Electrode Structure Or Composition Patents (Class 429/523)
  • Patent number: 8465858
    Abstract: A method based on pulse electrodeposition technique was developed for preparation of membrane electrode assemblies (MEAs). In this approach, platinum is deposited directly on the surface of the carbon electrode. The method ensures most of the platinum to be in close contact with the membrane. Using this method it is possible to increase the Pt/C ratio up to 75 wt % near the surface of the electrode resulting in a 5 ?m thick catalyst layer. The MEA prepared by pulse electrodeposition exhibits a current density of 0.33 A/cm2 at 0.8 V with platinum loading of 0.25 mg of Pt/cm2. The results indicate that pulse deposition may be an attractive technique to replace the conventional powder-type MEA preparation methods and help achieve industry goals of reducing catalyst cost and increasing efficiency in polymer electrode membrane fuel cells (PEMFCs).
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: June 18, 2013
    Assignee: University of South Carolina
    Inventors: Branko N. Popov, Hansung Kim
  • Patent number: 8455153
    Abstract: An anode component of a solid oxide fuel cell is formed by combining a relatively coarse yttria-stabilized-zirconium (YSZ) powder, that is substantially composed of elongated particles, with a relatively fine NiO/YSZ or NiO powder of reduced particle size, whereby, upon sintering the combined powders, the coarse YSZ powder forms a microstructural cage of open porosity wherein the fine powder is distributed through the open porosity of the cage. A method of forming a cathode component includes combining a coarse YSZ powder, that is substantially composed of elongated particles, with a fine lanthanum strontium manganite powder of reduced particle size, whereby, upon sintering the combined powders, the coarse YSZ powder forms a microstructural cage of open porosity, wherein the fine powder is distributed through the open porosity of the cage.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 4, 2013
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: F. Michael Mahoney
  • Patent number: 8450026
    Abstract: A membrane electrode assembly for a solid electrolyte fuel cell comprises: an electrode having a layer of nano-structured material on one of its faces, an electrocatalyst deposited on the nano-structured material and an electrolyte deposited on the electrocatalyst/nano-structured material. The nano-structured material can comprise carbon, silicon, graphite, boron, titanium and be in the form of multi-walled nano-tubes (MWNTs), single-walled nano-tubes (SWNTs), nano-fibers, nano-rods or a combination thereof. The nano-structured material can be grown or deposited on one face of an electrode of the cell or on a substrate such as a flexible sheet material of carbon fibers using chemical vapor deposition. The electrocatalyst and electrolyte can be incorporated in the nano structured material using physical vapor deposition (PVD), ion beam sputtering or molecular beam epitaxy (MBE).
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: May 28, 2013
    Assignee: Intematix Corporation
    Inventors: Mina Farag, Chris Bajorek
  • Patent number: 8445164
    Abstract: A method of making an electrode is provided. The method includes providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon; providing a transfer substrate with an adjacent adhesive layer; adhering the nanostructured thin catalytic layer adjacent to the adhesive layer to form a composite structure; removing the carrying substrate from the composite structure; and removing the transfer substrate from the composite structure to form the stand-alone nanostructured thin catalytic film comprising the adhesive layer with the nanostructured thin catalytic layer adhered thereto. A stand alone nanostructured thin catalytic film and methods of constructing electrodes with the stand alone nanostructured thin catalytic films are also described.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: May 21, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Matthew Dioguardi, Sumeet Bhargava
  • Patent number: 8445163
    Abstract: The membrane-electrode assembly for a fuel cell includes an anode and a cathode facing each other and a polymer electrolyte membrane interposed therebetween. The cathode includes an electrode substrate and a catalyst layer disposed on the electrode substrate, and the catalyst layer has a mesopore volume ranging from 0.013 to 0.04 cm3/g. The membrane-electrode assembly has low mass resistance and contributes to the overall increased performance of the fuel cell by having optimal pore volumes (e.g., mesopore volume) in a cathode catalyst layer to provide ease of transfer and release of materials within the membrane-electrode assembly of the fuel cell.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: May 21, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tatyana Reshetenko, Hee-Tak Kim, Ho-Jin Kweon
