Hydroxide Patents (Class 429/501)
  • Patent number: 8846266
    Abstract: Abiotic fuel cell and battery designs employing chemical dyes in alkaline solutions are disclosed. The fuel cells and batteries are capable of harnessing electrical power from various carbohydrates, including, but not limited to, glucose; in an anode design that does not require catalysts or membranes to separate half-cell reaction chambers. In certain embodiments, the abiotic fuel cell or battery designs may further employ electrodes, such as high surface area carbon materials and commercial air breathing electrodes, without the use of catalysts for glucose oxidation (i.e., precious metals or biocatalytic species). In further embodiments, organic dyes, including but not limited to, methyl viologen (MV), methylene blue, methylene green, Meldola's blue, indigo carmine, safranin O, and the like, may serve as the electron mediators. In some embodiments, the fuel cells or batteries are capable of generating power on the order of about tens of mW/cm2 from glucose and/or other types of sugars.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: September 30, 2014
    Assignee: University of Hawaii
    Inventors: Daniel Marin Scott, BorYann Liaw
  • Patent number: 8765893
    Abstract: Embodiments of the present disclosure encompass vinyl addition and ROMP polymers having at least one type of repeating unit that encompasses a comprise N+(CH3)3OH? moiety. Other embodiments in accordance with the disclosure include alkali anion-exchange membranes (AAEMs) made from one of such polymers, anion fuel cells (AFCs) that encompass such AAEMs and components of such AFCs, other than the AAEM, that encompass one of such polymers.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 1, 2014
    Assignee: Promerus, LLC
    Inventors: Andrew Bell, Edmund Elce, Keitaro Seto
  • Patent number: 8765894
    Abstract: Embodiments of the present disclosure encompass vinyl addition and ROMP polymers having at least one type of repeating unit that encompasses a comprise N+(CH3)3OH? moiety. Other embodiments in accordance with the disclosure include alkali anion-exchange membranes (AAEMs) made from one of such polymers, anion fuel cells (AFCs) that encompass such AAEMs and components of such AFCs, other than the AAEM, that encompass one of such polymers.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 1, 2014
    Assignee: Promerus, LLC
    Inventors: Andrew Bell, Edmund Elce, Keitaro Seto
  • Publication number: 20140028260
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 30, 2014
    Applicant: SUN CATALYTIX CORPORATION
    Inventors: JOHN GOELTZ, DESIREE AMADEO, ARTHUR J. ESSWEIN, THOMAS D. JARVI, EVAN R. KING, STEVEN Y. REECE, NITIN TYAGI
  • Patent number: 8603702
    Abstract: Provided is a zinc air fuel cell with enhanced cell performance which includes a separator-electrode assembly including a perforated metal plate as a cathode current collector, a catalyst-coated carbon paper, a separator, a perforated metal plate as an anode current collector, and a tilted nonconductive support. A metal plate may be placed on the tilted nonconductive support and connected to the anode current collector in the separator-electrode assembly to enlarge the active area of the anode current collector. Performance may be efficiently enhanced by minimizing a distance between the anode current collector and the cathode current collector, and by adding a metal plate which plays a role of an additional anode current collector on the tilted nonconductive support so as to increase the overall active area of anode current collector contacting with zinc pellets and to resultantly enhance the ionization of zinc.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 10, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Hong Gon Kim, Dong Jin Suh, Chang Soo Kim, Hyun Joo Lee, Byoung Koun Min
  • Patent number: 8518587
    Abstract: An alkaline electrochemical device having an alkaline electrolyte disposed between an anode electrode and a cathode electrode, where the anode electrode and/or the cathode electrode is provided with a CO2 inhibitor which substantially eliminates poisoning of the device by CO2. The device may be an alkaline fuel cell or an alkaline battery. In one embodiment, the electrolyte is an anion exchange polymeric alkaline electrolyte membrane.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: August 27, 2013
    Assignee: Gas Technology Institute
    Inventor: Qinbai Fan
  • Publication number: 20130078537
    Abstract: An oxygen-consuming electrode is described, more particularly for use in chloralkali electrolysis, comprising a novel catalyst coating, as is an electrolysis apparatus. Also described is a production process for the oxygen-consuming electrode and the use thereof in chloralkali electrolysis or fuel cell technology. The oxygen-consuming electrode is based on a gas diffusion layer as a porous film of a fluorinated polymer, into which fine crystal needles of a catalyst metal have been introduced as the catalytically active component and are connected with electrical conduction to the current collector.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 28, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Jakob Jörissen, Gregor Polcyn, Florian Verfuß, Gabriel Toepell
  • Publication number: 20130034781
    Abstract: This invention is directed to electrolyte systems for metal-air electrochemical power sources, particularly Al-Air batteries and fuel cells with alkaline electrolyte, methods of increasing the ionic conductivity of such electrolytes, methods of increasing the electrolyte utilization coefficient and to methods of use thereof.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 7, 2013
    Inventor: Ernst KHASIN
  • Publication number: 20120231363
    Abstract: The invention concerns the use as a redox a catalyst and/or mediator in a fuel cell catholyte solution of the compound of Formula (I) wherein: X is selected from hydrogen and from various functional groups; R1-8 are independently selected from hydrogen and various functional groups; wherein R1 and X and/or R5 and X may together form an optionally substituted ring structure; wherein R1 and R2 and/or R2 and R3 and/or R3 and R4 and/or R4 and R8 and/or R8 and R7 and/or R7 and R6 and/or R6 and R5 may together form an optionally substituted ring structure; wherein (L) indicates the optional presence of a linking bond or group between the two neighbouring aromatic rings of the structure, and when present may form an optionally substituted ring structure with one or both of R4 and R8; and wherein at least one substituent group of the structure is a charge-modifying substituent.
