The Acyclic Oxygen Containing Solvent Compound Is An Acyclic Ether Patents (Class 429/335)
  • Patent number: 11489202
    Abstract: An electrolyte solution capable of constituting a secondary battery in which a volume change due to charge and discharge is small and cycle characteristics are excellent is provided. The present example embodiment relates to an electrolyte solution for a lithium ion secondary battery comprising a fluorinated ether and a cyclic dicarboxylic acid ester.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: November 1, 2022
    Assignee: NEC CORPORATION
    Inventor: Takuya Hasegawa
  • Patent number: 11444318
    Abstract: Disclosed is a solid state electrolyte comprising a compound of Formula 1 Li7?a*??(b?4)*??xMa?La3Hf2??Mb?O12?x??Xx??(1) wherein Ma is a cationic element having a valence of a+; Mb is a cationic element having a valence of b+; and X is an anion having a valence of ?1, wherein, when Ma includes H, 0???5, otherwise 0???0.75, and wherein 0???1.5, 0?x?1.5, and (a*?+(b?4)?+x)>0, 0???1.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: September 13, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yan Wang, Lincoln Miara, Sang Bok Ma
  • Patent number: 10923710
    Abstract: The present invention relates to an electrode material for an electrochemical energy accumulator, in particular for a lithium-ion cell, comprising particles (10, 10?, 10?) of an active material (12) which can be lithiated, wherein the particles (10, 10?, 10?) are partially coated with a lithium-ion-conducting solid electrolyte (14), the solid electrolyte layer (14) having recesses (16).
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: February 16, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Schumann, Christine Engel, Ingo Kerkamm, Olga Heckel
  • Patent number: 10629946
    Abstract: The present invention relates to a liquid electrolyte for a lithium-sulfur battery and a lithium-sulfur battery including the same. The liquid electrolyte for a lithium-sulfur battery according to the present invention exhibits excellent stability, and may improve a swelling phenomenon by suppressing gas generation during lithium-sulfur battery operation.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 21, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Intae Park, Sungwon Hong, Charles Kiseok Song, Youhwa Ohk, Doo Kyung Yang, Changhoon Lee
  • Patent number: 10170755
    Abstract: An electrochemical cell in one embodiment includes a first negative electrode including a form of lithium, a positive electrode, and a first separator positioned between the first negative electrode and the positive electrode, wherein the positive electrode includes a plurality of coated small grains of Li2S.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 1, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Paul Albertus, Timm Lohmann, Boris Kozinsky, Aleksandar Kojic
  • Patent number: 9653755
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: May 16, 2017
    Assignees: Wildcat Discovery Technologies, Inc, Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Publication number: 20150132663
    Abstract: There is provided a secondary battery comprising: a positive electrode capable of intercalating and deintercalating a lithium ion; a negative electrode capable of intercalating and deintercalating a lithium ion; and an electrolytic solution, wherein the electrolytic solution comprises: a fluorine-containing cyclic ether compound represented by the following formula (1); and at least one selected from a fluorine-containing chain ether compound or a fluorine-containing phosphate ester compound; wherein R1 to R6 are each independently selected from a hydrogen atom, a fluorine atom, a chlorine atom, or a fluorine-substituted, chlorine-substituted, or unsubstituted alkyl group, and at least one of R1 to R6 is selected from a fluorine atom or a fluorine-substituted alkyl group.
    Type: Application
    Filed: February 26, 2013
    Publication date: May 14, 2015
    Inventors: Takehiro Noguchi, Hideaki Sasaki, Yuukou Katou, Makiko Takahashi
  • Publication number: 20150118578
    Abstract: Disclosed is a cathode for a lithium sulfur battery comprising a sulfur-containing active material, an electrolyte in which a lithium salt is dissolved in an ether-based solvent, and an additional liquid active material in the form of Li2Sx (0<x?9) dissolved in the electrolyte, and a lithium sulfur battery using the same. The lithium sulfur battery of the present invention has a loading amount of cathode sulfur that is increased to at least about 13.5 mg/cm2 and a structural energy density that is increased from about 265 Wh/kg to at least about 355 Wh/kg as compared with a conventional battery.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 30, 2015
    Applicant: Hyundai Motor Company
    Inventors: Won Keun Kim, Yoon Ji Lee, Jun Ki Rhee
  • Patent number: 9012095
    Abstract: An electrolyte includes a solvent and an electrolyte salt. The solvent contains at least one selected from ester compounds, lithium monofluorophosphate, and lithium difluorophosphate, and at least one selected from anhydrous compounds. The ester compounds are chain compounds having ester moieties, such as (—O—C(?O)—O—R), at both ends. The anhydrous compounds are cyclic compounds having, for example, a disulfonic anhydride group, (—S(O?)2—O—S(O?)2—).
