Organic Component Containing Patents (Class 429/306)
  • Patent number: 11631853
    Abstract: Provided is a battery in which the internal resistance is further decreased. The present disclosure provides a battery, comprising a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode. The electrolyte layer includes a first solid electrolyte material. The first solid electrolyte material includes Li, M, and X, and does not include sulfur. M is at least one selected from the group consisting of metalloid elements and metal elements other than Li. X is at least one selected from the group consisting of Cl, Br, and I. The negative electrode includes a negative electrode active material and a sulfide solid electrolyte.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: April 18, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuta Sugimoto, Izuru Sasaki, Tatsuya Oshima, Akinobu Miyazaki
  • Patent number: 11552328
    Abstract: An embodiment is directed to a Li metal or Li-ion battery, including a conversion-type metal fluoride comprising cathode capable of storing and releasing Li ions during battery operation, a conversion-type type or Li metal-type anode capable of storing and releasing Li ions during battery operation, a separator membrane ionically coupling and electronically insulating the cathode and the anode, and a solid electrolyte with a Li transference number in the range from around 0.7 to around 1.0 impregnating at least the cathode, wherein the cathode comprises composite a core-shell particle and has an areal capacity loading that ranges from around 2 mAh/cm2 to around 12 mAh/cm2.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: January 10, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Laura Gerber, Matthew Clark
  • Patent number: 11482759
    Abstract: A lithium ion rechargeable battery comprises: a negative electrode adapted to give up electrons during discharge, a positive electrode adapted to gain electrons during discharge, a microporous separator sandwiched between said positive electrode and said negative electrode, an organic electrolyte being contained within said separator and being in electrochemical communication with said positive electrode and said negative electrode, and an oxidative barrier interposed between said separator and said positive electrode, and thereby preventing oxidation of said separator.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: October 25, 2022
    Assignee: Celgard, LLC
    Inventors: Zhengming Zhang, Pankaj Arora
  • Patent number: 11462765
    Abstract: In an embodiment, a metal-organic framework electrolyte layer, can comprise a plurality of metal-organic frameworks having a porous structure and comprising a solvated salt absorbed in the porous structure; and a polymer. The MOF electrolyte layer can have at least one of a density of less than or equal to 0.3 g/cm3 or a Brunauer-Emmett-Teller surface area of 500 to 4,000 m2/g. A lithium metal battery can comprise the metal-organic framework electrolyte layer.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: October 4, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Fang Dai, Anne M. Dailly, Mei Cai
  • Patent number: 11271193
    Abstract: A method of manufacturing an electrode by disposing a three-dimensional substrate in a metal nitrate solution, drying, and thermally phosphatizing with a phosphorus source under inert gas to form a metal based phosphate catalyst on the substrate. An electrocatalyst and electrode produced via the method are also provided.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: March 8, 2022
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Zhifeng Ren, Shuo Chen, Fang Yu, Haiqing Zhou
  • Patent number: 11233268
    Abstract: The present disclosure provides energy storages devices that include electrodes that comprise an alkali metal. The present disclosure also provides related methods of using and fabricating the disclosed devices.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: January 25, 2022
    Assignee: The Trustees of Columbia University In The City of New York
    Inventors: Yuan Yang, Zeyuan Cao
  • Patent number: 11158860
    Abstract: A lithium battery cell with an internal fuse component and including needed tabs which allow for conductance from the internal portion thereof externally to power a subject device is provided. Disclosed herein are tabs that exhibit sufficient safety levels in combination with the internal fuse characteristics noted above while simultaneously displaying pull strength to remain in place during utilization as well as complete coverage with the thin film metallized current collectors for such an electrical conductivity result. Such tabs are further provided with effective welds for the necessary contacts and at levels that exhibit surprising levels of amperage and temperature resistance to achieve the basic internal fuse result with the aforementioned sufficient conductance to an external device. With such a tab lead component and welded structure, a further improvement within the lithium battery art is provided the industry.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: October 26, 2021
    Assignee: Soteria Battery Innovation Group, Inc.
