, Kazuya NIWA, Yuji MURAKAMI, Lei ZHANG
  • Publication number: 20140377590
    Abstract: A magnetic recording medium for heat-assisted magnetic recording is provided. A magnetic recording layer includes upper and lower magnetic recording layers. The lower magnetic recording layer has a lower granular structure including lower magnetic crystal grains, and a lower non-magnetic portion, that surrounds the lower magnetic crystal grains, mainly composed of carbon. The upper magnetic recording layer has an upper granular structure including upper magnetic crystal grains, and an upper non-magnetic portion, that surrounds the upper magnetic crystal grains, formed from a material selected from the group consisting of silicon nitride, titanium oxide and titanium nitride.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Shinji UCHIDA
  • Patent number: 8889275
    Abstract: FePt-based heat assisted magnetic recording (HAMR) media comprising a thick granular FePt:C magnetic recording layer capable of maintaining a single layer film having desirable magnetic properties. According to one embodiment, the thick granular FePt:C magnetic recording layer comprises a plurality of carbon doped FePt alloy columnar grains, where the plurality of carbon doped FePt alloy columnar grains comprise a carbon gradient along the thickness of the hard magnetic recording layer.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 18, 2014
    Assignee: WD Media, LLC
    Inventors: Hua Yuan, Alexander Chernyshov, B. Ramamurthy Acharya
  • Patent number: 8883249
    Abstract: By improving sliding durability while ensuring a high SNR, an improvement in reliability and a further increase in recording density are to be achieved.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: November 11, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Toshiaki Tachibana, Takahiro Onoue, Keiichi Kajita
  • Patent number: 8883327
    Abstract: Provided is a magnetic recording medium achieving both of reduction in switching field distribution and reduction in switching field intensity by high-frequency magnetic field, thus enabling high-density recording. Magnetic grains of the magnetic recording medium are made up of a recording layer and a resonance layer. The resonance layer is disposed closer to a protective layer 5 than the recording layer, and a magnetic material of the recording layer has anisotropy field 1.2 times or more anisotropy field of a magnetic material of the resonance layer. The magnetic material of the recording layer has saturation magnetization substantially equal to saturation magnetization of the magnetic material of the resonance layer. At the entire resonance layer and a part of the recording layer, the magnetic grains are separated from surrounding magnetic grains by a nonmagnetic material, and at a part of the recording layer, the magnetic grains are coupled with surrounding magnetic grains.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 11, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yoshiyuki Hirayama, Masukazu Igarashi, Katsuro Watanabe
  • Patent number: 8871368
    Abstract: A perpendicular magnetic recording medium with SNR improved by reducing noise due to an auxiliary recording layer so that a higher recording density can be achieved. The perpendicular magnetic recording medium 100 includes a base, at least a magnetic recording layer 122 having a granular structure in which a non-magnetic grain boundary portion is formed between crystal particles grown in a columnar shape; a non-magnetic split layer 124 disposed on the magnetic recording layer 122 and containing Ru and oxygen; and an auxiliary recording layer 126 that is disposed on the split layer 124 and that is magnetically approximately continuous in an in-plane direction of a main surface of the base 110.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 28, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Takahiro Onoue, Teiichiro Umezawa, Toshiaki Tachibana, Masafumi Ishiyama
  • Patent number: 8871367
    Abstract: A perpendicular magnetic recording medium includes at least a soft-magnetic underlayer, a non-magnetic underlayer, a ferromagnetic intermediate layer, a non-magnetic intermediate layer, and a perpendicular magnetic recording layer sequentially stacked on a non-magnetic substrate. In an embodiment, the ferromagnetic intermediate layer is formed of a CoCr based alloy, a product Bs·t of a saturation magnetic flux density and film thickness of the ferromagnetic intermediate layer is within a range of 0.15 to 3.6 T·nm, and the non-magnetic intermediate layer has a film thickness of 3 nm or more.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: October 28, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hisato Kato
  • Patent number: 8852677
    Abstract: A method for fabricating a synthetic antiferromagnetic device, includes depositing a magnesium oxide spacer layer on a reference layer having a first and second ruthenium layer, depositing a cobalt iron boron layer on the magnesium oxide spacer layer; and depositing a third ruthenium layer on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0-18 angstroms.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
  • Patent number: 8852762
    Abstract: A synthetic antiferromagnetic device includes a reference layer having a first and second ruthenium layer, a magnesium oxide spacer layer disposed on the reference layer, a cobalt iron boron layer disposed on the magnesium oxide spacer layer and a third ruthenium layer disposed on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0 angstroms to 18 angstroms.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: David W. Abraham, Michael C. Gaidis, Janusz J. Nowak, Daniel C. Worledge
  • Patent number: 8802247
    Abstract: A medium having high medium S/N and excellent corrosion resistance is achieved. In one embodiment, an adhesion layer, a soft magnetic layer, an intermediate layer, a magnetic recording layer, and a protective layer are deposited, in order, on a substrate. The soft magnetic underlayer consists at least of two soft magnetic layers, the first soft magnetic layer formed on the recording layer side being composed of an amorphous alloy containing 85 at. % or less of Co, and the second soft magnetic layer formed on the substrate side being composed of an alloy containing more than 85 at. % of Co.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: August 12, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Hiroyuki Matsumoto, Mitsuhiro Shoda, Reiko Arai, Yuzuru Hosoe, Katsumi Mabuchi
  • Patent number: 8804285
    Abstract: A magnetic recording medium may include an orientation control layer, a lower recording layer, an intermediate layer, and an upper recording layer that are stacked. The lower recording layer may have a coercivity higher than that of the upper recording layer, and the intermediate layer may include a layer including a magnetic material and having a saturation magnetization of 50 emu/cc or higher. The upper recording layer may include columnar crystals continuous with crystal particles forming the intermediate layer in a direction in which the layers are stacked.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Showa Denko K.K.
