With Means For Stacking Cells Together Patents (Class 429/467)
  • Patent number: 11973189
    Abstract: A non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery including the same are disclosed herein. In some embodiments, a non-aqueous electrolyte for a lithium secondary battery includes an organic solvent, a lithium salt, and a compound represented by Formula 1. In some embodiments, the compound represented by Formula 1 is present in an amount of 0.5 part by weight to 5 parts by weight based on 100 parts by weight of the non-aqueous electrolyte.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: April 30, 2024
    Assignee: LG Energy Solution, Ltd.
    Inventors: Jeong Woo Oh, Chul Haeng Lee, Yoo Sun Kang
  • Patent number: 10903513
    Abstract: A fuel cell device that can prevent exposure of a cell stack to the outside of a stack case, and a vehicle with the same mounted thereon. The fuel cell device includes a cell stack, end plates disposed at opposite ends of the cell stack in a stacking direction of fuel cells, and a stack case housing the cell stack and end plates. The stack case has a bottom surface portion, end plate facing portions facing the respective end plates, side surface portions extending in the stacking direction, and mount portions disposed near corner portions between the respective side surface portions and end plate facing portions and on outer walls of the respective side surface portions such that the mount portions are positioned in a pair across the bottom surface portion. The bottom surface portion has rib portions disposed thereon that each extends between a pair of the mount portions.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: January 26, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hitoshi Hamada, Hideyuki Kanazawa, Terufumi Kobayashi
  • Patent number: 10458013
    Abstract: Provided is a ferritic stainless steel having a chemical composition containing, in mass %: 0.003% to 0.025% of C; 0.05% to 1.00% of Si; 0.05% to 1.00% of Mn; 0.04% or less of P; 0.01% or less of S; 16.0% to 23.0% of Cr; 0.20% to 0.80% of Cu; 0.05% to 0.60% of Ni; 0.20% to 0.70% of Nb; 0.005% to 0.020% of N; and the balance being Fe and incidental impurities, in which a nitrogen-enriched layer is present that has a nitrogen concentration peak value of 0.03 mass % to 0.30 mass % at a depth of within 0.05 ?m of a surface of the steel.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: October 29, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Kunio Fukuda, Shin Ishikawa, Mitsuyuki Fujisawa, Katsuhisa Yamauchi, Chikara Kami
  • Patent number: 10450625
    Abstract: Provided is a ferritic stainless steel that has excellent corrosion resistance and displays good brazing properties when brazing is carried out at high temperature using a Ni-containing brazing metal. These effects are obtained as a result of the steel having a chemical composition containing, in mass %: 0.003%-0.020% of C; 0.05%-1.00% of Si; 0.10%-0.50% of Mn, 0.04% or less of P; 0.01% or less of S; 16.0%-25.0% of Cr; 0.05%-0.60% of Ni; 0.25%-0.45% of Nb; 0.005%-0.15% of Al; 0.005%-0.030% of N; and at least one selected from 0.50%-2.50% of Mo and 0.05%-0.80% of Cu, the balance being Fe and incidental impurities, and as a result of a nitrogen-enriched layer being created that has a nitrogen concentration peak value of 0.03 to 0.30 mass % at a depth of within 0.05 ?m of a surface of the steel.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: October 22, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Kunio Fukuda, Mitsuyuki Fujisawa, Tomohiro Ishii, Shin Ishikawa, Chikara Kami
  • Patent number: 10230117
    Abstract: A bipolar plate for a fuel cell, having an anode side and a cathode side. The bipolar plate has two inactive supply regions, having anode gas channels which are each connected to one of two anode gas main channels and an anode gas flow field of an active region; cathode gas channels which are each connected to one of two cathode gas main channels and a cathode gas flow field of the active region; and coolant channels which are each connected to one of two coolant main channels and a coolant flow field of the active region. At least one of the anode gas main channels and the anode gas channels of the supply region connected thereto are arranged so that a length difference between a longest and a shortest anode gas channel of this supply region is at most 50% of the length of the longest anode gas channel.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: March 12, 2019
    Assignee: Volkswagen AG
    Inventor: Benno Andreas-Schott
  • Patent number: 10026972
    Abstract: The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: July 17, 2018
    Assignee: LG FUEL CELL SYSTEMS INC.