    Inventors: Brian G Morin, Carl C. Hu
  • Patent number: 11031628
    Abstract: An electrolyte additive composition of the present invention may improve high-rate charge and discharge characteristics and high-temperature storage and life characteristics of a lithium secondary battery when the electrolyte additive composition is used in an electrolyte while including a novel borate-based lithium compound as well as a non-lithiated additive.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: June 8, 2021
    Inventors: Young Min Lim, Chui Haeng Lee, Ha Eun Kim
  • Patent number: 10998579
    Abstract: An electrolyte additive composition of the present invention may improve high-rate charge and discharge characteristics and high-temperature storage and life characteristics of a lithium secondary battery and may achieve an effect of increasing reversible capacity when the electrolyte additive composition is used in an electrolyte while including a novel borate-based lithium compound as well as a lithiated additive.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: May 4, 2021
    Inventors: Young Min Lim, Chul Haeng Lee, Jung Min Lee
  • Patent number: 10998577
    Abstract: An all-solid-state battery includes: a cathode substrate; a cathode portion; a solid electrolyte layer; an anode portion; and an anode substrate. The cathode portion includes a cathode active material, a first solid electrolyte, a conductive material, and a binder, the anode portion is configured by a first anode portion having a pore structure and a second anode portion having metal foil, and the first anode portion includes a second solid electrolyte, a conductive material, and a binder.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: May 4, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Dong Hui Kim, Sang Jin Park, Sung Hoon Lim, Shin Kook Kong, Sang Heon Lee, Sang Mok Park, Hong Seok Min
  • Patent number: 10879559
    Abstract: A method for producing a solid electrolyte comprising feeding a solid electrolyte raw material-containing liquid comprising: a solid electrolyte raw material comprising lithium, phosphorus, sulfur and chlorine; and a solvent, to a liquid or gas medium having a temperature higher than the boiling point of the solvent, thereby evaporating the solvent and reacting the solid electrolyte raw material to precipitate a solid electrolyte having an argyrodite-type crystal structure.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 29, 2020
    Assignee: IDEMITSU KOSAN CO., LTD.
    Inventors: Minoru Senga, Takayoshi Kambara, Katsuhito Kondo, Takashi Umeki, Naoya Masuda
  • Patent number: 10818963
    Abstract: Provided are a solid electrolyte composition containing an inorganic solid electrolyte having ion conductivity of ions of metals belonging to Group I or II of the periodic table, linear structures having an average diameter of 0.001 to 1 ?m, an average length of 0.1 to 150 ?m, a ratio of the average length to the average diameter of 10 to 100,000, and an electric conductivity of 1×10?6 S/m or less, and organic solvents, an electrode sheet for an electric state secondary battery and an all-solid state secondary battery for which the solid electrolyte composition is used, and methods for manufacturing an electrode sheet for an all-solid state secondary battery and an all-solid state secondary battery.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: October 27, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Masaomi Makino, Hiroaki Mochizuki, Tomonori Mimura, Katsuhiko Meguro
  • Patent number: 10707528
    Abstract: The secondary battery includes an electrolyte layer including an electrolytic solution and a polymer compound, a positive electrode, and a negative electrode. The polymer compound includes one or both of a first polymer compound and a second polymer compound. The first polymer compound further includes a first homopolymer and one or both of a second homopolymer and a second copolymer. The second polymer compound further includes a third copolymer and one or both of a fourth homopolymer and a fourth copolymer.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 7, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Izaya Okae, Kazumasa Takeshi, Tadahiko Kubota
  • Patent number: 10629913
    Abstract: The present invention relates to: an electrode assembly having an inorganic porous coating layer formed on the surface of one electrode of an anode and a cathode and having an organic porous coating layer formed on the surface of the other electrode, and since these porous coating layers exhibit a separator function, the electrode assembly has a more improved heat resistance and safety at high temperature without requiring a separate separator; a manufacturing method therefor; and an electrochemical element comprising the electrode assembly.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: April 21, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Sun-Mi Jin
  • Patent number: 10601068
    Abstract: Provided are an electrolyte for a lithium secondary battery and a lithium secondary battery including the electrolyte, wherein the electrolyte further includes a solid salt as an additive, wherein the solid salt contains one type of cation selected from ammonium-based cations and a thiocyanate anion (SCN?). According an embodiment, the lithium secondary battery may have improved life characteristics by providing the electrolyte containing the additive.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: March 24, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Joo Hwan Koh, Jong Ho Jeon, Jin Hee Kim, Sung Nim Jo, Tae Hwan Yu, Jung Joo Cho
