Including Optical Measuring Or Testing Means Patents (Class 435/288.7)
  • Publication number: 20150111236
    Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventor: Kai Dickopf
  • Patent number: 9012208
    Abstract: A self-contained apparatus for isolating nucleic acid, cell lysates and cell suspensions from unprocessed samples apparatus, to be used with an instrument, includes at least one input, and: (i) a macrofluidic component, including a chamber for receiving an unprocessed sample from a collection device and at least one filled liquid purification reagent storage reservoir; and (ii) a microfluidic component in communication with the macrofluidic component through at least one microfluidic element, the microfluidic component further comprising at least one nucleic acid purification matrix; and (iii) at least one interface port to a drive mechanism on the instrument for driving said liquid purification reagent, through the microfluidic element and the nucleic acid purification matrix, wherein the only inputs to the apparatus are through the chamber and the interface port to the drive mechanism.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: April 21, 2015
    Assignee: NetBio, Inc.
    Inventors: Richard F. Selden, Eugene Tan
  • Patent number: 9012209
    Abstract: A new device and method for detecting the presence of living microorganisms in test samples are described. The device includes a container having at least one section transparent to light with an incubation zone defined in the container, the incubation zone containing growth media in which the sample is cultured. A detection zone containing a matrix composed of a polymeric material which is substantially transparent to light, and at least one indicator reagent sensitive to carbon dioxide gas generated by the microorganisms in the incubation zone is located in the transparent section of the matrix. The matrix is configured to facilitate penetration of external light aimed at the transparent section of the container and interaction of the external light with the indicator reagent to yield interactive light that escapes through the transparent section of the container, said interactive light is being indicative of the presence and/or concentration of the microorganisms.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: April 21, 2015
    Assignee: Neogen Corporation
    Inventors: Gideon Eden, Ruth Eden
  • Patent number: 9012207
    Abstract: A biomolecular assay includes a substrate with a metallic layer on at least one surface thereof. The metallic film includes nanocavities. The nanocavities are configured to enhance signals that are representative of the presence or amount of one or more analytes in a sample or sample solution, and may be configured to enhance the signal by a factor of about two or more or by a factor of about three or more. Such signal enhancement may be achieved with nanocavities that are organized in an array, randomly positioned nanocavities, or nanocavities that are surrounded by increased surface area features, such as corrugation or patterning, or nanocavities that have quadrilateral or triangular shapes with tailored edge lengths, or with a plurality of nanoparticles. Methods for fabricating biomolecular substrates and assay techniques in which such biomolecular substrates are used are also disclosed.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 21, 2015
    Assignee: University of Utah Research Foundation
    Inventors: Steven M. Blair, Farhad Mahdavi, Yongdong Liu, James N. Herron, Ajay Nahata
  • Publication number: 20150104395
    Abstract: Methods and systems for distinguishing an astrocytic human brain rumor from a non-astrocytic human brain tumor (FIG. 4). In one embodiment a method includes the steps of staining tumor tissue from a subject suspected of having a brain tumor with SR101 and visualizing the tissue stained with SR101 with a fluorescence imaging device to confirm an astrocytic or non-astrocytic tumor type. Advantageously, rumor tissue from a subject is stained ex vivo, and the staining and visualizing steps are performed intraoperatively so as to guide the surgeon and thereby minimize or eliminate the need for a subsequent surgery.