  • Patent number: 8440363
    Abstract: The present invention relates to an electrode for a fuel cell containing a catalyst layer, a gas diffusion layer including a conductive substrate, and a micro-porous layer interposed between the catalyst layer and the gas diffusion layer and including a conductive material and a dispersant.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: May 14, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jan-Dee Kim, Yeong-Chan Eun, Seong-Jin An, Sung-Yong Cho, Ho-Jin Kweon
  • Patent number: 8435683
    Abstract: The present teachings relate to solid oxide fuel cells with internal reforming capability. The solid oxide fuel cell generally includes a cathode, an electrolyte, an anode, and a catalyst layer in contact with the anode. The catalyst layer can include a support membrane and a reforming catalyst layer associated with the support membrane. In some embodiments, the reforming catalyst can include one or more partial oxidation reforming catalysts. The present teachings also provide methods of making and operating the solid oxide fuel cells described above.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: May 7, 2013
    Assignee: CP SOFC IP, LLC
    Inventors: Caine Finnerty, Jun Cai
  • Publication number: 20130105386
    Abstract: Product formed from a ceramic material, at least part of the said product not being formed from amorphous silica and including pores and satisfying the following criteria (a), (b) and (c): (a) at least 70% by number of the said pores are frustoconical tubular pores extending substantially parallel to each other in a longitudinal direction; (b) in at least one cross-section plane, the mean size of the cross sections of the said pores is greater than 0.15 ?m and less than 300 ?m; (c) in at least one cross-section plane, at least 50% by number of the pores have a convexity index Ic of greater than 87%, the convexity index of a pore being equal to the ratio Sp/Sc of the surfaces Sp and Sc delimited by the perimeter and by the convex envelope of the said pore, respectively.
    Type: Application
    Filed: April 1, 2011
    Publication date: May 2, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Sylvain Deville, Celine Viazzi
  • Patent number: 8415049
    Abstract: The present invention provides a bipolar battery made by using a polymer gel electrolyte or a liquid electrolyte in an electrolyte layer, which is highly reliable and prevents liquid junction (short circuit) caused by leak out of an electrolyte solution from the electrolyte part. The present invention provides a bipolar battery laminated, in series, with a plurality pieces of bipolar electrodes which is formed with a positive electrode on one surface of a collector, and a negative electrode on the other surface, so as to sandwich an electrolyte layer, characterized by being provided with a separator which retains the electrolyte later, and a seal resin which is formed and arranged at the outer circumference part of a part of the separator where the electrolyte is retained.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: April 9, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Osamu Shimamura, Kenji Hosaka, Kyoichi Watanabe, Takaaki Abe, Takuya Kinoshita, Hideaki Horie, Hajime Sato, Ryouichi Senbokuya
  • Patent number: 8415012
    Abstract: A membrane electrode assembly (MEA) for a fuel cell comprising a catalyst layer and a method of making the same. The catalyst layer can include a plurality of catalyst nanoparticles, e.g., platinum, disposed on buckypaper. The catalyst layer can have 1% or less binder prior to attachment to the membrane electrode assembly. The catalyst layer can include (a) single-wall nanotubes, small diameter multi-wall nanotubes, or both, and (b) large diameter multi-wall nanotubes, carbon nanofibers, or both. The ratio of (a) to (b) can range from 1:2 to 1:20. The catalyst layer can produce a surface area utilization efficiency of at least 60% and the platinum utilization efficiency can be 0.50 gPt/kW or less.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: April 9, 2013
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Jian-ping Zheng, Zhiyong Liang, Ben Wang, Chun Zhang, Wei Zhu
  • Patent number: 8415076
    Abstract: A method for reducing the compression set of GDL during the fuel cell operation and a method for reducing the intrusion of the GDL into flow-field channels, both achieved by pre-compression preconditioning the GDL before placing it into the fuel cell. This preconditioning is performed in order to reduce the loss of compression during the life of the stack and the mal-distribution of reactant gases, and ultimately achieve the benefits of higher power output and more stable performance.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 9, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Pinkhas A Rapaport, Yeh-Hung Lai
