And Acyclic Carbonate Or Acyclic Carboxylic Acid Ester Solvent Patents (Class 429/332)
  • Publication number: 20130069601
    Abstract: The present invention claims the addition of vinylene carbonate (VC) and optionally also fluoroethylene carbonate to the electrolyte of lithium ion cells having a structural silicon composite anode, i.e. an anode containing fibres or particles of silicon. The additive significantly improves the cycling performance of the cells. A VC content in the range 3.5-8 wt % based on the weight of the electrolyte has been found to be optimum.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 21, 2013
    Inventors: Fazlil Coowar, Mamdouh Elsayed Abdelsalam, Michael Jonathan Lain
  • Publication number: 20130071759
    Abstract: A lithium ion battery includes: a cathode that includes a cathode mix, which contains a cathode active material stably exhibiting a potential of 4.5 V or greater on the metallic lithium basis, a conducting material, and a binder, on a cathode collector; an anode; and a nonaqueous electrolyte that is obtained by dissolving a lithium salt in a nonaqueous solvent, in which a lithium fluoride is provided on at least a surface layer of the cathode collector.
    Type: Application
    Filed: August 20, 2012
    Publication date: March 21, 2013
    Applicant: HITACHI, LTD.
    Inventor: Takahiro YAMAKI
  • Patent number: 8399126
    Abstract: A non-aqueous electrolyte is provided that includes a non-aqueous solvent and an electrolyte salt, wherein the non-aqueous solvent contains a fluorinated ether (1) represented by the following Formula: HCF2CF2CF2CH2—O—CF2CF2H (1). This non-aqueous electrolyte has good wettability to a polyolefin separator, can provide a battery with excellent load characteristics for a long period, does not easily decompose in the battery under high-temperature storage, and causes little gas generation due to decomposition. Furthermore, a non-aqueous electrolyte secondary battery is provided that includes a positive electrode, a negative electrode, a separator, and the above-described non-aqueous electrolyte.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Tooru Matsui, Tetsuo Nanno
  • Publication number: 20130065136
    Abstract: A lithium ion secondary battery which meets the requirement [1] of satisfying the formulae (a) to (c) or the requirement [2] of satisfying the formulae (b), (d), and (e): (a) 5?A?25, (b) 10?B?60, (c) 40?2A+B?90, (d) 0.2?C?1.2, and (e) ?80 200C<3B?150, wherein A (?m) represents an average particle size of a positive electrode active material; B (vol. %) represents a volume concentration of a fluorinated ether in a nonaqueous electrolyte solution; and C (m2/g) represents a specific surface area of the positive electrode active material.
    Type: Application
    Filed: June 17, 2011
    Publication date: March 14, 2013
    Applicant: NEC ENERGY DEVICES, LTD.
    Inventors: Hideaki Sasaki, Takehiro Noguchi, Shinako Kaneko
  • Patent number: 8394541
    Abstract: The sudden generation of heat being frequently caused in the case of the overcharge of a lithium secondary cell which have a positive electrode comprising a composite metal oxide of lithium and cobalt or a composite metal oxide of lithium and nickel, a negative electrode comprising metallic lithium, a lithium alloy or a material capable of occluding and releasing lithium, and a nonaqueous electrolyte solution comprising a nonaqueous solvent and an electrolyte dissolved therein can be efficiently prevented by the addition, to the nonaqueous electrolyte solution, of an organic compound which, when the lithium secondary cell is overcharged, decomposes into a decomposition product capable of dissolving out the cobalt or nickel contained in the positive electrode and depositing it ion the negative electrode (for example, a tert-alkylbenzene derivative).
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: March 12, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Toshikazu Hamamoto, Akira Ueki, Koji Abe, Kazuhiro Miyoshi
  • Publication number: 20130052542
    Abstract: The present invention provides an electrolyte composition for a lithium or lithium-ion battery comprising a lithium salt in a liquid carrier comprising (a) a linear alkyl carbonate solvent, a cyclic alkyl carbonate solvent, or a combination thereof, and (b) a glycerol carbonate derivative compound of Formula (I): wherein X is selected from O, O(CO)O, S, N, P, P(?O), B, and Si; n is 1 when X is O, O(CO)O, or S; n is 2 when x is N, P, P(?O), or B; n is 3 when X is Si; and each R independently is selected from alkyl, alkenyl, alkynyl, aryl, acyl, heteroaryl, a 5-member ring heterocyclic group, a 5-member ring heterocycle-substituted methyl group, trialkylsilyl, and any of the foregoing substituted with one or more fluoro substituents, provided that R is acyl only when X is O, S, or N, and R is not alkyl when X is O(CO)O.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Daniel P. ABRAHAM, Gang CHENG
  • Publication number: 20130052541
    Abstract: A nonaqueous electrolytic solution that provides a lithium secondary battery with excellent electrical capacity, cycling properties, storage properties and other battery characteristics and that maintains the battery characteristics for a long time; and a lithium secondary battery comprising it. A nonaqueous electrolytic solution comprising an electrolytic salt dissolved in a nonaqueous solvent, containing 0.1 to 10% by weight of an ethylene carbonate derivative represented by the general formula (I), and 0.