    Type: Application
    Filed: June 3, 2013
    Publication date: April 16, 2015
    Applicant: Dignity Health
    Inventors: Joseph Georges, Nikolay Martirosyan, Peter Nakaji
  • Publication number: 20150104786
    Abstract: Disclosed is a cell analysis method comprising: extracting target cells from a population of cells derived from an epithelial tissue on the basis of N/C ratio representing a relative size of a nucleus to a cytoplasm; classifying the target cells into at least a first group and a second group by difference of amount of DNA; and evaluating a pathology of the epithelial tissue by comparing a ratio of numbers of cells between the first and second groups with a threshold; wherein the threshold varies according to a proportion of the target cells in the population.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 16, 2015
    Inventors: Kei SHIRASUNA, Ryuichiro EBI, Shigeki ABE
  • Publication number: 20150104821
    Abstract: The present invention relates to a method and a device for creating digital copies of the ionic-electric dynamics of cells or cell compartments, such as organisms, or an at least partly identifying dataset that allows sorting decisions in vitro and in vivo. Sorting of cells and cell compartments based on electrical cell behavior can be applied, for instance, to transgenic compartments, in order to, e.g., detect the successful expression of certain channel proteins in an industrial process, to screen for (side) effects of certain agents or substances on the ionic-electrical cell behavior and involved proteins. In that context, the invention can be used as an alternative to complex and/or time consuming patch-clamp screenings as well as for general quality control reasons.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 16, 2015
    Inventor: Stefan Goetz
  • Publication number: 20150104814
    Abstract: Disclosed are sample analysis apparatus and methods. A sample analysis apparatus includes a first unit that rotates a microfluidic apparatus including: a chamber having a space accommodating a sample, a channel that provides a path through which the sample flows; and a valve that selectively opens and closes the channel, a valve driver that supplies energy, used to operate the valve, to the valve in a state of being separated from the microfluidic apparatus, a third unit that rotates the valve driver with respect to a common rotation axis with a rotation axis of the microfluidic apparatus and the third unit, and a control unit that controls the first and third units and the valve driver to supply energy to the valve while the microfluidic apparatus and the valve driver are being rotated at the same rotation speed.
    Type: Application
    Filed: April 25, 2014
    Publication date: April 16, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Minseok S. KIM, Hui-sung Moon, Jong-myeon Park
  • Publication number: 20150099274
    Abstract: An optical system for determining the concentration of a metabolic gas in a container sealed to biological contamination and enclosing a biological material. The optical system has a broadly tunable coherent infrared light source, a detection module, and a control system connected to the light source and detection module and operates the light source, to receive and analyze the data provided by said detection module, and to process the data indicative of the concentration of said metabolic gas in said sealed container.
    Type: Application
    Filed: December 16, 2014
    Publication date: April 9, 2015
    Inventors: Noel Axelrod, David Nuttman, Moria Shimoni
  • Publication number: 20150099262
    Abstract: Flow cytometer systems are provided that mitigate aerosols generated during operation of a flow cytometer. A flow cytometer system can include various combinations of: a flow cytometer instrument base, a flow cytometer, and a biosafety hood (BSH). In some embodiments, a subject flow cytometer system includes a flow cytometer instrument base, a flow cytometer, and a BSH. In some embodiments, a subject flow cytometer system includes a flow cytometer instrument base and a flow cytometer. In some cases, a BSH includes an aerosol management system, which provides a redundant air filtration system. Also provided are components of a flow cytometer system (e.g., a BSH configured to attach to a flow cytometer instrument base, a flow cytometer instrument base configured to attach to a BSH, etc.). Also provided are methods, including methods of performing a flow cytometric procedure using a flow cytometer system; and methods of decontaminating a flow cytometer system.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 9, 2015
    Inventors: Steven MURDOCH, Scott HORTON, Gil REININ
  • Publication number: 20150099292
    Abstract: A spectroscopic system is provided. In one embodiment, the spectroscopic system comprises a light source adapted to provide a beam of illumination; an optical system adapted to provide the beam of illumination to a sample and receive a spectroscopy signal from the sample and direct the spectroscopy signal to at least one single channel detector, wherein the optical system comprises an adjustable dispersing element for directing one or more spectral features of the spectroscopy signal to the at least one single channel detector; a calibration detector adapted to determine a set point of the adjustable dispersing element; and a source synchronization component adapted to synchronize an operation of the light source and the at least one single channel detector. A method of calibrating a dispersing element of a spectrometer is also provided.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 9, 2015
    Applicant: MKS TECHNOLOGY (D/B/A SNOWY RANGE INSTRUMENTS)
    Inventors: Keith Carron, Mark Watson, Shane Buller
  • Publication number: 20150093816
    Abstract: The present disclosure relates to a device for analyzing a fluid sample. In one aspect, the device includes a fluidic substrate that comprises a micro-fluidic component embedded in the fluidic substrate configured to propagate a fluid sample via capillary force through the device and a means for providing a fluid sample connected to the micro-fluidic component. The device also includes a lid attached to the fluidic substrate at least partly covering the fluidic substrate and at least partly closing the micro-fluidic component. The fluidic substrate may be a silicon fluidic substrate and the lid may be a CMOS chip. In another aspect, embodiments of the present disclosure relate to a method for fabricating such a device, and the method may include providing a fluidic substrate, providing a lid, and attaching, through a CMOS compatible bonding process, the fluidic substrate to the lid to close the fluidic substrate at least partly.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Applicant: IMEC VZW
    Inventors: Liesbet Lagae, Peter Peumans
  • Publication number: 20150093817
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Owl biomedical, Inc.