    Inventors: Zhien Liu, Richard Goettler
  • Patent number: 9350031
    Abstract: A fuel cell stack having a plurality of connected modules. Each module includes an elongate hollow member and at least one passage extending through the hollow member. Each hollow member has a first flat surface and a second flat surface arranged parallel to the first flat surface. A first module includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. A first end of each module has an integral spacer and the modules are connected by the spacer of a first module contacting a second end of a second module.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: May 24, 2016
    Assignee: LG FUEL CELL SYSTEMS INC.
    Inventors: Gary Wright, Nigel T. Hart, Gerard D. Agnew, Christopher Burrows
  • Patent number: 9029038
    Abstract: A method of forming a fuel cell stack, wherein the stack includes an anode electrode layer, an adhesive and anode gas diffusion layer coupled to the anode electrode layer, an ion exchange membrane coupled on a first side to the gas diffusion layer opposite the anode electrode layer, an adhesive and cathode gas diffusion layer coupled to a second side of the ion exchange membrane, and a cathode electrode layer coupled to the adhesive and cathode gas diffusion layer opposite the ion exchange membrane. The fuel cell stack may be flexible.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: May 12, 2015
    Assignee: Honeywell International Inc.
    Inventor: Steven J. Eickhoff
  • Patent number: 9023547
    Abstract: A separator of a fuel cell includes a sandwiching section, first and second bridges connected to the sandwiching section, a fuel gas supply section connected to the first bridge and an oxygen-containing gas supply section connected to the second bridge. The sandwiching section sandwiches an electrolyte electrode assembly, and has a fuel gas channel and an oxygen-containing gas channel separately. In the sandwiching section, a plurality of first projections are arranged in a zigzag pattern in a direction in which the first bridge extends, and the first projections at least protrude toward the fuel gas channel to contact an anode.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: May 5, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroki Homma, Tsutomu Takahashi, Tetsuya Ogawa
  • Patent number: 9023548
    Abstract: A fuel cell system 1 has at least one fuel cell stack 2, which comprises a plurality of plate-shaped fuel cells 10. A retaining device 3 is provided for installing the fuel cell stack in a vehicle 6. When the fuel cell stack 2 is installed in the vehicle 6, the plate-shaped fuel cells 10 are arranged inclined relative to the vertical 9.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: May 5, 2015
    Assignee: Daimler AG
    Inventor: Gerald Hornburg
  • Patent number: 9005838
    Abstract: A fuel cell stack is provided in which a plurality of single cells each including a membrane electrode assembly are stacked in a stacking direction. The fuel cell stack includes a plurality of electrical insulation members each connected to an outer peripheral portion of a corresponding one of the membrane electrode assemblies. The fuel cell stack further includes a first displacement absorbing member disposed between each insulation member and an adjacent insulation member.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: April 14, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shigetaka Uehara, Yasuhiro Numao
  • Publication number: 20150093678
    Abstract: A bonding layer used to join individually formed fuel cell units together to create a solid oxide fuel cell stack can include particles contained within a carrier material. The particles can have at least one material component in common with a porous electrode of a first type and a bimodal particle size distribution. In some embodiments, the particles of a first mode of the bimodal particle size distribution are small enough to fit at least partially into the porosity of the electrodes bonded together, while the particles of the second mode of the bimodal particle size distribution are larger than the porosity of the electrodes.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventor: Morteza Zandi
  • Patent number: 8993191
    Abstract: A measurement device for measuring voltages along a linear array of voltage sources, such as a fuel cell stack, includes at least one movable contact or non-contact voltage probe that measures a voltage of an array element.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: March 31, 2015
    Assignee: Bloom Energy Corporation
    Inventors: John Matthew Fisher, Ian Russell, Chad Pearson, Robert Hintz, Nathan Ben Erlin, David Edmonston, Stephen Couse, Michael Dubuk
  • Patent number: 8990034