    Type: Application
    Filed: September 14, 2012
    Publication date: February 28, 2013
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Takaaki Kuwata
  • Patent number: 8383269
    Abstract: A rechargeable lithium-ion battery includes a positive electrode having a first capacity and a negative electrode having a second capacity that is less than the first capacity such that the battery has a negative-limited design. The negative electrode includes a lithium titanate active material. A liquid electrolyte that includes a lithium salt dissolved in at least one non-aqueous solvent a porous polymeric separator are located between the positive electrode and negative electrode. The separator is configured to allow lithium ions to flow through the separator.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: February 26, 2013
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, Gaurav Jain, Kevin W. Eberman, Craig L. Schmidt
  • Publication number: 20130043843
    Abstract: Battery formation protocols are used to perform initial charging of batteries with lithium rich high capacity positive electrode to result a more stable battery structure. The formation protocol generally comprises three steps, an initial charge step, a rest period under an open circuit and a subsequent charge step to a selected partial activation voltage. The subsequent or second charge voltage is selected to provide for a desired degree of partial activation of the positive electrode active material to achieve a desired specific capacity while providing for excellent stability with cycling. The formation protocol is particularly effective to stabilize cycling for compositions with moderate lithium enrichment.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 21, 2013
    Inventors: Shabab Amiruddin, Bing Li
  • Patent number: 8377597
    Abstract: A secondary battery capable of improving the cycle characteristics and the storage characteristics is provided. The battery includes a cathode, an anode, and an electrolytic solution. The electrolytic solution contains a solvent contains a sulfone compound having a structure in which —S(?O)2—S—C(?O)— bond is introduced to a benzene skeleton and an ester carbonate halide.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: February 19, 2013
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Hiroyuki Yamaguchi, Tadahiko Kubota
  • Patent number: 8372548
    Abstract: An organic electrolytic solution including: a lithium salt; an organic solvent; and a compound represented by Formula 1 below, and a lithium battery including the organic electrolytic solution. In Formula 1: R1, R2, and R3 may be each independently a hydrogen atom, a C1 to C10 alkyl group, a C6 to C10 cycloalkyl group, a C6 to C10 aryl group, a C2 to C10 alkenyl group, or a C2 to C10 alkynyl group; X is C (R2) or nitrogen; and n is an integer ranging from 1 to 5.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: February 12, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Young-gyoon Ryu, Dong-joon Lee
  • Patent number: 8372547
    Abstract: There is provided a non-aqueous electrolytic solution assuring good solubility of an electrolyte salt and having enough cell characteristics (charge and discharge cycle characteristic, discharge capacity, and the like), and the non-aqueous electrolytic solution comprises a solvent for dissolving an electrolyte salt comprising (A) at least one fluorine-containing solvent selected from the group consisting of fluorine-containing ethers and fluorine-containing carbonates, (B) a non-fluorine-containing cyclic carbonate and (C) a chain ester represented by the formula (C): R1COOR2, wherein R1 is an alkyl group having 2 to 4 carbon atoms; R2 is an alkyl group having 1 to 4 carbon atoms or a fluorine-containing alkyl group having 1 to 4 carbon atoms, and (II) an electrolyte salt.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: February 12, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Meiten Koh, Hitomi Nakazawa, Hideo Sakata, Michiru Kagawa, Akiyoshi Yamauchi
  • Publication number: 20130034779
    Abstract: In one aspect, an electrolyte for a rechargeable lithium battery that includes a lithium salt, an organic solvent including ethylene carbonate and an additive including diphenyl carbonate, and a rechargeable lithium battery including the same are provided.
