One Of The Organic Solvents Contains A Hetero Ring Patents (Class 429/327)
  • Patent number: 11978893
    Abstract: A cathode active material for a lithium secondary battery includes a lithium metal oxide particle and a thio-based compound formed on at least portion of a surface of the lithium metal oxide particle. The thio-based compound has a double bond that contains a sulfur atom. Chemical stability of the lithium metal oxide particle may be improved and surface residues may be reduced by the thio-based compound.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: May 7, 2024
    Assignee: SK ON CO., LTD.
    Inventors: Jik Soo Kim, Sang Bok Kim, Hyo Shin Kwak, Myoung Lae Kim, Se Rah Moon, Jin Seok Seo, Mi Jung Noh, Duck Chul Hwang
  • Patent number: 11973188
    Abstract: A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The non-aqueous electrolyte contains a lithium salt and a carboxylic acid, and the lithium salt includes lithium difluorophosphate. The content of the carboxylic acid in the non-aqueous electrolyte is 5 ppm or more and 900 ppm or less with respect to the mass of the non-aqueous electrolyte.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: April 30, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasuko Nozaki, Tasuku Ishiguro, Tomohisa Okazaki
  • Patent number: 11870033
    Abstract: A solid polymer electrolyte and a method of manufacturing the same are provided. More particularly, a solid polymer electrolyte having a high content of solids and exhibiting a flame retardant property and a method of manufacturing the same, wherein the solid polymer electrolyte includes a multifunctional acrylate-based polymer, a C2 to C10 polyalkylene oxide, a lithium salt and a non-aqueous solvent and wherein the multifunctional acrylate-based polymer is cross-linked with the polyalkylene oxide to form a semi-interpenetrating polymer network (semi-IPN).
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: January 9, 2024
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Daeil Kim, Jonghyun Chae
  • Patent number: 11830980
    Abstract: A quaternary hexahydrotriazine ionic liquid compound additive useful for reducing battery resistance and improving cycle life stability and high-temperature performance; an electrolyte containing the quaternary hexahydrotriazine ionic liquid compound additive suitable for use in electrochemical energy storage devices; and an electrochemical energy storage device incorporating the electrolyte including the quaternary hexahydrotriazine ionic liquid compound additive are described.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: November 28, 2023
    Assignee: NOHMS Technologies, Inc.
    Inventors: Surya S. Moganty, Rutvik Vaidya, John Sinicropi, Yue Wu, Gabriel Torres
  • Patent number: 11329321
    Abstract: A lithium ion secondary battery having high energy density and being excellent in cycle characteristics is provided. The present invention relates to a lithium ion secondary battery comprising: a negative electrode active material comprising a material comprising silicon as a constituent element; and an electrolyte solution comprising: a non-aqueous solvent comprising a fluorinated ether compound, an open-chain sulfone compound, and a cyclic carbonate compound, and a supporting salt comprising LiPF6, lithium bis(fluorosulfonyl)imide, and lithium bis(oxalato)borate (LiBOB); wherein the content of LiBOB in the electrolyte solution is 0.2 mass % or more.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: May 10, 2022
    Assignee: NEC CORPORATION
    Inventors: Takehiro Noguchi, Takuya Hasegawa, Ikiko Shimanuki, Daisuke Kawasaki
  • Patent number: 11239456
    Abstract: A composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode are provided. The composite cathode active material includes a core including a lithium metal oxide and a coating layer on the core, wherein the lithium metal oxide includes two or more transition metals including nickel (Ni), an amount of Ni within one mole of the two or more transition metals included in the lithium metal oxide is about 0.65 mol or greater, the coating layer includes LiF, and a resistance of the composite cathode active material is lower than that of the core.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: February 1, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yumi Song, Seonyoung Kwon, Kihyun Kim, Soohyeon Kim, Jinhwa Kim, Joongho Moon, Jaeho Lee, Kwanghwan Cho, Soonbong Choi, Mingzi Hong
  • Patent number: 10320032
    Abstract: Provided is an organic electrolyte solution that includes a lithium salt, an organic solvent, and a sulfonate ester-based compound represented by Formula 1: R2—O—S(?O)2—R1??<Formula 1> wherein, in Formula 1, R1 may be a C1-C20 alkyl group that is unsubstituted or substituted with halogen, a C5-C20 cycloalkyl group that is unsubstituted or substituted with halogen, a C6-C40 aryl group that is unsubstituted or substituted with halogen, or a C2-C40 heteroaryl group that is unsubstituted or substituted with halogen, and R2 may be a substituted or unsubstituted cyclic sulfone group.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: June 11, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: AeRan Kim, MiYoung Son, HyunBong Choi, MyungHeui Woo, SeungTae Lee, HaRim Lee, AeHui Goh, WooCheol Shin
  • Patent number: 10103406
    Abstract: A lithium secondary battery includes a thick-film negative electrode having a current density of about 4.0 mA/cm2 to about 7.0 mA/cm2 and a low-viscosity electrolytic solution having a viscosity of about 3 cP or less. Since the electrolytic solution includes a propionate-based ester compound, impregnation of the electrolytic solution in electronic devices having a thick-film negative electrode and lifespan characteristics of the devices may be improved.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: October 16, 2018