    Abstract: A health monitoring system for a fuel cell stack using current fuel cell architecture to enable the electronic control unit (ECU) to continue to monitor the health of the fuel cell stack despite a component failure. The system uses an embedded measurement module (EMM) connected to a group of fuel cells in the fuel cell stack to monitor the health of that group of fuel cells. The EMM produces a pulse width modulation signal that is sent to the ECU. A total voltage value for the group of fuel cells is embedded into the calibration signal or end of frame sequence. The ECU uses an algorithm to determine a missing voltage of at least one fuel cell in the event of the component failure of that fuel cell by adding up the cumulative value for each fuel cell reporting their voltage and subtracting that value from the total voltage value found in the end of frame sequence.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, David J. Reed, Kenneth L. Kaye
  • Patent number: 8968957
    Abstract: A fuel cell unit configuring a fuel cell is provided with a first separator, a first electrolyte film/electrode body, a second separator, a second electrolyte film/electrode body, and a third separator. Resin guide members are provided on the outer periphery of the first separator, the second separator, and the third separator. The resin guide members have outer peripheral ends which protrude outwards, and in the aforementioned resin guide members are formed concave reliefs which are spaced inwards from the aforementioned outer peripheral ends.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: March 3, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shuhei Goto, Tetsuya Nakamura, Hiroyuki Tanaka, Kentaro Ishida
  • Patent number: 8956784
    Abstract: The disclosed embodiments provide a fuel cell plate. The fuel cell plate includes a substrate of electrically conductive material and a first outer layer of corrosion-resistant material bonded to a first portion of the substrate. To reduce the weight of the fuel cell plate, the electrically conductive material and the corrosion-resistant material are selected to be as light as practicable.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: February 17, 2015
    Assignee: Apple Inc.
    Inventors: Vijay M. Iyer, Jean L. Lee, Gregory L. Tice
  • Patent number: 8956779
    Abstract: A water vapor transfer unit assembly is disclosed, the water vapor transfer unit assembly including a plurality of water vapor transfer units having a fluid permeable membrane and a plurality of supports disposed within a sealing frame adjacent an end plate of a fuel cell stack, wherein the sealing frame is adapted to provide support to the end plate and a fuel cell stack of the fuel cell stack system.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: February 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Benno Andreas-Schott, Glenn W. Skala, Thomas P. Migliore, Ian R. Jermy
  • Publication number: 20150017564
    Abstract: In order to improve an electrochemical conversion device comprising a plurality of functional elements stacked one upon the other into a stack in a stacking direction and interconnected within the stack, some of which have peripheral areas of sheet material, some of which are arranged in a stacked configuration one upon the other in a stacking direction, forming peripheral stacks, and are interconnected by way of a first element-to-element connection and some others of which are interconnected by way of a second element-to-element connection, in such a manner that the strain placed on the element-to-element connections can be kept as low as possible, it is proposed that one of the functional elements comprise a compensating unit and that the compensating unit comprise at least one deformable element which, by deformation, allows for at least one height compensation in the stacking direction.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 15, 2015
    Applicant: ElringKlinger AG
    Inventors: Uwe Maier, Andreas Zimmer
  • Patent number: 8932779
    Abstract: A device for a solid oxide fuel cell or a solid oxide electrolysis cell includes an integral one-piece construction of a current collector and a manifold. The device eliminates the need for a brazing or thermal bonding process for joining the manifold with the current collector, and thus makes it possible to prevent breakdown of the junction formed between the manifold and the current collector, which can lead to gas leakage through the junction, and thus can be used for a long period of time.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: January 13, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Sun-Dong Kim, Doo-Won Seo, In-Sub Han, Ji-Haeng Yu, Se-Young Kim, Sang-Kuk Woo
  • Patent number: 8927174