  • Patent number: 8415073
    Abstract: The present invention specifies the physical property valves of a catalytic layer correlating with the performance of a fuel cell, and provides the catalytic layer having the physical proper values and a fuel cell. Specifically, in a fuel cell having a membrane-electrode assembly provided with a catalytic layer 13 on each side of an electrolyte membrane 10, an electrode powder constituting the catalytic layer 13 shall have an amount of adsorbed water vapor in a range of 52 to 70 cm3(STP)/g by a value measured when the water-vapor partial pressure is 0.6, which is determined from the adsorption isotherm of water. The fuel cell having the catalytic layer with the use of the electrode powder having the amount of adsorbed water vapor in this range has the output performance of 0.6 A/cm2 or higher by current density at 0.6 V, in a less humidified condition and a more humidified condition.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 9, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuo Nagami, Sozaburo Ohashi, Yuichiro Sugiyama, Mikihiro Hori
  • Patent number: 8410012
    Abstract: The present invention relates to a catalyst composition, a method for fabricating the same and a fuel cell including the same. The catalyst composition provided by the present invention includes: a catalyst carrier; and a metal solid solution, disposed on the surface of the catalyst carrier, in which the metal solid solution includes palladium and a second metal, and the second metal is selected from the group consisting of gold, platinum, ruthenium, nickel, silver and manganese. Accordingly, the catalyst composition provided by the present invention can exhibit excellent catalytic characteristics, and can be applied in a fuel cell to enhance the electrochemical properties and stability of the fuel cell.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: April 2, 2013
    Assignees: Tatung University, Tatung Company
    Inventors: Hong-Ming Lin, Cheng-Han Chen, Wei-Jen Liou, Wei-Syuan Lin, She-Huang Wu
  • Patent number: 8409769
    Abstract: A gas diffusion layer for a fuel cell is described. The gas diffusion layer includes a carbon fiber mat having a substantially open structure. Bloomed fibrillated acrylic pulp is added into a microporous layer ink. Alternatively, the bloomed fibrillated acrylic pulp can first be disposed on the carbon fiber mat, with the microporous layer ink added thereafter. When the microporous layer ink/bloomed fibrillated acrylic pulp mixture is coated on the carbon fiber mat, the ink penetrates through the open substrate, and is locked into place by the bloomed acrylic pulp fibers. This allows for a buildup of microporous layer ink on top of the substrate for added thickness when the bloomed fibrillated acrylic pulp sits on top of the mat.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Jeanette E. Owejan
  • Publication number: 20130078536
    Abstract: A gas diffusion electrode is described, especially for use in chloralkali electrolysis, said gas diffusion electrode having finely divided components on the liquid side. The electrode is notable for a low perviosity to gases and a lower operating voltage.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 28, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Andreas Bulan, Jürgen Kintrup, Norbert Schmitz, Alexander Karpenko, Jens Aßmann
  • Publication number: 20130078549
    Abstract: According to one embodiment, a catalyst-supporting substrate comprises a substrate and a catalyst layer including a plurality of pores, the catalyst layer being supported on the substrate. The average diameter of the section of the pore when the catalyst is cut in the thickness direction of the thickness is 5 nm to 400 nm, and the long-side to short-side ratio of the pore on the section is 1:1 to 10:1 in average.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 28, 2013
    Inventors: Taishi FUKAZAWA, Wu MEl, Yoshihiro AKASAKA, Norihiro YOSHINAGA
  • Patent number: 8404400
    Abstract: Catalyst-polymer liquid dispersion (LD) comprising (i) catalyst particles, (ii) polymer particles consisting of at least one (per)fluoro sulfonyl fluoride polymer in the —SO2F form, and (iii) an aqueous suspending medium. Catalyst coated membrane precursor (CCMP), catalyst coated membrane (CCM) and catalytic ionomeric ink (CII) derived therefrom and methods for their manufacture. Catalyst coated membrane (CCM-CII) derived from said (CII).
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: March 26, 2013
    Assignee: Solvay Solexis S.p.A.