    Inventors: John S. Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner
  • Publication number: 20150093777
    Abstract: A method for at least one of determining and monitoring at least one condition of/in a three dimensional cell culture system comprising at least one growth section, the at least one condition being selected from the group consisting of a physiological condition, a vitality, and a metabolism status, the method includes determining the physiological condition using erythrocytes as detectors, determining and/or monitoring the vitality by measuring living cell fluorescent dyes, and determining and/or monitoring the metabolism status by at least one of measuring an autofluorescence of NADH and/or FAD, by determining a NADH/NAD+ ratio, and by determining a NADH/FAD ratio.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 2, 2015
    Applicant: TISSUSE GMBH
    Inventors: Uwe Marx, Lutz Kloke, Reyk Horland, Silke Hoffman, Alexandra Lorenz, Sven Brincker, Katharina Schimek
  • Publication number: 20150093778
    Abstract: Methods and kits for detection of bacteria, especially Vibrio parahaemolyticus and Vibrio vulnificus, are provided using a unique combination of selective ingredients and two-phase culture (solid-phase culture gel and liquid-phase culture/enrichment broth) allows for high sensitivity and specificity of the kits for growth of Vibrio parahaemolyticus and Vibrio vulnificus in the detection methods and kits. The invention, through the detection mechanism accomplished by the novel formulation of selective ingredients and the two-phase culture, allows for real-time detection of a single cell of Vibrio parahaemolyticus and Vibrio vulnificus within 24±2 hours of introducing a target sample to the Vibrio parahaemolyticus and Vibrio vulnificus detection kits.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: Tae Jo Kim, Angelo DePaola, Jessica L. Jones
  • Publication number: 20150093779
    Abstract: A diagnostic device includes a microscope configured to obtain image data on a plurality of cells and a computing device. The computing device is configured to receive the image data, identify at least a portion of each of the plurality of cells based on the received image data, determine at least one of a value of a morphological parameter for each identified at least a portion of the plurality of cells or a relative organization among the identified at least a portion of the plurality of cells, and calculate statistics for the plurality of cells based on the at least one of the determined values of the morphological parameter or the determined relative organization, the statistics including information suitable for distinguishing metastatic cells from non-metastatic cells. The diagnostic device further includes an output device configured to output the statistics for diagnosis.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 2, 2015
    Applicants: The Johns Hopkins University, University of Florida
    Inventors: Denis Wirtz, Pei-Hsun Wu, Shyam B. Khatau, Wei-Chang Chen, Jude M. Phillip, JR., Zev A. Binder, Yiidar Tseng
  • Patent number: 8993310
    Abstract: A device for diagnosis of physiologic status and/or selection of best spermatozoa of a semen sample based on chemotaxis, and the procedure of thereof, enabling by a simple and inexpensive device the diagnosis and selection of the best spermatozoa in only one step. Only needed are: the present device, a regular light microscope, and personnel with elementary knowledge of laboratory management. The device is of the type having two communicated compartments (1a, 1b), and where said compartments (1a, 1b) communication occurs through a duct or bridge (2) located in the lower part, and above the lower level of mentioned compartments (1a, 1b); in the entrances of said compartments (1a, 1b) appropriate closing means (3, 4) and appropriate air output ducts (5) are placed communicating the top end of compartments (1a, 1b) with the exterior.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: March 31, 2015
    Assignees: Consejo Nacional de Investigaciones Cientificas y Technicas (CONICET), Inis Biotech LLC
    Inventors: Laura Cecilia Giojalas, Héctor Alejandro Guidobaldi, Laura Virginia Gatica, Maria Eugenia Teves, Maria del Mar Montesinos, Diego Rafael Uñates
  • Patent number: 8993313
    Abstract: Provided are an analytical instrument and an analytical method that allow for the direct analysis of a target substance in an undiluted specimen by a transmission photometry in a tightly closed cell container space. An analytical instrument is an analytical instrument for analyzing a target substance contained in a specimen flown in the tightly closed cell container by utilizing an oxidative color-developing agent and an oxidative enzyme reaction, in which an upper substrate and a lower substrate are arranged facing each other and at least a part of the upper substrate and/or at least a part of the lower substrate are/is made of a material transmitting light used for the analysis and having oxygen transmission properties.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 31, 2015