    Type: Application
    Filed: August 5, 2010
    Publication date: September 13, 2012
    Applicant: ACAL ENERGY LIMITED
    Inventors: Kathryn Knuckey, David Rochester, Andrew Martin Creeth
  • Patent number: 8221610
    Abstract: An electrochemical method for providing hydrogen using ammonia, ethanol, or combinations thereof, comprising: forming an anode comprising a layered electrocatalyst, the layered electrocatalyst comprising at least one active metal layer deposited on a carbon support; providing a cathode comprising a conductor; disposing a basic electrolyte between the anode and the cathode; disposing a fuel within the basic electrolyte; and applying a current to the anode causing the oxidation of the fuel, forming hydrogen at the cathode.
    Type: Grant
    Filed: May 4, 2008
    Date of Patent: July 17, 2012
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8216741
    Abstract: A fuel cell capable of operating under a high temperature environment and under a low humidity environment and a method for generating an electric power with use of the fuel cell. The fuel cell comprises an electrolyte membrane, an anode electrode, and an cathode electrode. In each of the anode electrode and the cathode electrode, a catalyst is held on a catalyst support, and an electrolyte covers the catalyst and the catalyst support. The cathode electrolyte is composed of SnO2, NH3, H2O, and H3PO4. A molar ratio X represented by X?NH3/SnO2 is not less than 0.2 and not more than 5, and a molar ratio Y represented by Y?P/Sn is not less than 1.6 and not more than 3.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: July 10, 2012
    Assignee: Panasonic Corporation
    Inventors: Tomoyuki Komori, Takashi Otsuka, Atsushi Omote
  • Publication number: 20120141888
    Abstract: The present invention relates to an oxygen-consuming electrode comprising at least one support element in the form of a sheet-like structure and a coating comprising a gas diffusion layer and a catalytically active component, wherein the oxygen-consuming electrode is additionally coated with a fluoropolymer which is soluble in solvents.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 7, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Andreas Bulan, Jürgen Kintrup, Stefanie Eiden
  • Patent number: 8168337
    Abstract: The present invention relates to an electrochemical cell for use with an electrolyte, oxidizable solid fuel, and an oxidizer to generate electrical power. The electrochemical cell includes a permeable electrode body provided along a flow path for receiving a flow including an electrolyte. The permeable electrode body is configured to permit the electrolyte to flow therethrough and to collect solid fuel thereon from the electrolyte flowing therethrough so as to comprise a first electrode for oxidizing the fuel to generate electrons for conduction by the first electrode. The cell also includes a second electrode for receiving electrons and reducing an oxidizer. The first electrode and the second electrode are spaced apart to define a gap therebetween for receiving the flow from the permeable electrode body. One or more return channels are directly communicated to the gap.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: May 1, 2012
    Assignee: Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Cody A. Friesen, Joel R. Hayes
  • Patent number: 8147659
    Abstract: A gated electrode structure for altering a potential and electric field in an electrolyte near at least one working electrode is disclosed. The gated electrode structure may comprise a gate electrode biased appropriately with respect to a working electrode. Applying an appropriate static or dynamic (time varying) gate potential relative to the working electrode modifies the electric potential and field in an interfacial region between the working electrode and the electrolyte, and increases electron emission to and from states in the electrolyte, thereby facilitating an electrochemical, electrolytic or electrosynthetic reaction and reducing electrode overvoltage/overpotential.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 3, 2012