    Inventors: Alessandro Ghielmi, Luca Merlo, Gilberto Nucida, Vincenzo Arcella
  • Patent number: 8404610
    Abstract: It is an object of the present invention to provide a production process which can produce a fuel cell catalyst having excellent durability and high oxygen reducing activity. The process for producing a fuel cell catalyst including a metal-containing oxycarbonitride of the present invention includes a grinding step for grinding the oxycarbonitride using a ball mill, wherein the metal-containing oxycarbonitride is represented by a specific compositional formula; balls in the ball mill have a diameter of 0.1 to 1.0 mm; the grinding time using the ball mill is 1 to 45 minutes; the rotating centrifugal acceleration in grinding using the ball mill is 2 to 20 G; the grinding using the ball mill is carried out in such a state that the metal-containing oxycarbonitride is mixed with a solvent containing no oxygen atom in the molecule; and when the ball mill is a planetary ball mill, the orbital centrifugal acceleration mill is 5 to 50 G.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 26, 2013
    Assignee: Showa Denko K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Toshikazu Shishikura, Takuya Imai, Kenichiro Ota
  • Patent number: 8399152
    Abstract: Provided is a method of producing a fuel cell catalyst layer which has a large specific surface area and high activity and which includes the steps of: forming a dendritic structural member including a catalyst precursor by a vapor phase method; providing a coating layer on a surface of the dendritic structural member; and subjecting the dendritic structural member having the coating layer provided thereon to a reduction treatment. The dendritic structural member including a catalyst precursor is a dendritic structural member including platinum oxide or a dendritic structural member containing a composite oxide of platinum oxide and an element except platinum.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 19, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Atsuhito Yoshizawa, Shinnosuke Koji, Kazuhiro Yamada
  • Patent number: 8399147
    Abstract: An electrolyte-electrode assembly (MEA) includes: an electrolyte; an anode side electrode and a cathode side electrode formed so as to sandwich the electrolyte via intermediate layers. The anode side electrode has a thickness set to 1 ?m, for example. A method for manufacturing the electrolyte-electrode assembly, i.e., the MEA includes a step for forming the anode side electrode by sputtering.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: March 19, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshikatsu Higuchi, Yuji Saito
  • Patent number: 8394298
    Abstract: Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: March 12, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Yu Seung Kim, Kwan-Soo Lee, Tommy Q. T. Rockward
  • Patent number: 8394550
    Abstract: A nano-patterned membrane electrode assembly (MEA) is provided, which includes an electrolyte membrane layer having a three-dimensional close-packed array of hexagonal-pyramids, a first porous electrode layer, disposed on a top surface of the electrolyte membrane layer that conforms to a top surface-shape of the three-dimensional close-packed array of hexagonal-pyramids, and a second porous electrode layer disposed on a bottom surface of said electrolyte membrane layer that conforms to a bottom surface-shape of the three-dimensional close-packed array of hexagonal-pyramids, where a freestanding nano-patterned MEA is provided.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: March 12, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Cheng-Chieh Chao, Yi Cui, Ching-Mei Hsu, Young Beom Kim, Friedrich B. Prinz
  • Publication number: 20130059232
    Abstract: Provided are an electrode including a nanostructure and a method of preparing the same, and more particularly, an electrode including a substrate, and a plurality of metal nanocups or nanorings spaced apart from one another and disposed on the substrate, and openings thereof are aligned above the substrate, and a method of preparing the electrode. An electrode of the present invention includes catalytic metal having a structure of the plurality of nanocups or nanorings and thus, an area, in which a reactant participating in an oxidation or reduction reaction is able to be in contact with catalytic metal, may become wider in comparison to that of a typical electrode having catalytic metal in the shape of a flat thin film. Accordingly, an efficiency of the oxidation or reduction reaction may be improved due to catalytic metal and eventually, a power generation efficiency of a cell may be improved.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 7, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Gun Young JUNG, Hui Su JEONG
  • Publication number: 20130059231
    Abstract: Disclosed is a method for producing a core-shell structured electrocatalyst for a fuel cell. The method includes uniformly supporting nano-sized core particles on a support to obtain a core support, and selectively forming a shell layer only on the surface of the core particles of the core support. According to the method, the core and the shell layer can be formed without the need for a post-treatment process, such as chemical treatment and heat treatment. Further disclosed is a core-shell structured electrocatalyst for a fuel cell produced by the method. The core-shell structured electrocatalyst has a large amount of supported catalyst and exhibits superior catalytic activity and excellent electrochemical properties. Further disclosed is a fuel cell including the core-shell structured electrocatalyst.