    Type: Application
    Filed: January 18, 2012
    Publication date: February 7, 2013
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Mi-Hyeun Oh, Ho-Seok Yang, Man-Seok Han, Dai-In Park, Jin-Hyunk Lim
  • Publication number: 20130029231
    Abstract: A lithium secondary battery has an anode, a cathode, a separator between the anode and the cathode and a non-aqueous electrolyte. The non-aqueous electrolyte includes a lithium salt; and a non-linear carbonate-based mixed organic solvent in which (a) a cyclic carbonate compound, and (b) a propionate-based compound are mixed at a volume ratio (a:b) in the range from about 10:90 to about 70:30. The cathode has a current density in the range from about 3.5 to about 5.5 mA/cm2 and a porosity in the range from about 18 to about 35%. This battery may be manufactured as a high-loading lithium secondary battery.
    Type: Application
    Filed: October 4, 2012
    Publication date: January 31, 2013
    Applicant: LG CHEM, LTD.
    Inventor: LG CHEM, LTD.
  • Publication number: 20130029230
    Abstract: An electrolyte for the lithium secondary battery having flame retardancy, low negative electrode interfacial resistance, and excellent high temperature properties and life characteristics, and a lithium secondary battery including the same. An electrolyte for lithium secondary battery of the present invention may include a non-aqueous organic solvent, a lithium salt, fluorinated ether or phosphazene, and a resistance-improving additive represented as the following chemical formula (1): RSO2—R1—SO2F??[Chemical Formula 1] wherein R1 is a C1-C12 hydrocarbon unsubstituted or substituted with at least one fluorine.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 31, 2013
    Applicant: SAMSUNG SDI, CO., LTD.
    Inventors: Sinyoung Park, Yongbeom Lee, Sunyoung Kim, Bora Lee
  • Patent number: 8349500
    Abstract: There are provided a solvent for dissolving an electrolyte salt of lithium secondary battery comprising at least one fluorine-containing solvent (I) selected from the group consisting of a fluorine-containing ether, a fluorine-containing ester and fluorine-containing chain carbonate, 1,2-dialkyl-1,2-difluoroethylene carbonate (II) and other carbonate (III), a non-aqueous electrolytic solution comprising the solvent and an electrolyte salt, and a lithium secondary battery using the non-aqueous electrolytic solution. The solvent for dissolving an electrolyte salt provides a lithium secondary battery being excellent particularly in discharge capacity, rate characteristic and cycle characteristic and has enhanced incombustibility (safety) and the non-aqueous electrolytic solution comprises the solvent and an electrolyte salt.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: January 8, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Akiyoshi Yamauchi, Akinori Tani
  • Publication number: 20130004860
    Abstract: A quaternary ammonium salt of the formula (1), a composition containing the quaternary ammonium salt and an organic solvent, and an electrochemical device using the salt wherein R1 and R2 are both methyl and X? is BF4? or N(CF3SO2)2?.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Inventors: Tetsuo NISHIDA, Yasutaka Tashiro, Megumi Tornisaki, Masashi Yamamoto, Kazutaka Hirano, Akihiro Nabeshima, Hiroaki Tokuda, Kenji Sato, Takashi Higono
  • Publication number: 20130004859
    Abstract: Disclosed are a nonaqueous electrolyte for a lithium secondary battery containing a hetero polycyclic compound and a lithium secondary battery using the same.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 3, 2013
    Inventors: Sung-Hoon YU, Doo Kyung YANG, Jong-Ho JEON, Min-Jung JOU
  • Publication number: 20120321965
    Abstract: Disclosed is a lithium ion secondary battery including: a positive electrode, a negative electrode including a negative electrode active material layer comprising an alloy-type active material, a lithium ion-permeable insulating layer interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The negative electrode active material layer includes lithium which has been absorbed therein beforehand. The non-aqueous electrolyte includes a lithium salt and a non-aqueous solvent, and the non-aqueous solvent includes: at least one fluorine-containing compound selected from hydrogen fluoride and a specific fluoroethylene carbonate compound (A); and a carbonate-based solvent (B) other than the fluoroethylene carbonate compound (A).
    Type: Application
    Filed: January 24, 2011
    Publication date: December 20, 2012
    Inventors: Masato Fujikawa, Tomoki Shiozaki
  • Publication number: 20120315549
    Abstract: A battery electrolyte solution contains from 0.001 to 20% by weight of certain phosphorus-sulfur compounds. The phosphorus-sulfur compound performs effectively as a solid-electrolyte interphase (SEI) forming material. The phosphorus-sulfur compound has little adverse impact on the electrical properties of the battery, and in some cases actually improves battery performance. Batteries containing the electrolyte solution form robust and stable SEIs even when charged at high rates during initial formation cycles.