    Assignee: The Regents of the University of California
    Inventors: Rakesh K. Lal, Likun Shen, Umesh Kumar Mishra
  • Publication number: 20120074908
    Abstract: Disclosed herein is a metal-air battery having a cathode, an anode, and an electrolyte. The cathode has a cathode current collector and a composite of a porous carbon structure and a pseudocapacitive coating. The coating does not completely fill or obstruct a majority of the pores, and the pores can be exposed to a gas. The electrolyte is in contact with the anode and permeates the composite without completely filling or obstructing a majority of the pores.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 29, 2012
    Applicant: The Government of the United States of America as represented by the Secretary of the Navy
    Inventors: Debra R Rolison, Jeffrey W. Long, Christopher N. Chervin
  • Publication number: 20120058413
    Abstract: The invention relates to a method for producing an anion-exchange polymer material having an IPN or semi-IPN structure, said method consisting in: (A) preparing a homogeneous reaction solution containing, in a suitable organic solvent, (a) at least one organic polymer bearing reactive halogen groups, (b) at least one tertiary diamine, (c) at least one monomer comprising an ethylenic unsaturation polymerizable by free radical polymerization, (d) optionally at least one cross-linking agent including at least two ethylenic unsaturations polymerizable by free radical polymerization, and e) at least one free radical polymerization initiator; and (B) heating the prepared solution to a temperature and for a duration that are sufficient to allow both a nucleophilic substitution reaction between components (a) and (b) and a free radical copolymerization reaction of components (c) and optionally (d) initiated by component (e).
    Type: Application
    Filed: May 4, 2010
    Publication date: March 8, 2012
    Applicants: UNIVERSITE DE CERGY PONTOISE, ELECTRICITE DE FRANCE
    Inventors: Philippe Stevens, Fouad Ghamous, Odile Fichet, Christian Sarrazin
  • Publication number: 20120052413
    Abstract: Electrochemical cells including a casing or cup for direct electrical contact with a negative electrode or counter electrode and serving as the current collector for the electrode. The casing includes a substrate having a plated coating of an alloy including copper, tin and zinc, the coating having a composition gradient between the substrate and the external surface of the coating wherein the copper content is greater adjacent the substrate than at the external surface of the coating and the tin content is greater at the external surface of the coating than adjacent the substrate. Methods for forming a coated casing and an electrochemical cell including a coated casing are disclosed, preferably including providing an electrode casing with a coating utilizing variable current density plating that reduces discoloration of a surface exposed to the ambient atmosphere.
    Type: Application
    Filed: November 3, 2011
    Publication date: March 1, 2012
    Applicant: EVEREADY BATTERY COMPANY, INC.
    Inventor: Jason L. Stimits
  • Patent number: 8045324
    Abstract: A computer includes a computer case, a motherboard, a cable box, a power supply and a peripheral component. The computer case has a first disk drive slot and a second disk drive slot within the inner portion thereof. The cable box is installed in the first disk drive slot. The power supply is connected with the cable box through a power cord. The peripheral component is installed in the second disk drive slot, wherein electricity is transmitted from the power supply to the peripheral component through the cable box.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: October 25, 2011
    Assignee: ASUSTek Computer Inc.