    Type: Application
    Filed: February 23, 2012
    Publication date: March 7, 2013
    Inventors: Seung Jun HWANG, Soo-Kil KIM, Sung Jong YOO, Jong Hyun JANG, Eun Ae CHO, Hyoung-Juhn KIM, Suk-Woo NAM, Tae Hoon LIM
  • Patent number: 8383292
    Abstract: In a fuel cell that includes an electrolyte (10), and an anode (20) and a cathode (30) which constitute a pair of electrodes that are arranged sandwiching the electrolyte (10), the cathode (30) includes catalyst particles (24) and trapping particles (38). The catalyst particles (24) operate as catalysts for a reaction that creates hydroxide ions from oxygen, and the trapping particles (38) trap hydrogen peroxide ions.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: February 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Haruyuki Nakanishi, Yusuke Kuzushima
  • Patent number: 8383293
    Abstract: An electrocatalyst for fuel cell applications includes a catalyst support and a noble metal or noble metal-based alloy catalyst supported upon the catalyst support. The catalyst support characteristically includes a Group IV-VI transition metal silicide with or without the mixing of carbon. A fuel cell incorporating the electrocatalyst into the anode and/or cathode is disclosed. Such fuel cell exhibit improved cycling and operating performance.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Belabbes Merzougui, Jon C. Halalay, John T. Johnson, Gregory C. Garabedian, Michael P. Balogh, Swathy Swathirajan
  • Patent number: 8377342
    Abstract: A titanium suboxide powder comprising Ti4O7, Ti5O9 and Ti6O11, wherein the Ti4O7, Ti5O9 and Ti6O11 provide over 92% of the powder, and wherein the Ti4O7 is present at above 30% of the total powder.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: February 19, 2013
    Assignee: Atraverda Limited
    Inventors: Keith Ellis, Vaughan Griffiths, David Pugh, Adam Morgan
  • Patent number: 8377601
    Abstract: The direct oxidation fuel cell of the present invention is provided with: a membrane electrode assembly including an anode, a cathode, and an electrolyte membrane interposed between the anode and the cathode; an anode-side separator having a fuel flow channel for supplying fuel to the anode; and a cathode-side separator having an oxidant flow channel for supplying oxidant to the cathode, in which the anode includes an anode catalyst layer disposed at the side of the electrolyte membrane and an anode diffusion layer disposed at the side of the anode-side separator. The anode diffusion layer includes a water repellent layer disposed at the side of the anode catalyst layer and including a first conductive agent and a first water repellent agent; and a substrate layer disposed at the side of the anode-side separator, and the porosity of the substrate layer is higher at the downstream side than at the upstream side of the fuel flow.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroaki Matsuda, Hideyuki Ueda, Takashi Akiyama
  • Patent number: 8377610
    Abstract: A membrane-electrode assembly for a fuel cell includes an anode and a cathode facing each other and a polymer electrolyte membrane interposed therebetween. At least one of the anode and the cathode includes a conductive electrode substrate and a catalyst layer formed thereon, and the catalyst layer includes a first catalyst layer including a first metal catalyst that grows from the polymer electrolyte membrane toward the electrode substrate and a second catalyst layer including a second metal catalyst covering the first catalyst layer.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 19, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Il Han, In-Hyuk Son
  • Publication number: 20130040228
    Abstract: A sealed and/or reinforced membrane electrode assembly is disclosed. Encapsulation films, each comprising a backing layer and an adhesive layer, are positioned on the edges of at least one face of each gas diffusion substrate such that the adhesive layers impregnate into each gas diffusion substrate. Methods of forming sealed and/or reinforced membrane electrode assemblies are also disclosed.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 14, 2013
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Silvain Buche, Adam John Hodgkinson, Catherine Helen de Rouffignac, Jonathan David Brereton Sharman
  • Publication number: 20130040224
    Abstract: Provided is a carbon catalyst for a cathode of a direct fuel cell, which selectively promotes an oxygen reduction reaction even when crossover of a fuel compound occurs. The carbon catalyst for a cathode of a direct fuel cell exhibits an oxygen-reducing catalytic activity in an electrolytic solution containing a fuel compound for the direct fuel cell, and exhibits substantially no catalytic activity to oxidize the fuel compound in the electrolytic solution.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 14, 2013
    Applicants: NATIONAL UNIVERSITY CORPORATION GUNMA UNIVERSITY, NISSHINBO HOLDINGS INC.