    Type: Application
    Filed: November 16, 2009
    Publication date: December 13, 2012
    Inventors: Houxiang Tang, William J. Kruper, JR., Ravi B. Shankar, Deidre A. Strand, Peter M. Margl, Andrew J. Pasztor, JR., David R. Wilson, Jerey R. Stajdi
  • Patent number: 8329343
    Abstract: An electrode includes: an electrode collector and an electrode active material layer, wherein a film containing a salt represented by the following formula (I) is provided on the electrode active material layer: R1AnMx ??(I) wherein R1 represents an n-valent organic group containing a sulfur atom; n represents an integer of from 1 to 4; A represents an anion; M represents a metal ion; and x represents an integer of 1 or more.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: December 11, 2012
    Assignee: Sony Corporation
    Inventors: Hiroyuki Yamaguchi, Toru Odani, Masayuki Ihara, Tadahiko Kubota
  • Publication number: 20120282529
    Abstract: A nonaqueous electrolytic solution capable of improving the low-temperature cycle properties, which is a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, wherein the nonaqueous solvent contains at least two cyclic carbonates selected from ethylene carbonate, 1,2-butylene carbonate, a cyclic carbonate having a methyl group at least at 4-position of ethylene carbonate, and a cyclic carbonate having a fluorine atom at least at 4-position of ethylene carbonate, and the content of the cyclic carbonate having a methyl group at least at 4-position of ethylene carbonate and/or the cyclic carbonate having a fluorine atom at least at 4-position of ethylene carbonate is from 1 to 40% by volume of the total volume of the nonaqueous solvent, and which contains trimethylene glycol sulfite in an amount of from 0.1 to 5% by mass, and an electrochemical element using the same.
    Type: Application
    Filed: January 18, 2011
    Publication date: November 8, 2012
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Masahide Kondo
  • Patent number: 8304118
    Abstract: Disclosed is a non-aqueous electrolyte solution for a lithium secondary battery. The non-aqueous electrolyte solution includes an electrolyte salt and an organic solvent. The non-aqueous electrolyte solution further includes (a) a polyfunctional compound including two or more functional groups, at least one of which is an acryl group, and (b) an anion receptor selected from the group consisting of a borane compound, a borate compound and a mixture thereof. Further disclosed is a lithium secondary battery including the non-aqueous electrolyte solution. A stable solid electrolyte interface (SEI) film is formed on an anode of the lithium secondary battery. The amount of LiF in the SEI film is controlled, achieving improved cycle life characteristics of the battery.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 6, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Su-Jin Yoon, Sung-Hoon Yu, Jong-Ho Jeon
  • Patent number: 8304117
    Abstract: A gel polymer electrolyte precursor and a rechargeable cell comprising the same are provided. The gel polymer electrolyte precursor comprises a bismaleimide monomer or bismaleimide oligomer, a compound having formula (I): a non-aqueous metal salt electrolyte, a non-protonic solvent, and a free radical initiator, wherein the bismaleimide oligomer is prepared by reaction of barbituric acid and bismaleimide, X comprises oxygen, organic hydrocarbon compounds, organic hydrocarbon oxide compounds, oligomers or polymers, n is 2 or 3, and A independently comprises wherein m is 0˜6, X comprises hydrogen, cyano, nitro or halogen, and R1 independently comprises hydrogen or C1˜4 alkyl.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: November 6, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yueh-Wei Lin, Tsung-Hsiung Wang, Jing-Pin Pan, Chang-Rung Yang, Jung-Mu Hsu
  • Publication number: 20120276456
    Abstract: Electrolyte, comprising an aprotic solvent, a lithium salt as conducting salt, and an additive, characterized in that the additive is a compound which contains a protonable nitrogen atom and is hydrolysable by water.