    Assignee: ARKRAY, Inc.
    Inventor: Toshihiro Imai
  • Patent number: 8993312
    Abstract: Embodiments provide techniques for measuring and characterizing the dynamics of cell traction forces. Tunable elastic gel substrates can be disposed in multi-well plates. The gels can be of a uniform predetermined thickness. A multi-well plate can be loaded with gels of different shear moduli. An array of punch indenters can be attached to a loading platen such that the each indenter is aligned to a gel substrate. The indenters can apply tensile or compressive strains to the gel substrates. The magnitude, duration, and frequency of the strain can be controlled by a motor assembly coupled to a control system. The apparatus can be disposed in an incubator for long term cell culture experiments. The cell culture can be observed while a strain is applied. A ring-shaped indenter can be mounted on a microscope, coaxial to the objective lens, and lowered by a calibrated amount onto the underlying gel.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: March 31, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Ramaswamy Krishnan, Chan Young Park, Jeffrey Fredberg, Fei Liu, Justin Mih, Daniel Tschumperlin
  • Patent number: 8993237
    Abstract: A thermal cycling device for performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray. The thermal cycling device includes a sample block assembly, an optical detection system, and a sample well tray holder configured to hold the sample well tray. The sample block assembly is adapted for translation between a first position permitting the movement of the sample well tray into alignment with sample block assembly, and a second position, upward relative to the first position, where the sample block assembly contacts the sample well tray. A method of performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray in a thermal cycling device is also provided.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: March 31, 2015
    Assignee: Applied Biosystems, LLC
    Inventor: Donald R. Sandell
  • Patent number: 8992832
    Abstract: The present disclosure relates to a luminescence method of detecting an analyte in a liquid sample comprising marking the analyte with a marker capable of effecting luminescence upon application of excitation energy, wherein reference data descriptive of the luminescence decay is stored in an electronic memory; applying the excitation energy for causing the luminescence; time-resolved measuring of the luminescence over a period of time for acquisition of a measurement signal; reading the reference data from the electronic memory; comparing the measurement signal with the luminescence decay described by the reference data; generating an output signal indicative of the presence of the analyte in the liquid sample using the measurement signal; in case of a mismatch of the measurement signal and the luminescence decay described by the reference data, generating an error signal.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 31, 2015
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Erna Donnerbauer, Ursula Giesen
  • Patent number: 8993311
    Abstract: A disposable cartridge is described which is equipped with a plurality of microfabricated particle sorting structures. The disposable cartridge may include passageways which connect fluid reservoirs in the cartridge with corresponding microfluidic passageways on the particle sorting structure. A flexible gasket may prevent leakages and allow the fluid to cross the gasket barrier through a plurality of holes in the gasket, allowing fluid to be transferred from the reservoirs to the microfabricated particle sorting structures. The plurality of particle sorting structures may be arranged in the disposable cartridge in order to perform multiple separation operations, such as a sequential or parallel sorting operation.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: March 31, 2015
    Assignee: Innovative Micro Technology
    Inventors: John S. Foster, Daryl W. Grummitt, John C. Harley, James P. Linton, Jaquelin K. Spong, Douglas L. Thompson
  • Patent number: 8992860
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 31, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Publication number: 20150087050
    Abstract: Disclosed are nanovectors of formula (I) that can be used simultaneously for the targeting, imaging and treatment, by photodynamic therapy, of cancer cells, and to biodegradable silicon nanoparticles containing a variety of photosensitizing molecules, in particular porphyrins, capable of targeting diseased cells and inducing cell death by excitation in the near-infrared region (>600 nm) in monophotonic and biphotonic modes. In formula (I), (AA) is a porous silicon nanoparticle.