    Inventors: Takeaki Kishimoto, Rieko Kobayashi, Jun-ichi Ozaki
  • Publication number: 20130034803
    Abstract: Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.
    Type: Application
    Filed: September 21, 2012
    Publication date: February 7, 2013
    Applicant: Brookhaven Science Associates, LLC/Brookhaven National Laboratory
    Inventor: Brookhaven Science Associates, LLC/Brookhaven
  • Publication number: 20130034802
    Abstract: A solid oxide fuel cell and a manufacturing method thereof are disclosed. A solid oxide fuel cell includes first and second electrode formed opposite to each other and an electrolyte layer formed between the first and the second electrodes. Either the first electrode or the second electrode may include between about 1 to about 20 wt % of a thermoelectronic material configured to increase thermal emission of electrons with an increase in temperature.
    Type: Application
    Filed: April 13, 2012
    Publication date: February 7, 2013
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Hyun SOH, Ho-Jin KWEON
  • Patent number: 8367272
    Abstract: A method for producing a gold fine particle-supported carrier catalyst for a fuel cell, which reduces a gold ion in a liquid phase reaction system containing a carbon carrier by means of an action of a reducing agent, to reduce the gold ion, deposit, and support a gold fine particle on the carbon carrier, wherein a reduction rate of the gold ion is set within the range of 330 to 550 mV/h, and pH is set within the range of 4.0 to 6.0 to perform the reduction of the gold ion, deposition, and support of the gold fine particle.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: February 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuaki Mizutani, Hiroaki Takahashi, Yousuke Horiuchi
  • Patent number: 8367266
    Abstract: A porous catalyst layer formed from discrete particles of unsupported metal, wherein at least 80%, suitably at least 90%, of the discrete particles have a mass of from 1 to 1000 zeptograms, and wherein the catalyst layer has a metal volume fraction of less than 30% and a metal loading of less than 0.09 mg/cm2 is disclosed. The catalyst layer is suitable for use in fuel cells and other electrochemical applications.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: February 5, 2013
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Ian Roy Harkness, Jonathan David Brereton Sharman, Edward Anthony Wright
  • Patent number: 8361288
    Abstract: Compositions, electrodes, systems, and/or methods for water electrolysis and other electrochemical techniques are provided. In some cases, the compositions, electrodes, systems, and/or methods are for electrolysis which can be used for energy storage, particularly in the area of energy conversion, and/or production of oxygen, hydrogen, and/or oxygen and/or hydrogen containing species. In some embodiments, the water for electrolysis comprises at least one impurity and/or at least one additive which has little or no substantially affect on the performance of the electrode.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: January 29, 2013
    Assignee: Sun Catalytix Corporation
    Inventors: Steven Y. Reece, Arthur J. Esswein, Kimberly Sung, Zachary I. Green, Daniel G. Nocera
  • Patent number: 8361677
    Abstract: A membrane/electrode assembly for a polymer electrolyte fuel cell, comprising an anode and a cathode each having a catalyst layer containing a proton conductive polymer, and a polymer electrolyte membrane disposed between the anode and the cathode, wherein the proton conductive polymer has an electrical conductivity of at least 0.07 S/cm at a temperature of 80° C. at a relative humidity of 40% and has a water content less than 150 mass %.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: January 29, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Satoru Hommura, Tetsuji Shimohira, Takashi Saeki, Susumu Saito
  • Publication number: 20130022899
    Abstract: Core-shell type metal nanoparticles including a core portion and a shell portion covering the core portion, wherein the core portion includes a core metal material selected from metals and alloys, and wherein the shell portion includes an alloy of a first shell metal material and a second shell metal material.