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Eunyoung Goh, Jiwoon Lee, Jinhyon Lee, Jongki Lee, Kiyoung Jeong, Minje Park, Jeong-Ju Cho, Jongho Jeon
  • Patent number: 9368835
    Abstract: Disclosed are an electrolyte for a secondary battery, and a secondary battery including the same, the electrolyte including an electrolyte salt; an electrolyte solvent; and a compound generating heat through oxidation at voltages higher than drive voltage of a cathode, wherein the compound can decompose or evaporate electrolyte components by oxidation heat, thereby causing gas generation. Also, the compound is included in an internal pressure increase accelerant for a battery. Upon overcharge, since a compound subjected to oxidation at voltages higher than normal drive voltage of a cathode generates heat, electrolyte components can be decomposed or evaporated, thereby generating gas by the oxidation heat. Accordingly, it is possible to operate a safety means of a battery, without using an internal pressure increasing material directly generating gas through oxidation at overcharge voltage as the electrolyte additive, and thus to improve the overcharge safety of a secondary battery.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: June 14, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Miyoung Son, Jeong-Ju Cho, Hochun Lee, Joomi Jeon, Sunghoon Yu
  • Patent number: 9017883
    Abstract: The present invention discloses a rechargeable lithium battery including a positive electrode, a negative electrode including lithium titanate represented by Chemical Formula 1, and an electrolyte impregnating the positive and negative electrodes and including a sultone-based compound and maleic anhydride, wherein the sultone-based compound and the maleic anhydride are respectively included in an amount of about 0.5 wt % to about 5 wt % based on the total weight of the electrolyte. Chemical Formula 1: Li4?xTi5+x?yMyO12. In Chemical Formula 1, M is an element selected from Mg, V, Cr, Nb, Fe, Ni, Co, Mn, W, Al, Ga, Cu, Mo, P, or a combination thereof, 0?x?1, 0?y?1.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 28, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Su-Hee Han
  • Patent number: 9005821
    Abstract: A nonaqueous electrolyte secondary battery includes: a positive electrode; a negative electrode; and a nonaqueous electrolyte, wherein an open circuit voltage in a completely charged state per pair of a positive electrode and a negative electrode is from 4.25 to 6.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: April 14, 2015
    Assignee: Sony Corporation
    Inventors: Toru Odani, Tadahiko Kubota
  • Patent number: 9005822
    Abstract: Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: April 14, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Lu Zhang, Zhengcheng Zhang, Khalil Amine
  • Publication number: 20150084604
    Abstract: An improved lithium-sulfur battery containing a surface-functionalized carbonaceous material. The presence of the surface-functionalized carbonaceous material generates weak chemical bonds between the functional groups of the surface-functionalized carbonaceous material and the functional groups of the polysulfides, which prevents the polysulfide migration to the battery anode, thereby providing a battery with relatively high energy density and good partial discharge efficiency.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER, Ernest NDZEBET, Umamaheswari JANAKIRAMAN
  • Publication number: 20150086878
    Abstract: The present invention provides non-aqueous electrolyte solution for a lithium secondary battery, comprising an ester-based compound having a branched-chain alkyl group and an ester-based compound having a straight-chain alkyl group; and a lithium secondary battery using the same.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Hoon YU, Doo-Kyung YANG, Jong-Ho JEON, Min-Jung JOU
  • Patent number: 8968938
    Abstract: Disclosed are a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 10-40 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte. Also disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and an anode having formed thereon a coating layer containing a decomposition product of the compound of Formula 1. Moreover, disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and a non-aqueous electrolyte containing the compound of Formula 1 or its decomposition product.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: March 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn, Joon Sung Bae, Cha Hun Ku, Soo Hyun Ha, Duk Hyun Ryu, Sei Lin Yoon
  • Patent number: 8962754
    Abstract: A nonaqueous electrolyte and a lithium ion battery with reduced temporal variations in battery characteristics from initial values are provided. A mixed solution is prepared by dissolving a lithium salt such as LiPF6 in a nonaqueous solvent such as ethylene carbonate. Allylboronate ester and siloxane are mixed with the mixed solution. The content of the allylboronate ester is 1 wt % or less. The content of the siloxane is 2 wt % or less. 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane is used as the allylboronate ester. At least one kind selected from hexamethyldisiloxane and 1,3-divinyltetramethyldisiloxane is used as the siloxane.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: February 24, 2015
    Assignee: Shin-Kobe Electric Machinery Co., Ltd.