    Inventors: Hideaki Takahoshi, Daisuke Amiya, Hiroshi Sakai
  • Patent number: 8771848
    Abstract: A bit patterned magnetic recording medium, comprises a non-magnetic substrate having a surface; a plurality of spaced apart magnetic elements on the surface, each of the elements constituting a discrete magnetic domain or bit; and a layer of a ferromagnetic material for regulating magnetic exchange coupling between said magnetic elements. The layer has a saturation magnetization Ms ranging from about 1 to about 2,000 emu/cm3, preferably below about 400 emu/cm3, more preferably below about 200 emu/cm3, and may overlie, underlie, or at least partially fill spaces between adjacent magnetic elements.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: July 8, 2014
    Assignee: Seagate Technology LLC
    Inventors: Erol Girt, Hans J. Richter, Alexander Y. Dobin
  • Publication number: 20140178714
    Abstract: A perpendicular magnetic recording medium having a dual-layer magnetic film is disclosed. The bottom layer is completely exchange decoupled, and the top layer contains a certain amount of exchange coupling optimized for recording performance. Preferably, the bottom magnetic layer contains stable oxide material (for example, TiO2) and other non-magnetic elements (for example, Cr). A method of manufacturing the media is also disclosed.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: Seagate Technology LLC
    Inventors: Zhong Stella Wu, Samuel Dacke Harkness, IV, Mariana Rodica Munteanu, Qixu Chen, Connie Chunling Liu
  • Patent number: 8758911
    Abstract: A perpendicular magnetic recording medium is disclosed that includes a substrate, a main recording layer, a reinforcing layer, and a continuous layer which are overlaid in this order on the substrate. The reinforcing layer is provided between the main recording layer and the continuous layer so as to improve the S/N ratio of the magnetic recording medium and reduce the write fringing effect. The reinforcing layer has a granular structure. The saturation magnetization Ms of the reinforcing layer is higher than the saturation magnetization of the main recording layer.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 24, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Yoshiaki Sonobe, Kong Kim
  • Publication number: 20140139952
    Abstract: According to one embodiment, there is provided a thin magnetic film having a negative anisotropy of ?6Ă—106 erg/cm3 or less and including, on at least a nonmagnetic substrate, at least one seed layer made of a metal or metal compound, a ruthenium underlayer for controlling the orientation of an immediately overlying layer, and a magnetic layer having negative anisotropy in the normal line direction perpendicular to a surface of the magnetic layer and mainly containing Co and Ir, wherein the additive element concentration of Ir in the magnetic layer is 10 (inclusive) to 45 (inclusive) at %.
    Type: Application
    Filed: July 19, 2013
    Publication date: May 22, 2014
    Inventors: Akihiko Takeo, Akira Kikitsu, Tomoyuki Maeda, Migaku Takahashi, Shin Saito, Ken Inoue, Gohei Kurokawa
  • Patent number: 8728637
    Abstract: A corrosion-resistant granular magnetic recording medium with improved recording performance comprises a non-magnetic substrate having a surface; and a layer stack on the substrate surface, including, in order from the surface: a granular magnetic recording layer; an intermediate magnetic de-coupling layer; and a corrosion preventing magnetic cap layer. The intermediate magnetic de-coupling layer has an optimal thickness and/or composition for: (1) promoting magnetic exchange de-coupling between the granular magnetic recording layer and the magnetic cap layer; and (2) reducing the dynamic closure field (Hcl) for determining writeability and eraseability of the medium. Grain boundaries of the magnetic cap layer are substantially oxide-free, and have a greater density and lower average porosity and surface roughness than those of the granular magnetic recording layer.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: May 20, 2014
    Assignee: Seagate Technology LLC
    Inventors: Michael Zyee-Shan Wu, Mason Lu, Kueir W. Chour, Connie C. Liu, Edward T. Yen, Lynn Li, Steve Hwang
  • Patent number: 8722212
    Abstract: A magnetic recording medium includes a non-magnetic granular layer, and a recording layer provided on the non-magnetic granular layer, wherein the recording layer includes a first granular magnetic layer provided on the non-magnetic granular layer, and a second granular magnetic layer provided on the first granular magnetic layer, and a non-magnetic material magnetically separating metal grains of the non-magnetic granular layer is different from a non-magnetic material magnetically separating magnetic grains of the first granular magnetic layer.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: May 13, 2014
    Assignee: Showa Denko K.K.