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: April 21, 2015
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Shinya Wakita, Tadahiko Kubota
  • Publication number: 20140335399
    Abstract: Disclosed is an additive for an electrochemical cell wherein the additive includes an N—O bond. The additive is most preferably included in a nonaqueous electrolyte of the cell. Also disclosed are cells and batteries including the additive, and methods of charging the batteries and cells. An electrochemical cell including the additive preferably has an anode that includes lithium and a cathode including an electroactive sulfur-containing material.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 13, 2014
    Inventor: Yuriy V. Mikhaylik
  • Patent number: 8871391
    Abstract: Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of ?-Li3PS4 or Li4P2S7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li2S), a first shell of ?-Li3PS4 or Li4P2S7, and a second shell including one of ?-Li3PS4 or Li4P2S7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: October 28, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Chengdu Liang, Zengcai Liu, Wujun Fu, Zhan Lin, Nancy J. Dudney, Jane Y. Howe, Adam J. Rondinone
  • Patent number: 8828610
    Abstract: Disclosed is an additive for an electrochemical cell wherein the additive includes an N—O bond. The additive is most preferably included in a nonaqueous electrolyte of the cell. Also disclosed are cells and batteries including the additive, and methods of charging the batteries and cells. An electrochemical cell including the additive preferably has an anode that includes lithium and a cathode including an electroactive sulfur-containing material.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: September 9, 2014
    Assignee: Sion Power Corporation
    Inventor: Yuriy V. Mikhaylik
  • Patent number: 8771881
    Abstract: An electrolyte for a lithium ion secondary battery includes a non-aqueous organic solvent; a lithium salt; and a phosphonitrile fluoride trimer as an additive, and a lithium ion secondary battery comprising the same. The thickness increase rate of a lithium ion secondary battery including the electrolyte is reduced even when the battery is kept at a high temperature. Thus, the thermal stability and durability of the battery are prominently improved. The durability of the battery can be further improved by including a vinylene carbonate or ethylene carbonate group compound in the electrolyte.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 8, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jinsung Kim, Narae Park, Jinhyunk Lim, Suhee Han, Jinbum Kim, Jungkang Oh
  • Publication number: 20140186721
    Abstract: An electrolyte including an alkali metal salt; a polar aprotic solvent; and a triazinane trione; wherein the electrolyte is substantially non-aqueous.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Lu Zhang, Zhengcheng Zhang, Khalil Amine
  • Patent number: 8753776
    Abstract: A primary electrochemical cell and electrolyte incorporating a linear asymmetric ether is disclosed. The ether may include EME, used in combination with DIOX and DME, or have the general structural formula R1—O—CH2—CH2—O—R2 or R1—O—CH2—CH(CH3)—O—R2, where a total of at least 7 carbon atoms must be present in the compound, and R1 and R2 consist alkyl, cyclic, aromatic or halogenated groups but cannot be the same group (i.e., R1?R2).
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: June 17, 2014
    Assignee: Eveready Battery Company, Inc
    Inventor: Weiwei Huang
  • Publication number: 20140154588
    Abstract: A method for preparing an ionic liquid nanoscale ionic material, the ionic liquid nanoscale ionic material and a battery that includes a battery electrolyte that comprises the ionic liquid nanoscale ionic material each provide superior performance. The superior performance may be manifested within the context of inhibited lithium dendrite formation.