  • Patent number: 10535895
    Abstract: A sulfide solid electrolyte material comprises phosphorus and sulfur. With regard to the sulfide solid electrolyte material, x satisfies 0.00926?x?0.37, where a first peak is a peak in a range of not less than 87.5 ppm and not more than 88.5 ppm, the peak being determined by Gaussian curve fitting of a 31P-NMR spectrum, a second peak is a peak in a range of not less than 84.2 ppm and not more than 85.2 ppm, the peak being determined by Gaussian curve fitting of the 31P-NMR spectrum, and a ratio of integrated intensity of the first peak to integrated intensity of the second peak is represented by x:1?x.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 14, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Izuru Sasaki
  • Patent number: 10466306
    Abstract: (A) A used battery pack is prepared. (B) By disassembling the used battery pack, a cell etc. is collected from the used battery pack. The cell etc. are a nickel-metal hydride battery. (C) A state of charge of the collected cell etc. is adjusted to a state of charge within any of a first SOC range (0 to 3%), a second SOC range (3 to 20%), and a third SOC range (100 to 200%). (G) An amount of voltage lowering as a result of the cell etc. being left is calculated. (H) When the amount of voltage lowering is equal to or smaller than a reference value set in advance, the cell etc. is determined as a good product. (I) A battery pack including the cell etc. determined as the good product is manufactured.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 5, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuya Kodama, Masahiko Mitsui, Junta Izumi
  • Patent number: 10454136
    Abstract: A polymer electrolyte according to the invention is represented by the following formula (1). In the formula (1), R1 and R2 are each independently hydrogen or CH3, R3 is any of C2H4, CH(CH3)CH2, and (CH2)3, m and n are each a copolymerization ratio of a structural unit in parentheses, and when m and n are set as follows: m+n=10, m and n satisfy the following formulae: 1?m?5 and 5?n?9, and p is 2 or more and 8 or less.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: October 22, 2019
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Hitoshi Yamamoto, Tomofumi Yokoyama
  • Patent number: 10439252
    Abstract: It is an object of the present invention to provide an electrochemical device having an electrolytic solution having high current density, as well as high safety, where dissolution and deposition of magnesium progress repeatedly and stably. Furthermore, the present invention relates to an electrolytic solution for an electrochemical device, comprising (1) a supporting electrolyte comprising a magnesium salt, and (2) at least one or more kinds of the compound represented by following general formula (I) (wherein n represents an integer of 0 to 6, and n pieces of R1 and n pieces of R2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a halogenoalkyl group having 1 to 6 carbon atoms.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: October 8, 2019
    Assignee: FUJIFILM Wako Pure Chemical Corporation
    Inventors: Tsutomu Watahiki, Takahiro Kiyosu, Kazuhiko Sato, Goro Mori, Kuniaki Okamoto
  • Patent number: 10396362
    Abstract: Provided is an electrode active material slurry including a clustered complex and a slurry, wherein the clustered complex includes an electrode active material, a solid electrolyte, a conductive material, and a first binder, and the slurry includes a solvent and a second binder. The electrode active material slurry may include the clustered complex including the first binder and the slurry including the second binder so as to decrease a surface area of the overall complex, such that adhesion property with the current collector may be sufficiently secured even by using a small amount of binder, and performance of the all-solid secondary battery may be further improved.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: August 27, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Industry-University Cooperation Foundation Hanyang University
    Inventors: Yong Sub Yoon, Hong Seok Min, Kyung Su Kim, Oh Min Kwon, Dong Wook Shin, Sung Woo Noh, Lak Young Choi
  • Patent number: 10297859
    Abstract: An all-solid-state secondary battery includes a positive electrode active substance layer; a negative electrode active substance layer; and an inorganic solid electrolyte layer, in which at least one of the positive electrode active substance layer, the negative electrode active substance layer, or the inorganic solid electrolyte layer contains an inorganic solid electrolyte having conductivity of ions of metal belonging to Group 1 or 2 of the periodic table and a cellulose polymer.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: May 21, 2019
    Assignee: FUJIFILM Corporation
    Inventors: Hiroaki Mochizuki, Tomonori Mimura, Masaomi Makino, Katsuhiko Meguro
  • Patent number: 10283765