    Inventors: Yu-Cheng Shen, Chin-Nan Lai, Chun-Chieh Yen, Chuan-Chang Chou
  • Patent number: 8026017
    Abstract: An electrolyte membrane assembly for use in a fuel cell or other electrochemical device includes an ion exchange membrane, a base electrolyte reservoir configured and operable to maintain a volume of a basic electrolyte solution in contact with at least some of the first face of the membrane, and an acid electrolyte reservoir configured and operable to maintain a volume of an acidic electrolyte in contact with at least a portion of the second face of the membrane. The membrane may be a cation exchange membrane or an anion exchange membrane. Also disclosed are fuel cells which incorporate the electrolyte membrane assembly.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: September 27, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Rongzhong Jiang, Charles Rong, Deryn Chu
  • Patent number: 7985505
    Abstract: An apparatus is provided that relates to an electrochemical cell assembly. The apparatus is capable of controlling water loss from a fuel cell, at least in part by separating gas and liquid fluid flows. A variety of flow designs are provided that separate liquid electrolyte flow from reagent gas flow. Some flow designs may be suitable for one or more of fuel cells, rechargeable fuel cells, and batteries such as metal hydride batteries. Furthermore, some embodiments may include a single electrochemical cell, or plurality of cells arranged in parallel or in series. Some embodiments may also relate to methods of mitigating water loss from an electrochemical cell assembly.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: July 26, 2011
    Assignee: General Electric Company
    Inventors: Hai Yang, Jun Cai, Rihua Xiong, Chang Wei, Qunjian Huang, Andrew Philip Shapiro, Jinghua Liu, Shengxian Wang, Xianguo Yu
  • Patent number: 7964319
    Abstract: An object of the present invention is to provide a fuel cell that operates in a temperature range of not lower than 100° C., and a method for manufacturing such a fuel cell. The fuel cell of the present invention has a proton conductive gel, an anode electrode, and a cathode electrode, the proton conductor being sandwiched between the anode electrode and the cathode electrode, in which the proton conductive gel is composed of SnO2, NH3, H2O, and H3PO4, and provided that the molar ratio represented by NH3/SnO2 is X, and the molar ratio represented by P/Sn is Y, X is not less than 0.2 and not greater than 5, and Y is not less than 1.6 and not greater than 3.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Takashi Ohtsuka, Tomoyuki Komori, Atsushi Omote, Yuji Zenitani
  • Publication number: 20110143260
    Abstract: Embodiments of the present disclosure encompass vinyl addition and ROMP polymers having at least one type of repeating unit that encompasses a comprise N+(CH3)3OH? moiety. Other embodiments in accordance with the disclosure include alkali anion-exchange membranes (AAEMs) made from one of such polymers, anion fuel cells (AFCs) that encompass such AAEMs and components of such AFCs, other than the AAEM, that encompass one of such polymers.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 16, 2011
    Applicant: Promerus LLC
    Inventors: Andrew Bell, Edmund Elce, Keitaro Seto
  • Patent number: 7922878
    Abstract: A system for hydrogen gas generation is provided according to the present invention which includes a hydrogen gas electrode assembly including a first anode in electrical communication with a first cathode; a microbial fuel cell electrode assembly including a second anode in electrical communication with a second cathode, the microbial fuel cell electrode assembly in electrical communication with the hydrogen gas electrode assembly for enhancing an electrical potential between the first anode and the first cathode. A single chamber housing contains the hydrogen gas electrode assembly at least partially in the interior space of the housing.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 12, 2011
    Assignee: The Penn State Research Foundation
    Inventor: Bruce Logan
  • Publication number: 20100248078
    Abstract: An electrochemical device is proposed that uses a novel electrolyte system technology, based on the use of conventional electrodes with high specific capacity selected to provide operating cell potentials within a range of approximately between 1.2 and 2.4 volts along with the use of an unconventional electrolyte solution. Specifically, his novel electrolyte system is based on the use of an aqueous electrolyte solution that has a window of voltage stability above the range of conventional aqueous electrolytes. Any of a variety of acid, neutral or basic aqueous solutions or gels with or without any of a variety of co-solvents, inorganic or organic salts or ionic liquids may be employed provided the conductivity and stability of the electrolytes are compatible with the selected electrochemical couples so as to provide high cell capacity, high rate capability and long term stability.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventor: Kirby W. Beard
  • Publication number: 20100239921
    Abstract: An alkaline electrochemical device having an alkaline electrolyte disposed between an anode electrode and a cathode electrode, where the anode electrode and/or the cathode electrode is provided with a CO2 inhibitor which substantially eliminates poisoning of the device by CO2. The device may be an alkaline fuel cell or an alkaline battery. In one embodiment, the electrolyte is an anion exchange polymeric alkaline electrolyte membrane.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 23, 2010
    Applicant: GAS TECHNOLOGY INSTITUTE
    Inventor: Qinbai Fan
  • Patent number: 5840166
    Abstract: A rare earth metal-nickel hydrogen storage alloy having a composition represented by the formula (1) (R.sub.1-x L.sub.x) (Ni.sub.1-y M.sub.y).sub.z . . . (1) (R: La, Ce, Pr, Nd; L: Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc, Mg, Ca; M: Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, Si, V, Cr, Nb, Hf, Ta, W, B, C; 0.05.ltoreq.x.ltoreq.0.4, 0.ltoreq.y.ltoreq.0.5, 3.0.ltoreq.z<4.5), the alloy including in an amount of not less than 30 volume % and less than 95 volume % thereof crystals each containing not less than 5 and less than 25 antiphase boundaries extending perpendicular to C-axis of a crystal grain of the alloy per 20 nm along the C-axis, not less than 60% and less than 95% of added amount of the element represented by L in the formula (1) being arranged in antiphase areas, and a method for producing the same.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: November 24, 1998
    Assignee: Santoku Metal Industry Co. Ltd.
    Inventor: Akihito Kaneko