    Type: Application
    Filed: July 10, 2012
    Publication date: June 5, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Lynden A. Archer, Surya S. Moganty, Yingying Lu
  • Publication number: 20140127589
    Abstract: The invention relates to a method for preparing a polyacrylonitrile-sulfur composite material, in which, polyacrylonitrile is converted to cyclized polyacrylonitrile, and the cyclized polyacrylonitrile is reacted with sulfur to form a polyacrylonitrile-sulfur composite material. By a separation of the preparation method into two partial reactions, the reaction conditions are advantageously able to be optimized for the respective reactions and a cathode material is able to be provided for alkali-sulfur cells with improved electrochemical properties. In addition, the invention relates to a polyacrylonitrile-sulfur composite material, a cathode material, an alkali-sulfur cell or an alkali-sulfur battery as well as to an energy store.
    Type: Application
    Filed: March 7, 2012
    Publication date: May 8, 2014
    Inventors: Marcus Wegner, Jens Grimminger, Martin Tenzer, Jens Fanous
  • Publication number: 20140099557
    Abstract: An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 10, 2014
    Applicant: PELLION TECHNOLOGIES, INC.
    Inventors: Robert Ellis Doe, George Hamilton Lane, Robert E. Jilek, Jaehee Hwang
  • Publication number: 20140080009
    Abstract: Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of ?-Li3PS4 or Li4P2S7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li2S), a first shell of ?-Li3PS4 or Li4P2S7, and a second shell including one of ?-Li3PS4 or Li4P2S7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 20, 2014
    Applicant: UT-Battelle, LLC
    Inventors: Chengdu Liang, Zengcai Liu, Wujun Fu, Zhan Lin, Nancy J. Dudney, Jane Y. Howe, Adam J. Rondinone
  • Publication number: 20140080007
    Abstract: The present application provides a nonaqueous electrolyte secondary battery that includes, a cathode capable of being electrochemically doped/dedoped with lithium, an anode capable of being electrochemically doped/dedoped with lithium, and an electrolyte placed between the cathode and the anode, wherein the electrolyte contains at least one of fluoro ethylene carbonate represented by Chemical Formula (1) and difluoro ethylene carbonate represented by Chemical Formula (2) as a solvent and the ratio of a discharge capacity B during discharging at a 5C rate to a discharge capacity A during discharging at a 0.2C rate ((B/A)×100) is 80% or more.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: Sony Corporation
    Inventors: Akira Yamaguchi, Kunihiko Hayashi, Tadahiko Kubota, Hiroyuki Suzuki, Akira Ichihashi, Yuzuru Fukushima, Hironori Sato, Masaki Kuratsuka, Hideto Watanabe, Kimio Tajima, Masahiro Miyamoto
  • Patent number: 8652690
    Abstract: Reducing an initial voltage degrades intermediate-load discharge performance. In a lithium primary battery containing iron disulfide as a positive electrode active material, a solvent of a nonaqueous electrolyte contains DIOX and DME as main components, and further contains THF. Moreover, the content of THF is 20 vol. % or lower.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Jun Nunome, Fumio Kato, Toshiyuki Shimizu
  • Publication number: 20140023936
    Abstract: An electrolyte includes a lithium polysulfide of formula Li2Sx, where x>2; a shuttle inhibitor; and a non-aqueous solvent. Lithium-sulfur batteries may incorporate such electrolytes.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 23, 2014
    Inventors: Ilias Belharouak, Rui Xu
  • Publication number: 20140023935
    Abstract: Provided is a lithium secondary cell of 5V class having a positive electrode operating voltage of 4.5V or higher with respect to metallic lithium; the lithium secondary cell has high energy density, inhibits degradation of the electrolytic solution that comes in contact with the positive electrode and the negative electrode, and has particularly long cell life when used under high-temperature environments.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 23, 2014
    Applicant: NEC Corporation
    Inventors: Takehiro Noguchi, Hideaki Sasaki, Makiko Uehara, Kazuaki Matsumoto, Hiroshi Hatakeyama
  • Patent number: 8632917