    Inventors: Hiroshi Haruna, Shingo Itoh
  • Patent number: 8951664
    Abstract: An ionic liquid having high electrochemical stability and a low melting point. An ionic liquid represented by the following general formula (G0) is provided. In the general formula (G0), R0 to R5 are individually any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, a methoxyethyl group, and a hydrogen atom, and A? is a univalent imide-based anion, a univalent methide-based anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate, or hexafluorophosphate.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kyosuke Ito, Toru Itakura
  • Patent number: 8945776
    Abstract: An electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the same, the electrolyte including a lithium salt, a silylborate-based compound, an anhydride component, and a non-aqueous organic solvent.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tae-Ahn Kim, Mi-Hyeun Oh, Na-Rae Won, Sung-Hoon Kim
  • Patent number: 8895195
    Abstract: Disclosed is a non-aqueous electrolyte comprising: an acrylate compound; a sulfinyl group-containing compound; an organic solvent; and an electrolyte salt. Also, disclosed is an electrode comprising a coating layer formed partially or totally on a surface thereof, the coating layer comprising: (i) a reduced form of an acrylate compound; and (ii) a reduced form of a sulfinyl group-containing compound. Further, disclosed is an electrochemical device comprising a cathode, an anode and a non-aqueous electrolyte, wherein (i) the non-aqueous electrolyte is the aforementioned non-aqueous electrolyte; and/or (ii) the cathode and/or the anode is the aforementioned electrode.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: November 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jeong-Ju Cho, Ho-Chun Lee, Su-Jin Yoon, Soo-Min Park
  • Publication number: 20140322616
    Abstract: A non-aqueous electrolyte solution for secondary batteries, comprising a lithium salt (total number of moles of lithium atoms: NLi) and a liquid composition, wherein the liquid composition comprises a specific fluorinated solvent (?) and a cyclic carboxylic acid ester compound (total number of moles: NA), and may contain a specific compound (?) (total number of moles: NB), the content of the fluorinated solvent (?) is from 40 to 80 mass %, NA/NLi is from 1.5 to 7.0, and (NA+NB)/NLi is from 3 to 7.0; and, a lithium ion secondary battery employing such a non-aqueous electrolyte solution for secondary batteries.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 30, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yu ONOZAKI, Toyokazu ENTA, Masao IWAYA
  • Publication number: 20140322615
    Abstract: It is an object of this exemplary embodiment to provide a lithium ion secondary battery using a positive electrode active material having an operating potential of 4.5 V or more, the lithium ion secondary battery having excellent high temperature cycle characteristics. This exemplary embodiment is a lithium ion secondary battery comprising a positive electrode and a negative electrode capable of intercalating and deintercalating lithium, a separator between the positive electrode and the negative electrode, and an electrolytic solution containing a nonaqueous electrolytic solvent, wherein the positive electrode comprises a positive electrode active material operating at a potential of 4.5 V or more versus lithium, the separator comprises cellulose, a cellulose derivative, or a glass fiber, and the nonaqueous electrolytic solvent comprises a fluorinated solvent.