    Abstract: A sealing structure of a fuel cell has a first gasket made of an elastomer and provided integrally on a separator, and a second gasket made of an elastomer and provided integrally on other separator. A membrane-electrode assembly is sandwiched or pinched by the first and second gaskets. The first gasket has a main lip in which a top portion brought into close contact with the membrane-electrode assembly is formed flat. The second gasket has a flat seal portion and a sub lip protruding from this flat seal portion at a position opposing the main lip. The flat seal portion and the sub lip are brought into close contact with the membrane-electrode assembly. The width of the top portion of the main lip is narrower than the width of the flat seal portion, and larger than the width of the sub lip.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 6, 2015
    Assignee: NOK Corporation
    Inventors: Shinichiro Taguchi, Shigeru Watanabe
  • Patent number: 8928328
    Abstract: A testing device for solid oxide fuel cell (SOFC) is disclosed. The testing device which combines the original cell housing with a four-point probe equipment is set for measuring SOFC MEA. The current collectors on anode and cathode in the original cell housing are respectively replaced by four independent probe units. They are not only to collect current but also to become measuring probes. Therefore, the lateral impedance of anode and cathode can be measured. Furthermore, the local characteristics are examined by open circuit voltage (OCV), I-V curve, and electrochemical impedance spectroscopy (EIS) measurements. The results show that the lateral impedance is substantially varied with temperatures. The distributions of OCV, current density, EIS and cell voltage in long-term test at the center of the cell are different from the edge.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: January 6, 2015
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Shih-Wei Cheng, Yaw-Hwa Shiu, Yung-Neng Cheng, Ruey-Yi Lee
  • Patent number: 8927172
    Abstract: Disclosed herein is a flat-tubular solid oxide cell stack. The cell stack includes a plurality of unit cells which are stacked one on top of another. Each unit cell includes a flat-tubular electrode support made of a porous conductive material. A first-gas flow channel is formed in the electrode support in a longitudinal direction thereof. First gas flows along the first-gas flow channel. A second-gas flow channel is formed on the outer surface of the electrode support. Second-gas flows along the second-gas flow channel. A connection hole is formed on each of opposite ends of the first-gas flow channel of each of the unit cells and communicates with the first-gas flow channel of the adjacent unit cell so that the first gas flows along the unit cells in a zigzag manner in the longitudinal directions of the unit cells.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 6, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Sun-Dong Kim, Ji-Haeng Yu, In-Sub Han, Doo-Won Seo, Kee-Seog Hong, Se-Young Kim, Sang-Kuk Woo
  • Publication number: 20140363755
    Abstract: A group of fuel gas system devices are provided at a first end plate of a fuel cell system through a block member. A cover member is provided at the first end plate to cover the group of the fuel gas system devices. Support rod members are provided at the first end plate. The support rod members protrude outward in a stacking direction to support the cover member at the front ends of the support rod members.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 11, 2014
    Inventors: Hideharu NAITO, Yusuke NARA, Nariyuki YOSHINAGA, Hidetada KOJIMA
  • Publication number: 20140322626
    Abstract: In a fuel cell stack, fuel cells are stacked together in a stacking direction, and the stacked fuel cells are placed in a casing. An upper side panel of the casing includes an outer plate and an inner plate which are joined together. Flat plate members are interposed between the outer plate and the inner plate at positions corresponding to both end portions of the outer plate and the inner plate extending in the stacking direction. The flat plate members are thicker than the outer plate and the inner plate.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 30, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Hideharu NAITO
  • Patent number: 8871405
    Abstract: When assembly is carried out by clamping a stacked product made up of a plurality of unit cell modules, paired end plates respectively disposed on both the sides thereof and the like by a plurality of fastening members, first coupling portions of one end portion of each of such plurality of fastening members and second coupling portions of the other end portions are combined to each other, and coupled with one pin member. Thus, a plurality of such fastening members are coupled.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventor: Yoko Yamamoto
  • Patent number: 8865364