    Inventors: Ryo Kurita, Satoshi Igarashi, Isatake Kaitsu, Akira Kikuchi
  • Publication number: 20140104724
    Abstract: Provided are a magnetic recording medium suitable for use with a microwave assisted magnetic recording head and suitable for such recording and a method for manufacturing the same. A perpendicular magnetic recording medium includes a recording layer including a plurality of magnetic layers. A magnetic layer as an uppermost layer of the recording layer includes three or more of sub-layers each having thickness of more than 0 and 1 nm or less, the sub-layers including a first sub-layer and a second sub-layer to make up a lamination unit layer, the first sub-layer including, as a major element, 50% or more of at least one type of element selected from the group consisting of Co, Fe and Ni, the second sub-layer including, as a major element, an element different from the major element of the first sub-layer.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 17, 2014
    Applicant: HITACHI, LTD.
    Inventors: Yoshihiro SHIROISHI, Yoshiyuki HIRAYAMA, Hiroshi FUKUDA, Yo SATO
  • Patent number: 8697260
    Abstract: A perpendicular magnetic recording medium having a dual-layer magnetic film is disclosed. The bottom layer is completely exchange decoupled, and the top layer contains a certain amount of exchange coupling optimized for recording performance. Preferably, the bottom magnetic layer contains stable oxide material (for example, TiO2) and other non-magnetic elements (for example, Cr). A method of manufacturing the media is also disclosed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 15, 2014
    Assignee: Seagate Technology LLC
    Inventors: Zhong Stella Wu, Samuel Dacke Harkness, IV, Mariana R. Munteanu, Qixu Chen, Connie Chunling Liu
  • Patent number: 8697261
    Abstract: An object of the present invention is to increase an electromagnetic transducing characteristic (in particular, SNR) by further promoting separation and isolation of magnetic grains of a magnetic recording layer (122) in a perpendicular magnetic recording medium (100).
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 15, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventor: Teiichiro Umezawa
  • Patent number: 8685547
    Abstract: Aspects are directed to recording media with enhanced magnetic properties for improved writability. Examples can be included or related to methods, systems and components that allow for improved writability while reducing defects so as to obtain uniform magnetic properties such as uniformly high anisotropy and narrow switching field distribution. Some examples include a recording medium with an exchange tuning layer inserted between the hard layer and the soft, semi-soft or thin semi-hard layer so as to maximize the writability improvement of the media. Preferably, the exchange tuning layer is granular and reduces or optimizes the vertical coupling between the hard layer and the soft, semi-soft or semi-hard layer of a magnetic recording or storing device.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 1, 2014
    Assignee: Seagate Technology LLC
    Inventors: Bo Bian, Shoutao Wang, Weilu Xu, Abebe Hailu, Miaogen Lu, Charles C. Chen, Thomas Patrick Nolan, Alexander Yulievich Dobin
  • Patent number: 8679654
    Abstract: Surface flatness of magnetic recording medium to which a magnetic recording layer made of L10 FePt magnetic alloy thin film, with distance between a magnetic head and a magnetic recording medium sufficiently reduced. The magnetic recording layer includes: magnetic layers containing a magnetic alloy including Fe and Pt as principal materials; and one non-magnetic material selected from carbon, oxide and nitride. The first magnetic layer disposed closer to a substrate has a granular structure in which magnetic alloy grains including FePt alloy as the principal material are separated from grain boundaries including the non-magnetic material as the principal material. The second magnetic layer disposed closer to the surface than the first magnetic layer is fabricated so as to have a homogeneous structure in which an FePt alloy and the non-magnetic material are mixed in a state finer than diameters of the FePt magnetic alloy grains in the first magnetic layer.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hiroaki Nemoto, Ikuko Takekuma, Kimio Nakamura, Junichi Sayama
  • Patent number: 8658292
    Abstract: Systems and methods for controlling the damping of magnetic media for magnetic recording are described. One such system includes a magnetic media structure for magnetic recording, the media structure including at least one base layer including an interlayer, a bottom magnetic recording layer positioned on the interlayer, and an exchange coupling layer positioned on the bottom layer; and a capping magnetic recording layer positioned on the at least one base layer, the capping recording layer including a first material configured to increase a damping constant of the capping recording layer to a first preselected level.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: February 25, 2014
    Assignee: Western Digital Technologies, Inc.