    Type: Application
    Filed: October 26, 2012
    Publication date: October 30, 2014
    Inventors: Makiko Uehara, Takehiro Noguchi
  • Patent number: 8822072
    Abstract: A nonaqueous electrolyte includes: a solvent, an electrolyte salt, and at least one of heteropolyacid salt compounds represented by the following formulae (I) and (II): HxAy[BD12O40].zH2O (I), HpAq[B5D30O110].rH2O (II). A represents Li, Na, K, Rb, Cs, Mg, Ca, Al, NH4, or an ammonium salt or phosphonium salt; B represents P, Si, As or Ge; D represents at least one element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Tc, Rh, Cd, In, Sn, Ta, W, Re and Tl; x, y and z are values falling within the ranges of (0?x?1), (2?y?4) and (0?z?5), respectively; and p, q and r are values falling within the ranges of (0?p?5), (10?q?15) and (0?r?15), respectively.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 2, 2014
    Assignee: Sony Corporation
    Inventors: Ichiro Yamada, Shunsuke Saito, Haruo Watanabe, Tadahiko Kubota
  • Publication number: 20140227611
    Abstract: The object of the present exemplary embodiment is to provide a non-aqueous secondary battery effectively in which the decomposition of an electrolyte liquid is effectively reduced even under high-voltage and high-temperature condition, and which is excellent in the long-term cycle property. The present exemplary embodiment is a non-aqueous secondary battery including an electrolyte liquid including a supporting salt and a non-aqueous electrolyte solvent, wherein the non-aqueous electrolyte solvent includes a sulfone compound represented by a predetermined formula and a fluorine-containing ester compound represented by a predetermined formula; a content of the sulfone compound in the non-aqueous electrolyte solvent is 20 vol % or more and 70 vol % or less; and a content of the fluorine-containing ester compound in the non-aqueous electrolyte solvent is 20 vol % or more and 60 vol % or less.
    Type: Application
    Filed: August 22, 2012
    Publication date: August 14, 2014
    Applicant: NEC CORPORATION
    Inventor: Akinobu Nakamura
  • Publication number: 20140220417
    Abstract: The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 7, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Gang CHENG, Daniel P. ABRAHAM
  • Patent number: 8785015
    Abstract: Disclosed are an electrolyte for a secondary battery, and a secondary battery including the same, the electrolyte including an electrolyte salt; an electrolyte solvent; and a compound generating heat through oxidation at voltages higher than drive voltage of a cathode, wherein the compound can decompose or evaporate electrolyte components by oxidation heat, thereby causing gas generation. Also, the compound is included in an internal pressure increase accelerant for a battery. Upon overcharge, since a compound subjected to oxidation at voltages higher than normal drive voltage of a cathode generates heat, electrolyte components can be decomposed or evaporated, thereby generating gas by the oxidation heat. Accordingly, it is possible to operate a safety means of a battery, without using an internal pressure increasing material directly generating gas through oxidation at overcharge voltage as the electrolyte additive, and thus to improve the overcharge safety of a secondary battery.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: July 22, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Mi Young Son, Jeong-Ju Cho, Hochun Lee, Joomi Jeon, Sunghoon Yu
  • Patent number: 8758945
    Abstract: The over charge protection of a lithium ion cell is improved by using an electrolyte comprising at least one redox shuttle additive that comprises an in situ generated soluble oxidizer or oxidant to accelerate other forms of chemical overcharge protection. The oxidizer can be employed in combination with radical polymerization additives.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: June 24, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventor: William Jack Casteel, Jr.
  • Patent number: 8758946
    Abstract: Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: June 24, 2014
    Assignee: Giner, Inc.