    Abstract: Provided are an energy storage device including an electrode in which lithium is introduced into a silicon layer and a method for manufacturing the energy storage device. A silicon layer is formed over a current collector, a solution including lithium is applied on the silicon layer, and heat treatment is performed thereon; thus, at least lithium can be introduced into the silicon layer. By using the solution including lithium, even when the silicon layer includes a plurality of silicon microparticles, the solution including lithium can enter a space between the microparticles and lithium can be introduced into the silicon microparticles which are in contact with the solution including lithium. Moreover, even when the silicon layer is a thin silicon film or includes a plurality of whiskers or whisker groups, the solution can be uniformly applied; accordingly, lithium can be included in silicon easily.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: May 7, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 10177378
    Abstract: Embodiments of the present invention relate to battery electrodes incorporating composites of graphene and selenium-sulfur compounds for improved rechargeable batteries. In one embodiment, a conductive composition comprises a conductive composition having a Se—S compound, a conductive additive. The Se—S compound is present as SexS8-x, wherein 0<x<8.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: January 8, 2019
    Inventors: Ilhan A. Aksay, Daniel Dabbs, Michael A. Pope
  • Patent number: 10103383
    Abstract: Provided are a transition metal mixed hydroxide comprising an alkali metal other than Li, SO4 and a transition metal element, wherein the molar ratio of the molar content of the alkali metal to the molar content of the SO4 is not less than 0.05 and less than 2, and a lithium mixed metal oxide obtained by calcining a mixture of the transition metal mixed hydroxide and a lithium compound by maintaining the mixture at a temperature of 650 to 1000° C.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 16, 2018
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kenji Takamori, Hiroshi Inukai, Taiga Obayashi
  • Patent number: 10084202
    Abstract: A sulfide solid electrolyte material having high Li ion conductivity can be obtained by providing a method for producing a sulfide solid electrolyte material that has peaks at 2?=20.2° and 2?=23.6° in an X ray diffraction measurement using a CuK? ray, the method including steps of: an amorphizing step of obtaining sulfide glass by amorphization of a raw material composition that contains at least Li2S, P2S5, LiI and LiBr and a heat treatment step of heating the sulfide glass at a temperature of 195° C. or higher.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: September 25, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomoya Suzuki, Shigenori Hama, Naoki Osada
  • Patent number: 10044065
    Abstract: A polymer to be used as a binder for sulfur-based cathodes in lithium batteries that includes in its composition electrophilic groups capable of reaction with and entrapment of polysulfide species. Beneficial effects include reductions in capacity loss and ionic resistance gain.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 7, 2018
    Assignee: Seeo, Inc.
    Inventors: Russell Clayton Pratt, Hany Basam Eitouni, Kulandaivelu Sivanandan
  • Patent number: 9988519
    Abstract: A liquid crystalline polymer composition having a reduced tendency to create a static electric charge during a molding operation is provided. More particularly, the composition contains an ionic liquid that is distributed within a liquid crystalline polymer matrix. In addition to being electrically conductive, the ionic liquid can exist in liquid form during melt processing, which allows it to be more uniformly blended within the liquid crystalline polymer matrix. This improves electrical connectivity and thereby enhances the ability of the composition to rapidly dissipate static electric charges from its surface.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: June 5, 2018
    Assignee: Ticona LLC
    Inventor: Young Shin Kim
  • Patent number: 9985327
    Abstract: An air secondary battery has a positive electrode to which an oxygen-containing gas is supplied, a negative electrode containing a metal active material, and an electrolytic solution through which a metal ion generated from the metal active material is transported. The positive electrode contains a composite containing a matrix and a zeolite disposed in the matrix. The matrix is in the form of a porous body which the electrolytic solution permeates. In the matrix, the zeolite has an oxygen-containing gas passage through which only the oxygen-containing gas can flow.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: May 29, 2018
    Assignees: HONDA MOTOR CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Tetsuya Koido, Akihiro Kushima, Yoshiya Fujiwara, Ju Li
  • Patent number: 9923237
    Abstract: A polymer to be used as a binder for sulfur-based cathodes in lithium batteries that includes in its composition electrophilic groups capable of reaction with and entrapment of polysulfide species. Beneficial effects include reductions in capacity loss and ionic resistance gain.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: March 20, 2018
    Assignee: Seeo, Inc.