    Type: Application
    Filed: August 27, 2010
    Publication date: November 1, 2012
    Applicant: LI-TEC BATTERY GMBH
    Inventors: Peter Pilgram, Rolf-Walter Terwonne, Denny Thiemig, Joerg Kaiser, Andreas Gutsch
  • Patent number: 8277972
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt and a carbonate organic solvent. The non-aqueous electrolyte solution further includes a fluoro group-containing sulphonate compound expressed by Chemical Formula 1. When the non-aqueous electrolyte solution is employed for a lithium secondary battery, low-temperature discharging characteristics and life cycle characteristics are greatly improved. Also, even though a battery is stored at a high temperature in a fully-charged state or a charging/discharging process is under progress, the decomposition reaction of a carbonate-based organic solvent is restrained, thereby solving the swelling problem and improving high-temperature life cycle characteristics.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: October 2, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Jong-Ho Jeon, Jeong-Ju Cho, Ho-Chun Lee
  • Patent number: 8273478
    Abstract: A rechargeable lithium battery includes an electrolyte including an additive such as an ethylene carbonate-based compound represented by Chemical Formula 1 and a silicon-included compound, and a negative electrode including a negative active material including an active element selected from the group consisting of Si, Sn, Ga, Cd, Al, Pb, Zn, Bi, In, Mg, and Ge. In Chemical formula 1, X and Y are independently selected from the group consisting of hydrogen, a halogen, and a C1 through C5 fluoroalkyl, provided that at least one of X and Y is selected from the group consisting of a halogen and a C1 through C5 fluoroalkyl. The rechargeable lithium battery has a suppressed volume expansion characteristic due to a high-capacity negative active material, and has excellent reliability and cycle-life characteristics.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 25, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Sung Kim, Na-Rae Park, Su-Hee Han, Jin-Hyunk Lim
  • Patent number: 8268486
    Abstract: A positive electrode includes a current collector and a positive electrode active material layer. The positive electrode active material layer includes a positive electrode active material including a core including a compound LiaCO1-bMbO2 and a surface-treatment layer. In the core compound, 0.95?a?1.1, 0.002?b?0.02, and M is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, P, As, Sb, Bi, S, Se, Te, Po. The surface-treatment layer includes a compound including element of P, and one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, As, Sb, Bi, S, Se, Te, Po.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: September 18, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Duck-Chul Hwang, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu, Jong-Hwa Lee, Euy-Young Jung, So-Hyun Hur
  • Patent number: 8263267
    Abstract: A rechargeable battery and associated methods, the rechargeable battery including an anode, a cathode, wherein the cathode includes a ternary cathode-active material, a separator interposed between the cathode and the anode, an electrolyte, and a housing enclosing the electrolyte, the anode, and the cathode, wherein the electrolyte includes a lithium salt, a non-aqueous organic solvent, about 0.5 weight % to about 5 weight % of succinonitrile, and at least one of about 1 weight % to about 10 weight % of halogenated ethylene carbonate and about 1 weight % to about 5 weight % of vinyl ethylene carbonate.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 11, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jinhee Kim
  • Patent number: 8263269
    Abstract: The present invention provides a lithium secondary battery which has improved safety, mainly coming from use of an electrolyte solution which is not inflammable at room temperature (20° C.), while not deteriorating output characteristics at low temperatures and room temperature or output maintenance characteristics after storage at high temperature (50° C.). The lithium secondary battery of the present invention, encased in a container, is provided with a cathode and an anode, both capable of storing/releasing lithium ions, a separator which separates these electrodes from each other, and an electrolyte solution containing a cyclic carbonate and a linear carbonate as solvents and a compound such as VC at composition ratios of 18.0 to 30.0%, 74.0 to 81.9% and 0.1 to 1.0%, respectively, based on the whole solvents, all percentages by volume.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 11, 2012
    Assignee: Hitachi Vehicle Energy, Ltd.
    Inventors: Takefumi Okumura, Takahiro Yamaki, Masanori Yoshikawa, Yoshimi Yanai, Toyotaka Yuasa
  • Publication number: 20120219866
    Abstract: This invention relates to a nonaqueous electrolytic solution including a lithium salt and an organic solvent containing: a carbonate and/or an ester in a total proportion exceeding 90% by volume; and a fluorine-substituted aromatic ester represented by formula (I) in an amount of 0.01%-10% by weight based on the weight of the electrolytic solution: Xn-Ph-OCOR??(1). The invention also relates to a nonaqueous electrolytic solution including an electrolyte, a nonaqueous solvent, and a compound represented by formula (3): The invention also relates to a nonaqueous-electrolyte battery including a nonaqueous electrolytic solution as described above.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 30, 2012
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Masamichi Onuki, Minoru Kotato, Koji Fukamizu, Yumiko Machida, Youichi Ohashi
  • Patent number: 8252465
    Abstract: Disclosed is an electrolyte for a lithium secondary battery. The electrolyte includes a non-aqueous solvent and a sulfone based organic compound represented by the following Formulae (I), (II), or (III), or a mixture thereof: where R and R? are independently selected from the group consisting of primary alkyl groups, secondary alkyl groups, tertiary alkyl groups, alkenyl groups, aryl groups; halogen substituted primary alkyl groups, halogen substituted secondary alkyl groups, halogen substituted tertiary alkyl groups, halogen substituted alkenyl groups, and halogen substituted aryl groups, and n is from 0 to 3.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: August 28, 2012
    Assignees: Samsung SDI Co., Ltd., Ukseung Chemical Co., Ltd.