    Abstract: A solid oxide fuel cell includes two or more power generating elements each having a cathode, an anode, and an electrolyte layer placed between the cathode and the anode; an interconnector electrically connecting the power generating elements and containing a chromite-based material; and a sealing portion provided between the electrolyte layer and the interconnector and not containing either Ni or ZrO2.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 21, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Toshihiro Yoshida, Takashi Ryu, Taku Okamoto, Masaru Nishitoba, Makoto Ohmori
  • Patent number: 8865365
    Abstract: A connector is connected with a connector joint structure formed in separators in a fuel cell. The connector has: a connector casing; a terminal element that is provided in the connector casing and is configured to be in contact with an edge side of the separator and to be elastically deformed in an insertion direction of the connector that is orthogonal to a stacking direction of the separators, when the connector is connected with the connector joint structure; and an engagement element that is formed in the connector casing and is configured to engage with the connector joint structure and restrict motion of the connector in the insertion direction when the connector is connected with the connector joint structure.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 21, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuki Otake, Hiroshi Fujita
  • Patent number: 8859162
    Abstract: Disclosed herein is a fuel cell module. The fuel cell module according to preferred embodiments of the present invention includes: a first support part including a first body part surrounding one side of an outer peripheral surface of a fuel cell and a first connection part formed on one side of the first body part in a longitudinal direction; a second support part including a second body part surrounding the other side of the outer peripheral surface of the fuel cell and the second connection part formed on one side of the second body part in a longitudinal direction; and a fixing part passing through the first connection part and the second connection part to connect and fix the first connection part and the second connection part to each other.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jai Hyoung Gil, Kyong Bok Min, Jong Ho Chung, Jong Sik Yoon, Eon Soo Lee
  • Patent number: 8835024
    Abstract: A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: September 16, 2014
    Assignee: Societe BIC
    Inventors: Joy Roberts, Joerg Zimmermann, Jeremy Schrooten
  • Patent number: 8835072
    Abstract: A solid oxide fuel cell stack is disclosed. The solid oxide fuel cell stack may include a cell array, a pair of planar current collecting members, first and second terminal portions, and a pair of electric insulating members. A plurality of interconnector-type unit cells may be electrically connected in parallel to form a bundle, and a plurality of bundles may be electrically connected in series. The pair of the planar current collecting members may be electrically connected electrically to the plurality of bundles and configured to collect current. The first and second terminal portions contact the current collecting members. The pair of insulating members has first through-holes through which the first and second terminal portions pass, and to the insulating members are formed outside the pair of the current collecting members.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: September 16, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kwang-Jin Park, Jun-Won Suh, Sang-Jun Kong
  • Patent number: 8802325
    Abstract: A fuel cell stack includes a stack body formed by stacking a plurality of fuel cells in a stacking direction, and first and second end plates at both ends in the stacking direction. Long sides of the first and second end plates are fixed together by a pair of tightening members. The tightening member includes a bent portion bent in a direction along a surface of the second end plate, and coupled to the pressure application adjustment device, and a wide portion having a width extended toward the first end plate.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 12, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Go Morimoto, Takashi Kuwayama, Hiroyuki Tanaka
  • Patent number: 8795920
    Abstract: A rubber composition comprising (A) an alkenyl-containing organopolysiloxane, (B) a silicone resinous copolymer, (C) an organohydrogenpolysiloxane, (D) fumed silica having a BET specific surface area of 50-400 m2/g, (E) carbon powder having a BET specific surface area of 30-150 m2/g, and (F) an addition reaction catalyst cures into a product which is useful as a separator seal in PEFCs. The rubber has a reduced compression set even in an acidic atmosphere or in contact with LLC, and the rubber itself has strength and good adhesion to separator substrates. The separator provides excellent seal performance over a long term.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: August 5, 2014
    Assignees: Honda Motor Co., Ltd., Shin-Etsu Chemical Co., Ltd.