    Abstract: An organic electrolyte solution includes a lithium salt; an organic solvent including a high permittivity solvent and a low boiling solvent; and a vinyl-based compound represented by Formula 1 below, wherein m and n are each independently integers of 1 to 10; X1, X2, and X3 each independently represent O, S, or NR9; and R1, R2, R3, R4, R5, R6, R7, R8, and R9 are represented in the detailed description. The organic electrolyte solution of the present invention and a lithium battery using the same suppress degradation of an electrolyte, providing improved cycle properties and life span thereof.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 21, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Young-gyonn Ryu, Seung-sik Hwang, Dong-joon Lee, Boris A. Trofimov
  • Publication number: 20140017571
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Application
    Filed: August 9, 2012
    Publication date: January 16, 2014
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Vera Nicholaevna Lockett, Mark D. Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 8597838
    Abstract: Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of ?-Li3PS4 or Li4P2S7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li2S), a first shell of ?-Li3PS4 or Li4P2S7, and a second shell including one of ?-Li3PS4 or Li4P2S7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 3, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Chengdu Liang, Zengcai Liu, Wunjun Fu, Zhan Lin, Nancy J. Dudney, Jane Y. Howe, Adam J. Rondinone
  • Patent number: 8586250
    Abstract: To provide a non-aqueous electrolyte solution for storage battery devices which has high lithium salt solubility, high conductivity and excellent cycle characteristics, and a storage battery device wherein such a non-aqueous electrolyte solution is used. A non-aqueous electrolyte solution for storage battery devices, which comprises a specific lithium salt (A) and a solvent (B) containing a hydrofluoroether (b1) represented by CF3CH2OCF2CF2H and a carbonate type solvent (b2), wherein the content of the hydrofluoroether (b1) is from 1 to 30 vol % based on the total amount i.e. 100 vol % of the solvent (B); and a storage battery device wherein such a non-aqueous electrolyte solution for storage battery devices is used.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 19, 2013
    Assignee: Asahi Glass Company, Limited
    Inventor: Masao Iwaya
  • Patent number: 8580429
    Abstract: Disclosed are (1) a nonaqueous electrolytic solution for lithium battery comprising an electrolyte dissolved in a nonaqueous solvent, which contains at least one hydroxy acid derivative compound represented by the formulae (I) and (II) in an amount of from 0.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: November 12, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuyuki Kawabe
  • Publication number: 20130295469
    Abstract: Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of ?-Li3PS4 or Li4P2S7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li2S), a first shell of ?-Li3PS4 or Li4P2S7, and a second shell including one of ?-Li3PS4 or Li4P2S7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: UT-Battelle, LLC
    Inventors: Chengdu Liang, Zengcai Liu, Wujun Fu, Zhan Lin, Nancy J. Dudney, Jane Y. Howe, Adam J. Rondinone
  • Publication number: 20130157116
    Abstract: Disclosed is a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same. The non-aqueous electrolyte including an ionizable lithium salt and an organic solvent may further include (a) 1 to 10 parts by weight of a compound having a vinylene group or vinyl group per 100 parts by weight of the non-aqueous electrolyte, and (b) 10 to 300 parts by weight of a dinitrile compound having an ether bond per 100 parts by weight of the compound having the vinylene group or vinyl group. The lithium secondary battery comprising the non-aqueous electrolyte may effectively suppress the swelling and improve the charge/discharge cycle life.
    Type: Application
    Filed: February 12, 2013
    Publication date: June 20, 2013
    Applicant: LG CHEM, LTD.
    Inventor: LG CHEM, LTD.
  • Patent number: 8455142
    Abstract: A non-aqueous electrolyte can suppress decomposition of a solvent, improve the cycle life of a secondary battery, suppress the rise of resistance of a secondary battery and improve the capacity maintenance ratio of a secondary battery.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: June 4, 2013
    Assignee: NEC Energy Devices, Ltd.