    Inventor: Robert C. McDonald
  • Patent number: 8722255
    Abstract: A non-aqueous electrolytic solution is advantageously used in preparation of a lithium secondary battery excellent in cycle characteristics. In the non-aqueous electrolytic solution for a lithium secondary battery, an electrolyte salt is dissolved in a non-aqueous solvent. The non-aqueous electrolytic solution further contains a vinylene carbonate compound in an amount of 0.01 to 10 wt. %, and an alkyne compound in an amount of 0.01 to 10 wt. %.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: May 13, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Takaaki Kuwata
  • Patent number: 8685572
    Abstract: An organic electrolyte including a lithium salt; an organic solvent; and a flavone-based or flavanon-based compound, and a lithium battery including the organic electrolyte.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: April 1, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-joon Lee, Young-gyoon Ryu, Seok-soo Lee, Dong-min Im
  • Publication number: 20140080007
    Abstract: The present application provides a nonaqueous electrolyte secondary battery that includes, a cathode capable of being electrochemically doped/dedoped with lithium, an anode capable of being electrochemically doped/dedoped with lithium, and an electrolyte placed between the cathode and the anode, wherein the electrolyte contains at least one of fluoro ethylene carbonate represented by Chemical Formula (1) and difluoro ethylene carbonate represented by Chemical Formula (2) as a solvent and the ratio of a discharge capacity B during discharging at a 5C rate to a discharge capacity A during discharging at a 0.2C rate ((B/A)×100) is 80% or more.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: Sony Corporation
    Inventors: Akira Yamaguchi, Kunihiko Hayashi, Tadahiko Kubota, Hiroyuki Suzuki, Akira Ichihashi, Yuzuru Fukushima, Hironori Sato, Masaki Kuratsuka, Hideto Watanabe, Kimio Tajima, Masahiro Miyamoto
  • Patent number: 8637191
    Abstract: The present invention relates to a lithium secondary battery. The present invention provides the lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte solution. The negative electrode includes a water-dispersible binder and a conduction agent. The non-aqueous electrolyte solution includes fluoroethylenecarbonate (FEC). The batteries of the present invention are advantageous in that they have a high efficiency charging lifespan characteristic and enable high capacity charging in a short time.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: January 28, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Kwan Soo Lee, Cha Hun Ku, Duk Hyun Ryu, Jung Jin Kim, Byung Kyu Jung
  • Patent number: 8617749
    Abstract: A non-aqueous electrolyte and a lithium secondary battery using the same are provided, which satisfy both flame retardancy and charge-discharge cycle characteristics, and attain a longer lifetime of the battery. A mixture of a chain carbonate, vinylene carbonate, a fluorinated cyclic carbonate and a phosphate ester is used as the non-aqueous electrolyte. It is desirable that the phosphate ester includes trimethyl phosphate and a fluorinated phosphate ester. Further, it is desirable that ethylene carbonate is further contained.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: December 31, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Toshiyuki Kobayashi, Kazushige Kohno
  • Patent number: 8603683
    Abstract: In certain embodiments, a battery component comprises an electrode and a separator deposited on a surface of the electrode is provided. The separator comprises a porous poly(para-xylylene) film. In some embodiments, the electrode can include at least one cavity or protrusion, and the separator layer can be gas phase deposited directly on the electrode. In certain embodiments, methods of making a battery component are also provided.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: December 10, 2013
    Assignee: Enevate Corporation
    Inventors: Benjamin Yong Park, Alexander Gorkovenko, Rabih Bachir Zaouk, William Hubert Schank, Jr.
  • Publication number: 20130323571
    Abstract: The present invention provides a lithium-ion electrochemical cell comprising an ionic liquid electrolyte solution and a positive electrode having a carbon sheet current collector.