    Inventors: Michael L. Mallary, Gerardo A. Bertero
  • Patent number: 8647755
    Abstract: Embodiments of the present invention provide a perpendicular magnetic recording medium with less medium noise, excellent overwrite characteristics, and scratch resistance. According to one embodiment, when an Ar gas with addition of a micro-amount of oxygen is used upon forming an upper Ru intermediate layer, a micro-structure of a magnetic layer formed thereon can be formed in a state where no magnetic oxide region is segregated and the magnetic crystal grains are isolated. In this case, a gas pressure for forming the upper intermediate layer is set to 5 Pa or more and 12 Pa or less which is a region much higher compared with 0.5 Pa or more and 1 Pa for the lower Ru intermediate layer.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: February 11, 2014
    Assignee: HGST Netherlands B. V.
    Inventors: Tomoo Yamamoto, Joe Inagaki, Takuya Kojima, Das Sarbanoo
  • Patent number: 8623528
    Abstract: An object of the present invention is to provide a method of manufacturing a perpendicular magnetic recording medium (100) in which both of a coercive force Hc and reliability can be achieved at a higher level even with heating at the time of forming a medium protective layer (126) and to provide the perpendicular magnetic recording medium (100).
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: January 7, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Teiichiro Umezawa, Masafumi Ishiyama, Tokichiro Sato, Kenji Ayama, Takahiro Onoue, Junichi Horikawa
  • Patent number: 8603650
    Abstract: A magnetic disk 10 for use in perpendicular magnetic recording has at least a magnetic recording layer on a substrate 1. The magnetic recording layer is composed of a ferromagnetic layer 5 of a granular structure containing silicon (Si) or an oxide of silicon (Si) between crystal grains containing cobalt (Co), a stacked layer 7 having a first layer containing cobalt (Co) or a Co alloy and a second layer containing palladium (Pd) or platinum (Pt), and a spacer layer 6 interposed between the ferromagnetic layer 5 and the stacked layer 7. After forming the ferromagnetic layer 5 on the substrate 1 by sputtering in an argon gas atmosphere, the stacked layer 7 is formed by sputtering in the argon gas atmosphere at a gas pressure lower than that used when forming the ferromagnetic layer 5.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: December 10, 2013
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Yoshiaki Sonobe, Teiichiro Umezawa, Chikara Takasu
  • Patent number: 8603649
    Abstract: A perpendicular magnetic recording medium includes a magnetic recording layer 22 having a granular structure composed of crystal grains containing cobalt (Co) and grown in a columnar shape and a grain boundary portion comprising a nonmagnetic substance and formed between the crystal grains, and a continuous layer 24 of a thin film magnetically continuous in a film plane direction. The continuous layer 24 includes a plurality of layers 24a and 24b containing cobalt, chromium (Cr), and platinum (Pt). Among the layers, the layer 24a nearer to the magnetic recording layer has a greater chromium content.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: December 10, 2013
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventor: Takahiro Onoue
  • Patent number: 8605555
    Abstract: An energy assisted magnetic recording (EAMR) system includes a magnetic recording medium including a plurality of bi-layers and a magnetic recording layer on the plurality of bi-layers, a magnetic transducer configured to write information to the magnetic recording medium, and a light source positioned proximate the magnetic transducer and configured to heat the magnetic recording medium. Each of the plurality of bi-layers includes a heatsink layer and an amorphous under-layer on the heatsink layer.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 10, 2013
    Assignee: WD Media, LLC
    Inventors: Alexander S. Chernyshov, Hua Yuan, Bogdan Valcu, Antony Ajan, B. Ramamurthy Acharya
  • Patent number: 8592061
    Abstract: In order to provide a magnetic recording medium having excellent electromagnetic conversion characteristics, a magnetic recording medium (10) is provided with a substrate (12), and a magnetic recording layer (20) formed on the substrate (12). The magnetic recording layer (20) is provided with a granular layer (32), i.e., a magnetic layer, including magnetic grains and a nonmagnetic material surrounding the magnetic grains in a section parallel to the main surface of the substrate. The ratio of the long diameter to the short diameter of each magnetic grain contained in the granular layer (32) is calculated in the section. In the histogram of such ratio, a half width at half maximum of the histogram is 0.6 or less and the variance of grain diameters of the magnetic grains in the section is 20% or less of the average grain diameter of the magnetic grains.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: November 26, 2013
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Takahiro Onoue, Akira Shimada