    Inventors: Jin-Sung Kim, Jong-Wook Lee, Kwang-Sik Kim, Young-Gyu Kim, Je-Yun Kim, Jong-Seob Kim, Meen-Seon Paik, Hak-Soo Kim
  • Publication number: 20120202124
    Abstract: Disclosed is a lithium secondary battery. The lithium secondary battery includes a cathode, an anode, a separator and a non-aqueous electrolyte solution. Either the cathode or the anode or both include metal oxide coating layers on electrode active material particles forming the electrode or a metal oxide coating layer on the surface of an electrode layer formed on a current collector. The non-aqueous electrolyte solution contains an ionizable lithium salt, an organic solvent, and a dinitrile compound having a specific structure. In the lithium secondary battery, degradation of the electrode is prevented and side reactions of the electrolyte solution are inhibited. Therefore, the lithium secondary battery exhibits excellent cycle life and output performance characteristics.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Inventors: Jong-Ho JEON, Doo-Kyung Yang, Sung-Hoon Yu, Min-Hyung Lee
  • Publication number: 20120202123
    Abstract: A lithium secondary battery comprises an anode capable of intercalating or disintercalating lithium ions, a cathode configured with a lithium-containing oxide, and a nonaqueous electrolyte solution. The lithium-containing oxide comprises a lithium nickel based oxide. The nonaqueous electrolyte solution comprises vinyl ethylene carbonate (VEC) and a mono-nitrile compound. This lithium secondary battery solves the deterioration of charge/discharge cycle characteristics caused by a lithium nickel based oxide used for a cathode, and also controls the decomposition reaction of electrolyte to solve the swelling phenomenon even though the battery is stored at a high temperature or charged/discharged in a fully-charged state, thereby improving high-temperature life characteristics.
    Type: Application
    Filed: April 29, 2010
    Publication date: August 9, 2012
    Applicant: LG Chem, Ltd.
    Inventors: Jong-Ho Jeon, Soo-Jin Kim, Ho-Chun Lee
  • Publication number: 20120196190
    Abstract: A lithium secondary battery has an anode, a cathode, a separator between the anode and the cathode and a non-aqueous electrolyte. The non-aqueous electrolyte includes a lithium salt; and a non-linear carbonate-based mixed organic solvent in which (a) a cyclic carbonate compound, and (b) a propionate-based compound are mixed at a volume ratio (a:b) in the range from about 10:90 to about 70:30. The cathode has a current density in the range from about 3.5 to about 5.5 mAh/cm2 and a porosity in the range from about 18 to about 35%. This battery may be manufactured as a high-loading lithium secondary battery.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 2, 2012
    Inventors: Jong-Ho JEON, Jeong-Ju Cho, Ho-Chun Lee
  • Publication number: 20120196191
    Abstract: Disclosed is a lithium secondary battery. The lithium secondary battery includes a cathode, an anode, a separator and a non-aqueous electrolyte solution. The separator includes a porous substrate, and a coating layer coated on at least one surface of the porous substrate and including a mixture of inorganic particles and a binder polymer. The non-aqueous electrolyte solution contains an ionizable lithium salt, an organic solvent, and a dinitrile compound having a specific structure. The lithium secondary battery is very safe without side reactions of the electrolyte solution. Therefore, the lithium secondary battery exhibits excellent cycle life and output performance characteristics.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 2, 2012
    Inventors: Jong-Ho JEON, Doo-Kyung Yang, Sung-Hoon Yu, Min-Hyung Lee
  • Publication number: 20120189920
    Abstract: A lithium secondary battery having reduced swelling tendency includes an electrolytic solution. The electrolytic solution includes a lithium salt, a cyclic carbonate, a linear asymmetric carbonate, a third carbonate, a sultone and a phosphazene compound.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Applicant: NOVOLYTE TECHNOLOGIES INC.