    Inventors: Russell Clayton Pratt, Hany Basam Eitouni, Kulandaivelu Sivanandan
  • Patent number: 9882239
    Abstract: Provided are a composition for a gel polymer electrolyte including i) an electrolyte solution solvent, ii) an ionizable lithium salt, iii) a polymerization initiator, and iv) a monomer having a functional group bondable to metal ions, and a lithium secondary battery including the composition for a gel polymer electrolyte. In a case where the composition for a gel polymer electrolyte of the present invention is used in a lithium secondary battery, since the movement of metal ions dissolved from a cathode to an anode may be prevented or the precipitation of metal on the anode may be reduced, the lifetime of the battery may not only be improved but capacity characteristics of the battery may also be excellent even in the case in which the battery is charged at a high voltage as well as normal voltage.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: January 30, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Sung Hoon Yu, Doo Kyung Yang, Sun Sik Shin, Song Taek Oh, Yoo Sun Kang, Kyung Mi Lee, Jin Hyun Park, Jung Don Suk
  • Patent number: 9806313
    Abstract: A coated method for the preparation of a separator comprising multiple layers of glass or glass and ceramic particles for use in an electrochemical cell, an electrochemical cell comprising such a separator and the use of such an electrochemical cell. The method comprises the steps of providing a mixture of an organic polymeric material, glass or glass and ceramic particles and at least one solvent, and preparing a multilayer by phase inversion.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: October 31, 2017
    Assignee: Leclanche'
    Inventors: Pierre Blanc, Hilmi Buqa
  • Patent number: 9726480
    Abstract: A recognition method for a battery cell package and a structure thereof includes: a) providing a plurality of battery cells arranged in a stack or in a wrapped roll; b) providing a tape, an isolation film or an electrode slat having a shape recognition structure; c) providing a packaging bag; d) placing the tape, the isolation film or the electrode slat at an outer layer of the battery cells; and e) placing the plurality of battery cells into the packaging bag and drawing an air out of the packaging bag such that an outer surface of the packaging bag reveals the shape recognition structure of the tape, the isolation film or the electrode slat. Therefore, the specifications and models of the battery cell packages can be determined with ease to facilitate the categorization and storage of the battery cell packages.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: August 8, 2017
    Assignee: AMITA TECHNOLOGIES INC LTD.
    Inventors: Jing-Yih Cherng, Po-Min Chuang, Chia-Ching Lin
  • Patent number: 9680135
    Abstract: A pouch-type flexible film battery, including: (a) a cathode structure including a cathode pouch, a cathode conductive carbon layer, and a cathode layer; (b) an anode structure including an anode pouch, an anode conductive carbon layer, and an anode layer; and (c) a polymer electrolyte layer that is provided between the cathode and anode structures, that is bonded to the cathode layer and to the anode layer, and that is a gel-type electrolyte having adhesive properties and including a cellulose-based polymer.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: June 13, 2017
    Assignee: INTELLECTUAL DISCOVERY CO., LTD.
    Inventors: Young-Gi Lee, Kwang Man Kim, Min Gyu Choi, Kunyoung Kang
  • Patent number: 9570727
    Abstract: A battery separator is a microporous membrane. The membrane has a major volume of a thermoplastic polymer and a minor volume of an inert particulate filler. The filler is dispersed throughout the polymer. The membrane exhibits a maximum Z-direction compression of 95% of the original membrane thickness. Alternatively, the battery separator is a microporous membrane having a TMA compression curve with a first substantially horizontal slope between ambient temperature and 125° C., a second substantially horizontal slope at greater than 225° C. The curve of the first slope has a lower % compression than the curve of the second slope. The curve of the second slope is not less than 5% compression. The TMA compression curve is graphed so that the Y-axis represents % compression from original thickness and the X-axis represents temperature.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: February 14, 2017
    Assignee: Celgard LLC
    Inventors: Zhengming Zhang, Khuy V. Nguyen, Pankaj Arora, Ronald W. Call, Donald K. Simmons, Tien Dao
  • Patent number: 9490504
    Abstract: A lithium secondary battery 100 is configured such that an electrode body 20, in which a cathode and an anode are stacked via a separator impregnated with an electrolyte, is housed in a battery case 10 having a substantially cylindrical square shape and that an opening 12 of the case 10 is blocked by a lid 14. Further, the lid 14 is provided with a cathode terminal 38 and an anode terminal 48, and such terminals are respectively connected, inside the battery case 10, to an internal cathode collection terminal 37 and an internal anode collection terminal 47. A non-aqueous electrolyte used for the lithium secondary battery 100 contains, as a specific compound, for example, LiBOB, and an initial content of such specific compound relative to a capacitance of the anode is 0.04 to 0.5 [(mol/kg)/(mF/cm2)].