    Type: Application
    Filed: March 26, 2013
    Publication date: March 26, 2015
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, ECOLE NATIONAL SUPERIEURE DE CHIMIE DE MONTPELLIER
    Inventors: Frederique Cunin, Jean-Olivier Durand, Michael J. Sailor, Marcel Garcia, Emilie Secret, Magali Gary-Bobo, Marie Maynadier, Alain Morere
  • Publication number: 20150087014
    Abstract: Systems and methods are provided to select strains of algal cells for biomass accumulation. Based on synthetic algae sample trajectories, an illumination profile is developed. Strains of algal cells co-cultured in a vessel can then be exposed to the illumination profile under controlled conditions. Properties of algae can be measured and superior strains selected for further cultivation and/or study.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Joseph Weissman, Robert Nielsen, Roger Charles Prince
  • Publication number: 20150087051
    Abstract: The present invention includes a system and method for generating images of at least one Unhyperpolarized portion of a specimen by indirectly hyperpolarizing the at least one portion by irradiating the unhyperpolarized portion by radiation emitted from the de-excitation of excited nuclei of a hyperpolarized substance. The hyperpolarized substance is located in proximity to the specimen. Typically, the images are generated by an MRI/NMR device.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Inventor: Uri RAPOPORT
  • Patent number: 8986625
    Abstract: A method for sampling a sulphur-containing solid product including supplying a gas flow comprising hydrogen sulphide, bringing the gas flow into contact with a solid reagent and reacting the solid reagent with the hydrogen sulphide contained in the gas flow, the reaction fixing the sulphur of the hydrogen sulphide by forming a sulphur-containing solid product which is different in color from the solid reagent, and recovering the sulphur-containing solid product. The invention also relates to a device suitable for the implementation of this method.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Total S.A.
    Inventors: Daniel Dessort, Robert Le Van Loï, Nadine Loubere
  • Patent number: 8987003
    Abstract: A biosensor device (100) for detecting biological particles, the biosensor device (100) comprising an electromagnetic radiation transmitting member (102) adapted for transmitting electromagnetic radiation and a plurality of sensor active structures (104) arranged at the electromagnetic radiation transmitting member (102), wherein each of the plurality of sensor active structures (104) is sensitive to specific biological particles and is adapted to modify electromagnetic radiation transmission properties of the electromagnetic radiation transmitting member (102) in the event of the presence of the respective biological particles, and wherein the electromagnetic radiation transmitting member (102) is adapted for a simultaneous detection of different biological particles at different ones of the plurality of sensor active structures (104).
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: March 24, 2015
    Assignee: NXP B.V.
    Inventor: Pablo Garcia Tello
  • Patent number: 8989475
    Abstract: Methods, compositions and kits for determining the developmental potential of one or more embryos or pluripotent cells and/or the presence of chromosomal abnormalities in one or more embryos or pluripotent cells are provided. These methods, compositions and kits find use in identifying embryos and oocytes in vitro that are most useful in treating infertility in humans.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: March 24, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Connie C. Wong, Kevin E. Loewke, Thomas M. Baer, Renee A. Reijo-Pera, Barry Behr
  • Publication number: 20150080256
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.