    Inventors: Daisuke Okonogi, Satoru Terada, Noriyuki Meguriya, Osamu Hayashida
  • Patent number: 8795921
    Abstract: An alignment system and method for assembling a fuel cell stack. Components of the fuel cell stack have internal alignment features and are aligned to a predetermined orientation during assembly. The system and method allow fuel cell stacks to be assembled within high tolerance levels while improving access to each component during assembly. Additionally, the system and method can provide additional rigidity to a fuel cell stack.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeffrey A. Rock, Benno Andreas-Schott, Thomas P. Migliore, Ivan D. Chapman, Matthew J. Beutel, Mark W. Keyser
  • Patent number: 8785074
    Abstract: A ceramic baffle is configured to place a load on a stack of electrochemical cells and direct a reactant feed flow stream to the stack.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 22, 2014
    Assignee: Bloom Energy Corporation
    Inventors: David Edmonston, Michael Petrucha, Martin Perry, Matthias Gottmann, Dien Nguyen, Emad El Batawi, William David Lyle
  • Patent number: 8778528
    Abstract: An electricity storage device includes: a plurality of cells that are aligned in a predetermined direction; a pair of end plates that sandwich the plurality of cells in the predetermined direction; and a restraining member that extends in the predetermined direction, is fixed to the pair of end plates, and exerts a restraining force on the plurality of cells in the predetermined direction via the end plates. Each of the end plates includes a first plate and a second plate. The first plate has a plurality of ribs on a surface that faces the adjacent cell and is formed of insulating material. The second plate is fixed to the first plate on a side opposite to the surface that faces the adjacent cell and is formed of material stronger than the insulating material for the first plate.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 15, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kojima Press Industry Co., Ltd.
    Inventors: Tomotaka Osakabe, Mikio Wakasugi, Masahiro Imai, Ryogo Murayama
  • Patent number: 8741500
    Abstract: A fuel cell stack formed by stacking two or more fuel cell layers each constituted of one or more unit cell and a fuel cell system including the same are provided. Any two fuel cell layers adjacent to each other each have one or more gap region. At least a part of the gap region in one fuel cell layer of any two fuel cell layers adjacent to each other is in contact with a unit cell constituting the other fuel cell layer. The gap region in one fuel cell layer and the gap region in the other fuel cell layer communicate with each other. The fuel cell stack is excellent in fuel or oxidizing agent supply performance and it realizes high power density.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshiyuki Fujita, Hironori Kambara, Masashi Muraoka, Tomohisa Yoshie
  • Patent number: 8728673
    Abstract: A casing of a fuel cell system is divided into a fluid supply section, a module section, and an electrical equipment section. A detector, a fuel gas supply apparatus, an oxygen-containing gas supply apparatus, and a water supply apparatus are provided in the fluid supply section. A fuel cell module and a combustor are provided in the module section. A power converter and a control device are provided in the electrical equipment section. The module section is interposed between the fluid supply section and the electrical equipment section.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: May 20, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Ogawa, Kimiko Fujisawa, Ayatoshi Yokokawa
  • Patent number: 8728682
    Abstract: A fuel cell of the present invention includes: four fastening bolts which extend in a stack direction of a stack structure so as to penetrate through openings of end plates and nuts which are disposed at both ends of the fastening bolts and can adjust fastening forces applied by the fastening bolts to the stack structure sandwiched between the end plates. Each fastening bolt is disposed in the vicinity of an intermediate point of each side of the end plate. In an electrode facing region of the end plate, one or more springs are disposed on a first straight line passing through two fastening bolts one or more springs are disposed on a second straight line passing through two fastening bolts one or more springs are disposed on a third straight line passing through two fastening bolts and one or more springs are disposed on a fourth straight line passing through two fastening bolts.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: May 20, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Yoshiki Nagao
  • Patent number: 8722275
    Abstract: An apparatus for fuel cell stacking includes an assembly jig having a base; an alignment assembly configured to be engaged with the base; and a compression assembly configured to be engaged with the alignment assembly.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 13, 2014
    Assignee: Oorja Protonics Inc.