    Type: Application
    Filed: April 7, 2010
    Publication date: January 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Arai, Naoki Takehiro, Atsuo Iio, Hiroko Kimura
  • Publication number: 20130017461
    Abstract: An electrode for a fuel cell is disclosed. The electrode may include an electrode substrate with a conductive substrate, carbon particles, and a catalyst layer disposed on the electrode substrate. The electrode substrate may include a pore having an average diameter of about 20 ?m to about 40 ?m and porosity of about 30 volume % to about 80 volume % based on the total volume of the electrode substrate. A membrane-electrode assembly including the electrode and a fuel cell system including the membrane electrode assembly are also disclosed.
    Type: Application
    Filed: December 29, 2011
    Publication date: January 17, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Sang-II HAN, Kah-Young SONG, Hee-Tak KIM, Sung-Yong CHO, Tae-Yoon KIM, Myoung-Ki MIN, Geun-Seok CHAI
  • Patent number: 8354011
    Abstract: An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A?yBO(3-?), wherein 0<x<1, 0?y?0.5, and 0.8?z?1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 15, 2013
    Assignee: Ceramatec, Inc.
    Inventors: S. Elangovan, Joseph J. Hartvigsen, Feng Zhao
  • Publication number: 20130011697
    Abstract: A microbial fuel cell comprising an anode, a cathode, microbes in contact with the anode, a conduit for electrons connecting the anode to the cathode through an external circuit wherein the anode, cathode or both comprise a mixture of one or more conductive materials and one or more ion exchange materials.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 10, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Sten A. Wallin, Scott T. Matteucci, Xiaoying Guo
  • Patent number: 8349757
    Abstract: The invention provides an electrode comprising an electrically conductive material having a surface capable of producing surface enhanced Raman scattering of incident light from a complex adsorbed at the surface of the electrode, the complex including the electrically conductive material combined with a second material that is substantially reducible and not substantially oxidizable. The surface of the electrode can be microroughened. The invention also includes a method for making various embodiments of the electrode, and a method of generating electricity using the electrode. In accordance with a further aspect of the invention, a fuel cell is provided including the electrode of the invention.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: January 8, 2013
    Assignee: Fordham University
    Inventor: John J. McMahon
  • Patent number: 8349519
    Abstract: It is an object of the present invention to provide a titanium electrode material which is low in cost and is excellent in electric conductivity, corrosion resistance and hydrogen absorption resistance, and a surface treatment method of a titanium electrode material. A titanium electrode material includes: on the surface of a titanium material including pure titanium or a titanium alloy, a titanium oxide layer having a thickness of 3 nm or more and 75 nm or less, and having an atomic concentration ratio of oxygen and titanium (O/Ti) at a site having the maximum oxygen concentration in the layer of 0.3 or more and 1.7 or less; and an alloy layer including at least one noble metal selected from Au, Pt, and Pd, and at least one non-noble metal selected from Zr, Nb, Ta, and Hf, having a content ratio of the noble metal and the non-noble metal of 35:65 to 95:5 by atomic ratio, and having a thickness of 2 nm or more, on the titanium oxide layer.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: January 8, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Toshiki Sato, Jun Suzuki, Yoshinori Ito, Jun Hisamoto
  • Publication number: 20130004884
    Abstract: The present invention has an object to solve the problem by providing a fuel cell electrode catalyst layer with ease capable of exhibiting good output property on both low-humidified and high-humidified conditions, in a fuel cell electrode. The problem is solved in slurry including at least electrolytes, catalyst particles, and solvents, the solvents include two or more types of solvents and the two or more types of solvents cause a phase separation.