    Type: Application
    Filed: May 13, 2013
    Publication date: December 5, 2013
    Inventors: Hongli Dai, Michael Erickson, Marc Juzkow
  • Patent number: 8568932
    Abstract: The present invention provides a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, containing 0.01% to 30% by weight of a 1,2-cyclohexanediol derivative having a specific structure; and a lithium secondary battery using the nonaqueous electrolytic solution. The lithium secondary battery exhibits excellent battery characteristics such as electrical capacity, cycle property, and storage property and can maintain excellent long-term battery performance.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: October 29, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Chisen Hashimoto, Masahide Kondo
  • Patent number: 8546023
    Abstract: Disclosed is a secondary battery including a cathode, an anode, a separator, and an electrolyte, wherein the electrolyte includes a ternary eutectic mixture prepared by adding (c) a carbonate-based compound to a eutectic mixture containing (a) an amide group-containing compound and (b) an ionizable lithium salt, and the carbonate-based compound is included in an amount of less than 50 parts by weight based on 100 parts by weight of the electrolyte. The use of the disclosed ternary eutectic mixture having flame resistance, chemical stability, high conductivity, and a broad electrochemical window, as the electrolyte material, improves both the thermal stability and quality of the battery.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 1, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jiwon Park, Jae Seung Oh, Byoung-bae Lee, Shin Jung Choi, Jaeduk Park
  • Patent number: 8530098
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery including: a first additive having an oxidation potential of 4.1 to 4.6V; a second additive having an oxidation potential of 4.4 to 5.0V; a non-aqueous organic solvent; and a lithium salt.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Hee Kim, Jin-Sung Kim
  • Publication number: 20130216918
    Abstract: An object is to provide a nonaqueous electrolyte and a nonaqueous-electrolyte secondary battery which have excellent discharge load characteristics and are excellent in high-temperature storability, cycle characteristics, high capacity, continuous-charge characteristics, storability, gas evolution inhibition during continuous charge, high-current-density charge/discharge characteristics, discharge load characteristics, etc. The object has been accomplished with a nonaqueous electrolyte which comprises: a monofluorophosphate and/or a difluorophosphate; and further a compound having a specific chemical structure or specific properties.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 22, 2013
    Inventors: Hiroyuki TOKUDA, Takashi FUJII, Minoru KOTATO, Masahiro TAKEHARA, Masamichi ONUKI, Youichi OHASHI, Shinichi KINOSHITA
  • Publication number: 20130189591
    Abstract: The present invention aims to improve the fire resistance of an electrolytic solution used for a lithium-ion battery and improve the life characteristics of the lithium-ion battery. In the lithium ion battery of the present invention, specific amounts of ethylene carbonate and dimethyl carbonate are used for a non-aqueous electrolytic solution, and trimethyl phosphate is added thereto. Specifically, the non-aqueous electrolytic solution contains 60 vol % or more of ethylene carbonate (EC) and dimethyl carbonate (DMC). The volume ratio of DMC to the sum of EC and DMC is 0.3 to 0.6, and the non-aqueous electrolytic solution contains 3 to 5 wt % of trimethyl phosphate (TMP) with respect to the total weight of the non-aqueous electrolytic solution. Such a non-aqueous electrolytic solution has an effect of improving the self-fire extinguishing property, and thus improves the safety of the lithium-ion battery.
    Type: Application
    Filed: August 19, 2011
    Publication date: July 25, 2013
    Applicant: Shin-Kobe Ekectric Machinery Co., Ltd.
    Inventors: Katsunori Nishimura, Yoshiaki Kumashiro, Kazushige Kohno, Toshiyuki Kobayashi
  • Patent number: 8455142
    Abstract: A non-aqueous electrolyte can suppress decomposition of a solvent, improve the cycle life of a secondary battery, suppress the rise of resistance of a secondary battery and improve the capacity maintenance ratio of a secondary battery.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: June 4, 2013
    Assignee: NEC Energy Devices, Ltd.
    Inventors: Hitoshi Ishikawa, Yasutaka Kono, Koji Utsugi, Yoko Hashizume, Shinako Kaneko, Hiroshi Kobayashi
  • Publication number: 20130137001
    Abstract: A lithium/oxygen battery includes a lithium anode, an air cathode, and a non-aqueous electrolyte soaked in a microporous separator membrane, wherein non-aqueous electrolyte comprises a lithium salt with a general molecular formula of LiBF3X (X?F, Cl, or Br, respectively) and a non-aqueous solvent mixture.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: U.S Government as represented by the Secretary of the Army
    Inventors: Shengshui Zhang, Donald L. Foster, Jeffrey A. Read
  • Publication number: 20130089792
    Abstract: An electrochemical cell is described. The electrochemical cell includes an anode, a cathode, a separator between said anode and said cathode, and an electrolyte. The electrolyte includes a salt dissolved in an organic solvent. The separator in combination with the electrolyte has an area specific resistance less than 2 ohm-cm2. The electrochemical cell has an interfacial anode to cathode ratio of less than about 1.1.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 11, 2013