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 8, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Onizuka, Tomohiro Nakano
  • Patent number: 9478794
    Abstract: A secondary battery including a cathode having a primary cathode active material and an alkaline source material selected from the group consisting of Li2O, Li2O2, Li2S, LiF, LiCl, Li2Br, Na2O, Na2O2, Na2S, NaF, NaCl, and a mixture of any two or more thereof; an anode having an anode active material; an electrolyte; and a separator.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: October 25, 2016
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Huiming Wu, Khalil Amine, Ali Abouimrane
  • Patent number: 9472827
    Abstract: A main object of the present invention is to provide a solid electrolyte layer having flexibility, in which ion conductivity is inhibited from decreasing. The present invention attains the above-mentioned object by providing a solid electrolyte layer including a sulfide solid electrolyte material not having cross-linking sulfur substantially and a branched polymer for binding the above-mentioned sulfide solid electrolyte material.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: October 18, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Suyama, Shigenori Hama, Satoshi Wakasugi
  • Patent number: 9447242
    Abstract: A polybenzimidazole solution comprises a polybenzimidazole dissolved in an ionic liquid excluding 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium hydroxide, and 1-butyl-3-methylimidazolium tetrafluoroborate.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: September 20, 2016
    Assignee: PBI Performance Products, Inc.
    Inventors: Bobby G. Dawkins, Barrie Davies, Gregory S. Copeland, William L. Lawson, III
  • Patent number: 9252459
    Abstract: A nonaqueous electrolyte of the present invention includes an ionic liquid including a first alicyclic quaternary ammonium cation having one or more substituents, a second alicyclic quaternary ammonium cation having an alicyclic skeleton that is the same as an alicyclic skeleton of the first alicyclic quaternary ammonium cation, and a counter anion to the first alicyclic quaternary ammonium cation and the second alicyclic quaternary ammonium cation and an alkali metal salt. In the second alicyclic quaternary ammonium cation, one of substituents bonded to a nitrogen atom in the alicyclic skeleton is a substituent including a halogen element. In the ionic liquid, the amount of a salt including the second alicyclic quaternary ammonium cation is less than or equal to 1 wt % per unit weight of the ionic liquid, or is less than or equal to 0.8 wt % per unit weight of the nonaqueous electrolyte.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 2, 2016
    Assignee: Semiconductor Energy Co., Ltd.
    Inventors: Toru Itakura, Kyosuke Ito, Rie Yokoi, Jun Ishikawa
  • Patent number: 9093696
    Abstract: An accumulator assembly comprising a plurality of electrical energy accumulator elements (12) superposed on a stacking axis and each comprising connecting electrodes (18, 20), wherein it comprises at least one electrically conductive spacer (22) arranged axially between the connecting electrodes of two adjacent accumulator elements and electrically linked to at least one of said elements, and at least one connecting plug (33) mounted inside a void (30) of the conductive spacer and linked to an electric cable (31) for a voltage measurement.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: July 28, 2015
    Assignees: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, Michelin Recherche et Technique S.A.