    Inventors: Wentao Li, Martin W. Payne
  • Publication number: 20120183867
    Abstract: The present invention provides a solvent for a nonaqueous electrolyte solution enabling a lithium secondary battery to exhibit an excellent discharge capacity, load characteristics, and cycle characteristics even under high voltages, as well as a nonaqueous electrolyte solution that uses this solvent and a lithium secondary battery. This solvent for a nonaqueous electrolyte solution is a solvent for a nonaqueous electrolyte solution for a lithium secondary battery, wherein the solvent for a nonaqueous electrolyte solution contains a fluorine-free cyclic carbonate (I), a fluorine-free chain carbonate (II), and a 1,1-di(fluorinated alkyl)ethylene carbonate (III), and wherein with a sum of (I), (II), and (III) being 100 volume %, the fluorine-free cyclic carbonate (I) is 10 to 50 volume %, the fluorine-free chain carbonate (II) is 49.9 to 89.9 volume %, and the 1,1-di(fluorinated alkyl)ethylene carbonate (III) is from at least 0.1 volume % to not more than 30 volume %.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 19, 2012
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Akiyoshi Yamauchi, Akinori Tani, Hideo Sakata, Hitomi Nakazawa, Toshiki Ichisaka, Hiroyuki Arima, Tomoyo Sanagi
  • Publication number: 20120183866
    Abstract: The present invention relates to electrochemical storage devices containing a non-aqueous lithium based electrolyte with high ionic conductivity, low impedance, and high thermal stability. More particularly, this invention relates to the design, synthesis and application of novel fluorinated arylboron oxalate based compounds which act as anion receptors and/or additives for non-aqueous batteries. When used as an anion receptor for non-aqueous battery electrolytes, the fluorinated arylboron oxalate enhances conductivity, lithium ion transference number and Solid Electrolyte Interface (SEI) formation capability during the formation cycling.
    Type: Application
    Filed: July 26, 2010
    Publication date: July 19, 2012
    Applicant: Brookhaven Science Associates ,LLC
    Inventors: Hung Sui Lee, Xiao-Qing Yang, Kyung-Wan Nam, Xiaojian Wang
  • Patent number: 8221922
    Abstract: A non-aqueous electrolyte secondary battery including: a positive electrode that contains a transition metal oxide capable of absorbing and desorbing lithium ions; a negative electrode that is capable of absorbing and desorbing lithium ions; a porous film that is interposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte, wherein at least one selected from inorganic oxide and polyamide is contained in the porous film, and 5 to 15 vol % of ethylene carbonate is contained in a non-aqueous solvent that is contained in the non-aqueous electrolyte.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: July 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaki Deguchi, Tooru Matsui, Hiroshi Yoshizawa
  • Publication number: 20120177999
    Abstract: The present invention provides an electrolyte solvent for batteries, which comprises fluoroethylene carbonate and linear ester solvent. Also, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate and linear ester solvent. The inventive electrolyte solvent can improve the battery safety without deteriorating the battery performance.
    Type: Application
    Filed: March 20, 2012
    Publication date: July 12, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Keun Yung IM, Ki Young LEE, Joon Sung BAE, Young Taek AN
  • Patent number: 8206853
    Abstract: The objective of the present invention is to prevent deterioration and expanding of anode active material and to improve charge-discharge cycle characteristics in a non-aqueous electrolyte secondary battery comprising an anode of which current collector has thereon a thin layer of an anode active material containing a metal. To solve this problem, in a non-aqueous electrolyte secondary battery wherein a thin layer of anode active material containing a metal which absorbs and discharges lithium is formed on a current collector and the thin layer of the anode active material is divided into columns by a gap formed along the thickness thereof, a compound represented by the following formula is contained in the non-aqueous electrolyte. A-N?C?O In the above formula, A represents an element or a group other than hydrogen.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: June 26, 2012
    Assignees: SANYO Electric Co., Ltd., Mitsubishi Chemical Corporation
    Inventors: Keiji Saisho, Hidekazu Yamamoto, Masahiro Takehara
  • Publication number: 20120156572
    Abstract: Disclosed are an electrode active material for a power storage device and a power storage device including the same. The electrode active material includes a polymer that includes: a tetravalent group derived from a compound selected from the group consisting of EBDT and derivatives thereof, TTF and derivatives thereof, a condensation product of EBDT and TTF and derivatives thereof, and a TTF dimer and derivatives thereof; and a divalent group —S-A-S— where A is a divalent aliphatic group or a divalent group represented by the formula -E-D-E- where D represents a divalent alicyclic group, a divalent aromatic group, or a carbonyl group, and two Es each independently represent a divalent aliphatic group. Adjacent two tetravalent groups mentioned above are linked by one or two divalent groups mentioned above.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 21, 2012
    Inventors: Nobuhiko Hojo, Yu Ohtsuka, Takafumi Tsukagoshi, Yohji Misaki
  • Publication number: 20120141884
    Abstract: The present invention provides a lithium-ion secondary battery with excellent high-temperature storage characteristics. The lithium-ion secondary battery provided by the present invention has positive and negative electrodes capable of absorbing and desorbing lithium ions, and an electrolyte solution containing a lithium salt as a supporting salt in an organic solvent. The nonaqueous electrolyte contains not only the lithium salt, but also at least one type of dicarboxylic acid as additive A; and at least one type of additive selected from vinylene carbonate, vinylethylene carbonate, ethylene sulfite, and fluoroethylene carbonate as additive B.