    Inventors: Derek Kwok, Paul Knauer, Sergio Sanchez-Chopit
  • Patent number: 8722274
    Abstract: A subassembly for a fuel cell stack includes a fuel cell plate and a datum hole formed in the fuel cell plate for alignment of the fuel cell plate during assembly of the fuel cell stack. The subassembly also includes a datum insert disposed adjacent the datum hole of the fuel cell plate. The datum insert is configured to militate against a bending of the fuel cell plate at the datum hole during the assembly of the fuel cell stack.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: May 13, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel P. Miller, Mark W. Keyser, Steven J. Spencer
  • Patent number: 8709674
    Abstract: A plurality of tubular solid oxide fuel cells are embedded in a solid phase porous foam matrix that serves as a support structure for the fuel cells. The foam matrix has multiple regions with at least one property differing between at least two regions. The properties include porosity, electrical conductivity, and catalyst loading.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: April 29, 2014
    Assignee: Alberta Research Council Inc.
    Inventors: Partho Sarkar, Mark Richardson, Luis Yamarte
  • Patent number: 8697312
    Abstract: A cell stack of a fuel cell comprises a cell stack body including a cell stack structure including plural cells stacked together; an elastic member disposed at an end of the cell stack structure in a direction in which the plural cells are stacked, and a pair of end plates sandwiching the cell stack structure and the elastic member, and a fastener band extending to surround the cell stack body and to cover a pair of end surfaces and a pair of opposing side surfaces of the cell stack body, the fastener band including a first band engagement portion and a second band engagement portion at both end portions thereof, respectively, and the cell stack body is fastened by the fastener band by direct or indirect engagement between the first band engagement portion and the second band engagement portion.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Soichi Shibata, Hiroki Kusakabe, Shigeyuki Unoki, Yoshiki Nagao, Norihiko Kawabata, Yusuke Ikeshima
  • Patent number: 8691464
    Abstract: The present invention relates to single chamber fuel cells and systems and methods associated with the same. Architectures and materials that allow for high performance, enhanced fuel utilization, mechanical robustness, and mechanical flexibility are described. In some embodiments, multiple fuel cell units are arranged in a single chamber and may be, in some cases, connected to each other (e.g., connected in series, connected in parallel, etc.). Each fuel cell unit can be defined as one or more anode(s), one or more cathode(s), and an electrolyte able to maintain electrical separation between the anode(s) and cathode(s). The multiple fuel cell units are arranged in stacks in some cases. In one set of embodiments, the stacks of fuel cell units can be shaped and/or arranged to enhance the mixing of fuel and oxidant, thus improving distribution of reactants in the reaction zone. For example, the stacks of fuel cells may be arranged as fins within the fuel cell chamber.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 8, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Gerardo Jose Ia O', Serkan Koc, Ethan J. Crumlin, Yang Shao-Horn
  • Patent number: 8685585
    Abstract: In a planar-array cell structure, an area required by interconnectors is reduced and a fuel cell is made further compact. A connection part which connects adjacent cells in series is provided within a sealing member provided in a peripheral edge part of an electrolyte membrane where multiple cells are formed in a planar arrangement. For each cell, an anode terminal of a current collector is disposed counter to a cathode terminal of the current collector via the electrolyte membrane. The connection part penetrates the electrolyte membrane and connects the anode terminal of one of the adjacent cells to the cathode terminal of the other of the adjacent cells.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 1, 2014
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shinichiro Imura, Takashi Yasuo
  • Patent number: 8663864
    Abstract: In a fuel cell stack having a plurality of fuel cell units, which are arranged consecutively in a stacking direction, wherein each of the fuel cell units comprises a housing with at least one housing part made of a metallic material, which has an adequate electrical insulation effect and an adequate mechanical strength at a high operating temperature of the fuel cell stack, a sealing assembly is provided and comprises at least one intermediate element made of a metallic material, wherein the intermediate element is soldered to a housing part of a first fuel cell unit at at least one location by a metal solder and is secured to a housing part of a second fuel cell unit at at least another location, wherein the intermediate element and/or the housing part of the first fuel cell unit is provided with a coating made of a ceramic material.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: March 4, 2014