    Inventors: Olivier Joye, Thierry Auguet
  • Patent number: 9059369
    Abstract: A method for manufacturing a transparent conductive film that can reduce a heating time of crystallizing an amorphous layer containing an indium-based complex oxide is provided. The method for manufacturing a transparent conductive film according to the present invention includes a first step of laminating an amorphous layer formed of an indium-based complex oxide on a first side of a film base material having a thickness of 10 to 50 ?m, a second step of forming a transparent conductive layer by heating the film base material on which the amorphous layer is laminated to 160° C. or above to crystallize the amorphous layer during a process of conveying the film base material from a feed roller and taking up the film base material on a take-up roller, and a third step of forming an adhesive layer on a second side of the film base material.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 16, 2015
    Assignee: NITTO DENKO CORPORATION
    Inventors: Yuka Yamazaki, Tomotake Nashiki
  • Publication number: 20150147660
    Abstract: An all solid secondary battery including a positive electrode layer; a negative electrode layer; and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, wherein at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer includes a solid electrolyte including a first binder that is insoluble in a non-polar solvent and is non-continuously present in at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, and a second binder that is soluble in non-polar solvent and is continuously present in at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, wherein a solubility parameter of the first binder and a solubility parameter of the second binder are different from each other.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Satoshi FUJIKI, Yuichi AIHARA, Hajime TSUCHIYA
  • Publication number: 20150140442
    Abstract: The electrolyte material includes a polymer, a salt, and a solvent. The electrolyte material has a viscosity in the range from about 3.0 cP to about 20.0 cP such that the electrolyte material can be applied to a substrate using an ink jet print head.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventors: Theodore F. Cyman, JR., Kevin J. Hook, Pamela Geddes, Alan R. Murzynowski, James W. Blease, Daniel E. Kanfoush
  • Publication number: 20150132660
    Abstract: The present invention concerns electrode materials capable of redox reactions by electron and alkali-ion exchange with an electrolyte. The applications are in the field of primary (batteries) or secondary electrochemical generators, supercapacitors and light modulating systems of the electrochromic type.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: Nathalie Ravet, Simon Besner, Martin Simoneau, Alain Vallee, Michel Armand, Jean-Francois Magnan, Karim Zaghib
  • Publication number: 20150132661
    Abstract: A porous electrolytic composite membrane for electrochemical energy systems, such as alkaline fuel cells, metal-air batteries and alkaline electrolyzers, comprises a porous polymeric material and nanomaterials. The polymeric material is preferably polybenzimidazole (PBI). The nanomaterials are preferably functionalized or non-functionalized. The nanomaterials are preferably titania nanotubes and/or graphene oxide nanosheets. The membrane further comprises an electrolyte solution, such as KOH. A method of preparing the membrane is also provided.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 14, 2015
    Inventors: Zhongwei CHEN, Michael FOWLER, Hadis ZARRIN
  • Patent number: 9017864
    Abstract: Provided is a secondary battery exhibiting excellent durability. Also disclosed is an electrolyte possessing a porous particle, an ionic liquid and a supporting electrolyte salt, wherein the electrolyte has a dynamic elastic modulus of at least 105 Pa.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 28, 2015
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Akiyoshi Kimura, Emiko Mikoshiba
  • Patent number: 8993175
    Abstract: A polymer electrolyte including: a lithium salt; an organic solvent; a fluorine compound; and a polymer of a monomer represented by Formula 1 below. H2C?C—(OR)n—OCH?CH2??Formula 1 In Formula 1, R is a C2-C10 alkylene group, and n is in a range of about 1 to about 1000.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: March 31, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-sik Hwang, Han-su Kim, Jae-man Choi, Moon-seok Kwon
  • Patent number: 8986893
    Abstract: Disclosed is a battery including: a positive electrode; a negative electrode; and an electrolyte including a fluidic electrolyte in which an electrolytic solution containing a solvent and an electrolyte salt is present while maintaining fluidity, and a non-fluidic electrolyte in which an electrolytic solution containing a solvent and an electrolyte salt is supported by a polymeric material.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: March 24, 2015
    Assignee: Sony Corporation
    Inventors: Ichiro Yamada, Tomoyuki Shiratsuchi, Toru Odani
  • Patent number: 8974974
    Abstract: A solid-state electrolyte for rechargeable lithium batteries. The solid state electrolyte comprises a large unsaturated aromatic anion and a lithium charge carrier. The large unsaturated aromatic anion is selected from a di-lithium phthalocyanine and a di-lithium porphyrin, wherein one of the lithium ions of the unsaturated aromatic anion is replaced with a nitrogenous cation.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 10, 2015
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Lawrence G. Scanlon, Jr., Joseph P. Fellner, William A. Feld, Leah R. Lucente, Jacob W. Lawson
  • Publication number: 20150064538
    Abstract: In various embodiments an improved binder composition, electrolyte composition and a separator film composition using discrete carbon nanotubes. Their methods of production and utility for energy storage and collection devices, like batteries, capacitors and photovoltaics, is described. The binder, electrolyte, or separator composition can further comprise polymers. The discrete carbon nanotubes further comprise at least a portion of the tubes being open ended and/or functionalized. The utility of the binder, electrolyte or separator film composition includes improved capacity, power or durability in energy storage and collection devices. The utility of the electrolyte and or separator film compositions includes improved ion transport in energy storage and collection devices.
    Type: Application
    Filed: June 21, 2013
    Publication date: March 5, 2015
    Inventors: Clive P. Bosnyak, Kurt W. Swogger, Milos Marinkovic