    Inventors: Hitoshi Ishikawa, Yasutaka Kono, Koji Utsugi, Yoko Hashizume, Shinako Kaneko, Hiroshi Kobayashi
  • Patent number: 8399126
    Abstract: A non-aqueous electrolyte is provided that includes a non-aqueous solvent and an electrolyte salt, wherein the non-aqueous solvent contains a fluorinated ether (1) represented by the following Formula: HCF2CF2CF2CH2—O—CF2CF2H (1). This non-aqueous electrolyte has good wettability to a polyolefin separator, can provide a battery with excellent load characteristics for a long period, does not easily decompose in the battery under high-temperature storage, and causes little gas generation due to decomposition. Furthermore, a non-aqueous electrolyte secondary battery is provided that includes a positive electrode, a negative electrode, a separator, and the above-described non-aqueous electrolyte.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Tooru Matsui, Tetsuo Nanno
  • Publication number: 20130065137
    Abstract: A cathode material suitable for use in non-aqueous electrochemical cells that includes copper manganese vanadium oxide and, optionally, fluorinated carbon. A non-aqueous electrochemical cell comprising such a cathode material, and a non-aqueous electrochemical cell that additionally includes a lithium anode.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 14, 2013
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ernest NDZEBET, Joshua DEAN, Mario DESTEPHEN, Umamaheswari JANAKIRAMAN, Gregory MILLER, Min Qi YANG
  • Patent number: 8349493
    Abstract: An electrochemical cell is described. The electrochemical cell includes an anode, a cathode, a separator between said anode and said cathode, and an electrolyte. The electrolyte includes a salt dissolved in an organic solvent. The separator in combination with the electrolyte has an area specific resistance less than 2 ohm-cm2. The electrochemical cell has an interfacial anode to cathode ratio of less than about 1.1.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 8, 2013
    Assignee: The Gillette Company
    Inventors: Nikolai Nikolaevich Issaev, Michael Pozin, Michael Dean Sliger, Eric Navok, Fred Joseph Berkowitz
  • Publication number: 20120315549
    Abstract: A battery electrolyte solution contains from 0.001 to 20% by weight of certain phosphorus-sulfur compounds. The phosphorus-sulfur compound performs effectively as a solid-electrolyte interphase (SEI) forming material. The phosphorus-sulfur compound has little adverse impact on the electrical properties of the battery, and in some cases actually improves battery performance. Batteries containing the electrolyte solution form robust and stable SEIs even when charged at high rates during initial formation cycles.
    Type: Application
    Filed: November 16, 2009
    Publication date: December 13, 2012
    Inventors: Houxiang Tang, William J. Kruper, JR., Ravi B. Shankar, Deidre A. Strand, Peter M. Margl, Andrew J. Pasztor, JR., David R. Wilson, Jerey R. Stajdi
  • Publication number: 20120308901
    Abstract: Reducing an initial voltage degrades intermediate-load discharge performance. In a lithium primary battery containing iron disulfide as a positive electrode active material, a solvent of a nonaqueous electrolyte contains DIOX and DME as main components, and further contains THF. Moreover, the content of THF is 20 vol. % or lower.
    Type: Application
    Filed: November 1, 2011
    Publication date: December 6, 2012
    Inventors: Jun Nunome, Fumio Kato, Toshiyuki Shimizu
  • Patent number: 8304117
    Abstract: A gel polymer electrolyte precursor and a rechargeable cell comprising the same are provided. The gel polymer electrolyte precursor comprises a bismaleimide monomer or bismaleimide oligomer, a compound having formula (I): a non-aqueous metal salt electrolyte, a non-protonic solvent, and a free radical initiator, wherein the bismaleimide oligomer is prepared by reaction of barbituric acid and bismaleimide, X comprises oxygen, organic hydrocarbon compounds, organic hydrocarbon oxide compounds, oligomers or polymers, n is 2 or 3, and A independently comprises wherein m is 0˜6, X comprises hydrogen, cyano, nitro or halogen, and R1 independently comprises hydrogen or C1˜4 alkyl.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: November 6, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yueh-Wei Lin, Tsung-Hsiung Wang, Jing-Pin Pan, Chang-Rung Yang, Jung-Mu Hsu
  • Publication number: 20120156572