    Assignee: ElringKlinger AG
    Inventors: Hans-Rainer Zerfass, Armin Diez, Peter Schenk, Wolfgang Fritz, Peter Lamp, Manfred Wier, Joachim Tachtler
  • Patent number: 8663865
    Abstract: A method of manufacturing a fuel cell includes the steps of: (a) providing an extendable stacking reference member structured to extend and contract in a stacking direction; (b) arranging the stacking reference member in an extended setting via a first opening, such that one end of the stacking reference member is located inside a casing body and the other end of the stacking reference member is located outside the casing body; (c) after the step (b), mounting a plurality of cells of a cell laminate on the stacking reference member in a direction from inside to outside of the casing body; (d) contracting the stacking reference member and compressing the mounted cell laminate in the stacking direction, so as to locate the stacking reference member and the cell laminate inside the casing body of the fuel cell; and (e) after the step (d), attaching an end wall member to a first wall member to close the first opening and maintaining the cell laminate under a load in the stacking direction.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: March 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Watanabe, Takuji Nagano
  • Patent number: 8658328
    Abstract: A stack structure for a solid oxide fuel cell includes a plurality of stacked single cells, each having a fuel electrode layer including a fuel electrode and an air electrode layer including an air electrode, the fuel electrode layer and the air electrode layer being arranged opposite each other on either side of a solid electrolyte, separators arranged between the stacked single cells to separate the single cells, and non-porous seal parts located within the fuel electrode layer and the air electrode layer, are equivalent to either the separators or the solid electrolyte at least in terms of thermal expansion and contraction characteristics, and are integrated with an edge of the fuel electrode or an edge of the air electrode, and also with the adjacent separator and the adjacent solid electrolyte.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: February 25, 2014
    Assignees: Japan Fine Ceramics Center, FCO Power, Inc.
    Inventors: Seiichi Suda, Kaori Jono, Fumio Hashimoto, Takayuki Hashimoto
  • Patent number: 8652702
    Abstract: Fuel cell systems (10) and related methods for limiting fuel cell slippage are provided. A stacked plurality of adjacent fuel cells (14) collectively forming a fuel cell stack (12). The fuel cells each include a pair of first and second plates (30, 30?, 30?; 32, 32?, 32?) at respective opposite ends thereof. A first fuel cell has a first plate (30, 30?, 30?) in engagement with a second plate (32, 32?, 32?) of a second fuel cell adjacent to the first fuel cell. A slip mitigation arrangement (50, 50?, 50?) between at least one of the pairs of the first and second fuel cells comprises first and second seats (62, 62?, 62?; 64, 64?, 64?) recessed in the engagement surfaces of the first and second conductive plates respectively, and a key member (60, 60?, 60?) having opposite ends seated in the first and the second recessed seats such that relative movement between the first and the second fuel cells is limited.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: February 18, 2014
    Assignee: United Technologies Corporation
    Inventors: David A. Niezelski, Jeffery G. Lake, Robert A. Love, Jason Bennett Blydenburgh
  • Patent number: 8652691
    Abstract: A method of making a metal interconnect for an electrolytic cell stack includes oxidizing the metal interconnect prior to providing the oxidized metal interconnect into the electrolytic cell stack. A pre-oxidized metal interconnect for an electrolytic cell stack would not substantially further oxidize upon exposure to a subsequent oxidizing ambient at a temperature of at least 900° C. prior to or after being provided into the electrolytic cell stack.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: February 18, 2014
    Assignee: Bloom Energy Corporation
    Inventors: Martin Perry, Matthias Gottmann
  • Patent number: RE45370
    Abstract: A fuel cell has an anode and a cathode with anode enzyme disposed on the anode and cathode enzyme is disposed on the cathode. The anode is configured and arranged to electrooxidize an anode reductant in the presence of the anode enzyme. Likewise, the cathode is configured and arranged to electroreduce a cathode oxidant in the presence of the cathode enzyme. In addition, anode redox hydrogel may be disposed on the anode to transduce a current between the anode and the anode enzyme and cathode redox hydrogel may be disposed on the cathode to transduce a current between the cathode and the cathode enzyme.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 10, 2015
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Adam Heller