    Type: Application
    Filed: March 3, 2011
    Publication date: January 3, 2013
    Inventor: Katsuyuki Kishi
  • Patent number: 8343690
    Abstract: A method for the fabrication of a mesoporous metal electrode in a non-liquid crystalline phase was tested. Specifically, there was tested the efficacy of the method for the fabrication of a mesoporous metal electrode which comprises forming the mesoporous metal electrode on a substrate by chemical or electrochemical reduction of a mixture comprising a solvent, a structure-directing agent, and a source of a metal, characterized in that the mixture is maintained in a non-liquid crystal phase. Furthermore, the usefulness of the mesoporous metal electrode thus prepared from the non-liquid crystalline phase was also tested. The mesoporous metal electrode prepared from the non-liquid crystalline phase had a large surface area, and a roughness factor thereof was controlled by charges passed during electroplating. The method made it possible to fabricate the mesoporous metal electrode in the non-liquid crystalline phase, even more flexible than a liquid crystalline phase.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: January 1, 2013
    Assignee: Seoul National University R&DB Foundation
    Inventors: Hee-Chan Kim, Taek Dong Chung, Sejin Park, Hankil Boo, Sunyoung Lee
  • Patent number: 8343384
    Abstract: Disclosed herein is a composition for electrodes that enables a firing process in air at a temperature of 600° C. or less and does not cause an increase in absolute resistance and a substantial variation of the resistance even when the composition is repeatedly subjected to the firing process. The composition for electrodes comprises: about 5 to about 95% by weight of aluminum powder, the aluminum powder having a particle size distribution of about 2.0 or less as expressed by the following Equation (1) and having D50 in the range of about 0.1 ?m?D50?about 20 ?m; about 3 to about 60% by weight of an organic binder; and the balance of a solvent: Particle size distribution=(D90?D10)/D50??(1) wherein D10, D50, and D90 represent particle diameters at 10%, 50% and 90% points on an accumulation curve of a particle size distribution when the total weight is 100%. An electrode and a PDP fabricated using the composition are also disclosed.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: January 1, 2013
    Assignee: Cheil Industries Inc.
    Inventors: Jae Hwi Cho, Kuninori Okamoto, Yong Hyun Kim, Hyun Don Kim
  • Patent number: 8343452
    Abstract: A gas diffusion media for a fuel cell, such as a proton exchange membrane fuel cell, is provided. The gas diffusion media includes carbonizable acrylic pulp fibers instead of conventional phenolic resin as a binder material. The acrylic fibers are mixed with the carbon fiber dispersion during the papermaking step, thus eliminating the phenolic resin impregnation step typically associated with conventional gas diffusion media manufacturing processes. The mat is then cured and carbonized to produce gas diffusion media.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: January 1, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Gerald J. Fleming, Margaret Fleming, legal representative, Mark Mathias
  • Publication number: 20120321988
    Abstract: A reinforced catalyst layer assembly, suitably for use in a fuel cell, said reinforced catalyst layer assembly comprising: (i) a planar reinforcing component consisting of a porous material having pores extending through the thickness of the material in the z-direction, and (ii) a first catalyst component comprising a first catalyst material and a first ion-conducting material, characterised in that the first catalyst component is at least partially embedded within the planar reinforcing component, forming a first catalyst layer having a first surface and a second surface is disclosed.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 20, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventor: Jonathan David Brereton Sharman
  • Publication number: 20120321996
    Abstract: The production method according to the present invention includes a process for producing fine particles formed of a non-precious metal; a process for forming a shell of a precious metal on the respective surfaces of the fine particles of the non-precious metal; and a process for collecting a catalyst from a fluid reaction mixture. A fine metal particle-carrying catalyst prepared by such a production method includes fine non-precious metal particles as the cores thereby reducing the usage of a precious metal to achieve suppression of a cost increase. Since it includes a shell portion formed of a precious metal, it exhibits excellent catalytic activity.
    Type: Application
    Filed: November 30, 2010
    Publication date: December 20, 2012
    Applicant: NORITAKE CO., LTD.,
    Inventor: Masaaki Ito
  • Publication number: 20120321995
    Abstract: In one embodiment, a method for forming electrodes on a substrate has been developed. The method includes operating a first plurality of printheads to eject a first ink onto a first portion of the substrate and operating a second plurality of printheads to eject a second ink onto a second portion of the substrate. The first ink includes a proton transport material and an electron transport material, and the second ink includes the proton transport material, the electron transport material, and a catalyst.
    Type: Application
    Filed: March 30, 2012
    Publication date: December 20, 2012
    Applicant: XEROX CORPORATION
    Inventor: Bryan James Roof