    Abstract: Disclosed are an electrode active material for a power storage device and a power storage device including the same. The electrode active material includes a polymer that includes: a tetravalent group derived from a compound selected from the group consisting of EBDT and derivatives thereof, TTF and derivatives thereof, a condensation product of EBDT and TTF and derivatives thereof, and a TTF dimer and derivatives thereof; and a divalent group —S-A-S— where A is a divalent aliphatic group or a divalent group represented by the formula -E-D-E- where D represents a divalent alicyclic group, a divalent aromatic group, or a carbonyl group, and two Es each independently represent a divalent aliphatic group. Adjacent two tetravalent groups mentioned above are linked by one or two divalent groups mentioned above.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 21, 2012
    Inventors: Nobuhiko Hojo, Yu Ohtsuka, Takafumi Tsukagoshi, Yohji Misaki
  • Publication number: 20120082872
    Abstract: Spiro ammonium salts as an additive for electrolytes in electric current producing cells, in particular electric current producing cells comprising a Li-based anode, are provided. In some embodiments, the electric current producing cell comprises a cathode, a Li-based anode, and at least one electrolyte wherein the electrolyte contains at least one spiro ammonium salt.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicants: BASF SE, Sion Power Corporation
    Inventors: Rudiger Schmidt, Daher Michael Badine, Xiao Steimle, Helmut Moehwald, Igor Kovalev, Yuriy V. Mikhaylik
  • Patent number: 8148007
    Abstract: An organic electrolyte solution includes a lithium salt; an organic solvent including a high permittivity solvent and a low boiling solvent; and a vinyl-based compound represented by Formula 1 below, wherein m and n are each independently integers of 1 to 10; X1, X2, and X3 each independently represent O, S, or NR9; and R1, R2, R3, R4, R5, R6, R7, R8, and R9 are represented in the detailed description. The organic electrolyte solution of the present invention and a lithium battery using the same suppress degradation of an electrolyte, providing improved cycle properties and life span thereof.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 3, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Young-gyonn Ryu, Seung-sik Hwang, Dong-joon Lee, Boris A. Trofimov
  • Patent number: 8124282
    Abstract: A nonaqueous electrolyte having maleimide additives and rechargeable cells employing the same are provided. The nonaqueous electrolyte having maleimide additives comprises an alkali metal electrolyte, a nonaqueous solvent, and maleimide additives. Specifically, the maleimide additives comprise maleimide monomer, bismaleimide monomer, bismaleimide oligomer, or mixtures thereof. The maleimide additives comprise functional groups, such as a maleimide double bond, phenyl group carboxyl, or imide, enhancing the charge-discharge efficiency, safety, thermal stability, chemical stability, flame-resistance, and lifespan of the secondary cells of the invention.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: February 28, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Pin Pan, Chang-Rung Yang, Tsung-Hsiung Wang, Yueh-Wei Lin, Pin-Chi Chiang, Jung-Mu Hsu
  • Patent number: 8119286
    Abstract: An electrochemical cell is described. The electrochemical cell includes an anode, a cathode, a separator between said anode and said cathode, and an electrolyte. The electrolyte includes a salt dissolved in an organic solvent. The separator in combination with the electrolyte has an area specific resistance less than 2 ohm-cm2.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 21, 2012
    Assignee: The Gillette Company
    Inventors: Nikolai Nikolaevich Issaev, Michael Pozin, Michael Dean Sliger, Eric Navok, Fred Joseph Berkowitz
  • Publication number: 20110287305
    Abstract: An electrochemical cell including at least one nitrogen-containing compound is disclosed. The at least one nitrogen-containing compound may form part of or be included in: an anode structure, a cathode structure, an electrolyte and/or a separator of the electrochemical cell. Also disclosed is a battery including the electrochemical cell.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Applicant: SION CORPORATION
    Inventors: Chariclea Scordilis-Kelley, Joseph Kubicki, Shuguang Cao, Yuriy V. Mikhaylik
  • Publication number: 20110195316
    Abstract: Disclosed is a lithium battery including: a positive electrode including manganese dioxide as a positive electrode active material; a negative electrode including at least one selected from lithium metal and a lithium alloy, as a negative electrode active material; a porous insulating member interposed between the positive electrode and the negative electrode; and an organic electrolyte. The organic electrolyte contains 0.0008 to 1.2% by weight of an alkyl ester of an aliphatic hydroxycarboxylic acid. The alkyl ester may be a C1-6 alkyl ester of an aliphatic hydroxycarboxylic acid having 2 to 7 carbon atoms, such as a C1-4 alkyl 4-hydroxybutyrate.