    Applicant: THE GILLETTE COMPANY
    Inventor: THE GILLETTE COMPANY
  • Patent number: 8394540
    Abstract: A secondary battery capable of improving the cycle characteristics is provided. The secondary battery includes a cathode and an anode oppositely arranged with a separator in between, and an electrolytic solution. At least one of the cathode, the anode, the separator, and the electrolytic solution contains a sulfone compound having a carbonate group and a sulfonyl group.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: March 12, 2013
    Assignee: Sony Corporation
    Inventors: Hiroyuki Yamaguchi, Masayuki Ihara, Tadahiko Kubota
  • Patent number: 8377597
    Abstract: A secondary battery capable of improving the cycle characteristics and the storage characteristics is provided. The battery includes a cathode, an anode, and an electrolytic solution. The electrolytic solution contains a solvent contains a sulfone compound having a structure in which —S(?O)2—S—C(?O)— bond is introduced to a benzene skeleton and an ester carbonate halide.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: February 19, 2013
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Hiroyuki Yamaguchi, Tadahiko Kubota
  • Patent number: 8263268
    Abstract: The present invention includes (1) an ester compound having a specific structure, (2) a nonaqueous electrolytic solution for lithium secondary battery comprising an electrolyte dissolved in a nonaqueous solvent and containing an ester compound having a specific structure in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution, which is excellent in initial battery capacity and cycle property, and (3) a lithium secondary battery comprising a positive electrode, a negative electrode and a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution contains an ester compound having a specific structure in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: September 11, 2012
    Assignee: UBE Industries, Ltd.
    Inventors: Koji Abe, Chisen Hashimoto
  • Patent number: 8257870
    Abstract: A non-aqueous electrolyte for a battery comprises a non-aqueous solvent containing a specified cyclic phosphazene compound and a specified difluorophosphate compound, a specified aniline derivative and a support salt.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 4, 2012
    Assignee: Bridgestone Corporation
    Inventor: Yasuo Horikawa
  • Patent number: 8227116
    Abstract: A lithium secondary battery which has excellent characteristics such as energy density and electromotive force and is excellent in cycle life and storage stability is provided. The secondary battery comprises a positive electrode, a negative electrode, and an electrolyte solution comprising an aprotic solvent having at least an electrolyte dissolved therein, wherein the positive electrode comprises a lithium-manganese composite oxide having a spinel structure as a positive electrode active material, and the electrolyte solution comprises a compound represented by the general formula (1).
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: July 24, 2012
    Assignee: NEC Corporation
    Inventors: Daisuke Kawasaki, Yuki Kusachi, Tatsuji Numata, Koji Utsugi
  • Patent number: 8216725
    Abstract: Electrolyte for lithium secondary batteries and battery packs includes a lithium salt, a non-aqueous solvent, and an additive. The additive includes two or more members selected from the group consisting of substances A, B and C, wherein A includes one or more fused ring compounds and fused heterocyclic compounds, B includes an alkoxy aromatic compound, and C includes halogenated borane-based salt.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: July 10, 2012
    Assignee: BYD Company Limited
    Inventors: Yi Gao, JiangMin Zhu
  • Patent number: 8173298
    Abstract: An electrolyte for a lithium battery includes a non-aqueous organic solvent, a lithium salt, and an additive comprising a) a compound represented by the following Formula (1), and b) a compound selected from the group consisting of a sulfone-based compound, a poly(ester)(metha)acrylate, a polymer of poly(ester)(metha)acrylate, and a mixture thereof: wherein R1 is a C1 to C10 alkyl, a C1 to C10 alkoxy, or a C6 to C10 aryl, and preferably a methyl, ethyl, or methoxy, X is a halogen, and m and n are integers ranging from 1 to 5, where m+n is less than or equal to 6.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 8, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Ho Kim, Ha-Young Lee, Sang-Hoon Choy, Ho-Sung Kim, Hyeong-Gon Noh
  • Patent number: 8163427
    Abstract: A non-aqueous electrolytic solution is advantageously used in preparation of a lithium secondary battery excellent in cycle characteristics. In the non-aqueous electrolytic solution for a lithium secondary battery, an electrolyte salt is dissolved in a non-aqueous solvent. The non-aqueous electrolytic solution further contains a vinylene carbonate compound in an amount of 0.01 to 10 wt. %, and an alkyne compound in an amount of 0.01 to 10 wt. %.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 24, 2012
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Takaaki Kuwata