    Type: Application
    Filed: August 24, 2009
    Publication date: June 7, 2012
    Inventor: Koji Takahata
  • Publication number: 20120135315
    Abstract: A non-aqueous electrolyte secondary battery is provided that uses as a positive electrode active material a low-cost lithium-containing transition metal composite oxide containing Ni and Mn as its main components, to improve the output power characteristics so that it can be used suitably for an electric power source for, for example, hybrid electric vehicles. A non-aqueous electrolyte secondary battery has a positive electrode (11) containing a positive electrode active material, a negative electrode (12) containing a negative electrode active material, and a non-aqueous electrolyte solution (14) in which a solute is dissolved in a non-aqueous solvent. In the positive electrode active material, Nb2O5 in which the amount of niobium is 0.5 mol % with respect to the total amount of the transition metals and TiO2 in which the amount of titanium is 0.5 mol % with respect to the total amount of the transition metals are disposed on a surface of Li1.06Ni10.56Mn10.38O2.
    Type: Application
    Filed: August 6, 2010
    Publication date: May 31, 2012
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Fumiharu Niina, Akihiro Suzuki, Toshikazu Yoshida, Shingo Tode, Yoshinori Kida, Hiroyuki Fujimoto
  • Publication number: 20120129053
    Abstract: Disclosed is an electrochemical device comprising a cathode having a complex formed between a surface of a cathode active material and an aliphatic di-nitrile compound; and a non-aqueous electrolyte containing 1-10 wt % of a compound of Formula 1 or its decomposition product based on the weight of the electrolyte.
    Type: Application
    Filed: February 1, 2012
    Publication date: May 24, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Young-Soo Kim, Soon-Ho Ahn, Soo-Hyun Ha
  • Publication number: 20120121989
    Abstract: Provided are novel electrolytes for use in rechargeable lithium ion cells containing high capacity active materials, such as silicon, germanium, tin, and/or aluminum. These novel electrolytes include one or more pyrocarbonates and, in certain embodiments, one or more fluorinated carbonates. For example, dimethyl pyrocarbonate (DMPC) may be combine with mono-fluoroethylene carbonate (FEC). Alternatively, DMPC or other pyrocarbonates may be used without any fluorinated carbonates. A weight ratio of pyrocarbonates may be between about 0% and 50%, for example, about 10%. Pyrocarbonates may be combined with other solvents, such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and/or ethyl-methyl carbonate (EMC). Alternatively, pyrocarbonates may be used without such solvents.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 17, 2012
    Applicant: AMPRIUS, INC.
    Inventors: Gregory Alan Roberts, Rainer J. Fasching, Constantin I. Stefan
  • Patent number: 8178246
    Abstract: The present invention provides a nonaqueous electrolytic solution which can give excellent cycle characteristics. The nonaqueous electrolytic solution contains a linear carbonate represented by the formula (1): wherein, in the formula (1), Xa represents each independently hydrogen or any group; Ra represents optionally substituted alkyl; and n represents an integer of zero or more.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: May 15, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Noriko Shima
  • Publication number: 20120115043
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a nonaqueous electrolyte solution containing a nonaqueous solvent. The positive electrode active material contains a lithium-containing transition metal oxide represented by general formula (1), Li1+xMnyMzO2 (where x, y, and z satisfy 0<x<0.4, 0<y<1, 0<z<1, and x+y+z=1; and M represents at least one metal element and contains at least one of Ni and Co). The nonaqueous solvent contains a fluorinated cyclic carbonate having two or more fluorine atoms directly bonded to a carbonate ring.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 10, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Denis Yau Wai YU, Katsunori Yanagida, Hidekazu Yamamoto
  • Patent number: 8173298
    Abstract: An electrolyte for a lithium battery includes a non-aqueous organic solvent, a lithium salt, and an additive comprising a) a compound represented by the following Formula (1), and b) a compound selected from the group consisting of a sulfone-based compound, a poly(ester)(metha)acrylate, a polymer of poly(ester)(metha)acrylate, and a mixture thereof: wherein R1 is a C1 to C10 alkyl, a C1 to C10 alkoxy, or a C6 to C10 aryl, and preferably a methyl, ethyl, or methoxy, X is a halogen, and m and n are integers ranging from 1 to 5, where m+n is less than or equal to 6.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 8, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Ho Kim, Ha-Young Lee, Sang-Hoon Choy, Ho-Sung Kim, Hyeong-Gon Noh