    Type: Application
    Filed: June 18, 2010
    Publication date: August 11, 2011
    Inventor: Kenichi Morigaki
  • Publication number: 20110151339
    Abstract: A primary electrochemical cell and electrolyte incorporating a linear asymmetric ether is disclosed. The ether may include EME, used in combination with DIOX and DME, or have the general structural formula R1—O—CH2—CH2—O—R2 or R1—O—CH2—CH(CH3)—O—R2, where a total of at least 7 carbon atoms must be present in the compound, and R1 and R2 consist alkyl, cyclic, aromatic or halogenated groups but cannot be the same group (i.e., R1?R2).
    Type: Application
    Filed: February 28, 2011
    Publication date: June 23, 2011
    Applicant: EVEREADY BATTERY COMPANY, INC.
    Inventor: Weiwei Huang
  • Publication number: 20110117445
    Abstract: The present invention provides an electrolyte for lithium and lithium-ion batteries comprising a lithium salt such as LiF2BC2O4, LiPF6, LiBF4, and/or LiB(C2O4)2. In a liquid carrier comprising glycerol carbonate. Preferably, the electrolyte comprises a combination of glycerol carbonate with one or more other carbonate solvent (e.g., dimethylcarbonate, ethylene carbonate, and the like).
    Type: Application
    Filed: October 22, 2010
    Publication date: May 19, 2011
    Applicant: UChicago Argonne, LLC
    Inventor: Daniel P. ABRAHAM
  • Patent number: 7923153
    Abstract: A primary electrochemical cell and electrolyte incorporating a linear asymmetric ether is disclosed. The ether may include EME, used in combination with DIOX and DME, or have the general structural formula R1—O—CH2—CH2—O—R2 or R1—O—CH2—CH(CH3)—O—R2, where a total of at least 7 carbon atoms must be present in the compound, and R1 and R2 consist alkyl, cyclic, aromatic or halogenated groups but cannot be the same group (i.e., R1?R2).
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: April 12, 2011
    Assignee: Eveready Battery Company, Inc.
    Inventor: Weiwei Huang
  • Patent number: 7858241
    Abstract: A nonaqueous electrolyte for a lithium secondary battery and a lithium secondary battery including the same are provided. In particular, the nonaqueous electrolyte comprises a compound of chemical formula 1 as an electrolyte additive: NC—(R1)n-A-(R2)m—CN??1 wherein, R1 and R2 represent, respectively, alkylene groups, n and m represent integers of 1 to 10, and A is an aromatic hydrocarbon in which the number of carbons is 5 to 9 or O. When the lithium secondary battery is kept at high voltage and temperature, the electrolyte additive reduces gas generation, thereby reducing battery swelling. Therefore, it is possible to reduce a battery thickness increment rate and to increase discharge capacity at a high temperature.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: December 28, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jinsung Kim, Jinbum Kim, Narae Park
  • Patent number: 7816039
    Abstract: A non-aqueous electrolyte for a lithium battery includes a non-aqueous organic solvent, the organic solvent including one or more of a carbonate-based solvent, an ester-based solvent, an ether-based solvent, and/or a ketone-based solvent, a lithium salt, and a hexafluoroacetylacetone in an amount of about 0.02 parts by weight to about 10 parts by weight, based on 100 parts by weight of the non-aqueous organic solvent.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 19, 2010
    Assignee: Panax Etec Co., Ltd
    Inventors: Jung Kang Oh, Young Jai Cho, Ho Seok Yang, Kab Youl Lee
  • Patent number: 7722988
    Abstract: A lithium electrochemical cell design incorporating a low molality electrolyte including LiI is disclosed. The resulting cell delivers excellent performance under a wide range of temperatures, conditions and drain rates.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: May 25, 2010
    Assignee: Eveready Battery Company, Inc.
    Inventor: Andrew Webber