    Type: Application
    Filed: October 15, 2014
    Publication date: March 19, 2015
    Inventors: Michael R. GAMBINI, Jeff A. Levi, John C. Voyta, John G. Atwood, Bruce E. DeSimas, II, Edward J. Lakatos, Israel Metal, George Sabak, Yongdong Wang
  • Publication number: 20150072406
    Abstract: Provided is a portable diagnostic test apparatus including: an accommodation portion including an outer side, an inner side, and an accommodation space provided on the inner side; a hinge; and a main body coupled to the accommodation portion by the hinge, where the portable diagnostic test apparatus is configured to be opened and closed by rotating one of the accommodation portion and the main body about the hinge, and where the main body is configured to obtain a result of a measurement based on data collected from drawn blood. The main body and/or the accommodation portion includes at least one strip keeping portion configured to store at least one strip. The at least one strip keeping portion may include: a housing; a discharge portion; and a first movement portion configured to move one of the strips to the discharge portion.
    Type: Application
    Filed: April 3, 2014
    Publication date: March 12, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In Duk HWANG, Yeon Moo CHUNG, Na Hui KIM, Jeong Je PARK, Chul Ho YUN
  • Publication number: 20150072350
    Abstract: All of bio-related substances, such as cells or bacteria, are placed at single and independent positions. A flow cell according to the present invention is used for analyzing a bio-related substance and includes a flow passageway and an injection opening and a discharge opening that are connected to the flow passageway. The flow passageway is provided with trapping structural members for trapping the bio-related substance. The trapping structural members include a structure forming a dead water region in which the bio-related substance is trapped.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 12, 2015
    Inventors: Takuya Matsui, Muneo Maeshima
  • Publication number: 20150072376
    Abstract: Tryptophan is used as the key native marker in cells to determine the level of aggressiveness of cancer cell lines using the native fluorescence spectroscopy. A ratio R of the fluorescence from tryptophan at 340 nm to that from the NADH at 440-460 nm is demonstrated to be associated with aggressiveness of the cancer cells. The higher the ratio R, the more aggressive the tumor towards metastasis.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 12, 2015
    Inventor: Robert R. Alfano
  • Publication number: 20150072371
    Abstract: The pathological diagnosis results assessment system includes: a diagnosis unit to carry out pathological diagnosis of tissue specimen images, and generates diagnosis record in information; a report storage unit to store reports in which pathological diagnosis results for the tissue specimen images are described; a report analysis unit to analyze the diagnosis results described in the reports stored in the report storage unit; and a report, verification unit to compare the diagnosis result analyzed by the report analysis unit to the diagnosis record information, and determine a degree of matching on the diagnosis degree of the comparison result.
    Type: Application
    Filed: March 7, 2013
    Publication date: March 12, 2015
    Inventor: Atsushi Marugame
  • Publication number: 20150072370
    Abstract: Provided is a means for evaluating the wetting characteristic of an object such as a cell sheet and a culture dish in a non-contact fashion. The wetting characteristic of an object is evaluated by a method comprising the steps of: (1) removing a liquid by jetting a gas at a surface of the object covered with the liquid, (2) measuring a dimension of a region in which the liquid is removed after the completion of the gas jetting and (3) evaluating the wetting characteristic of the object using the measured dimension as an index.
    Type: Application
    Filed: May 24, 2013
    Publication date: March 12, 2015
    Applicant: TOKYO WOMEN'S MEDICAL UNIVERSITY
    Inventors: Nobuyuki Tanaka, Ryohei Uchida, Makoto Kondo, Masayuki Yamato, Teruo Okano, Makoto Kaneko
  • Publication number: 20150072377
    Abstract: The invention features devices and kits for capturing and culturing microorganisms (e.g., bacteria, fungi, or protists) and methods of using the devices and kits to detect microorganisms in environmental and other samples. The device includes a nutrient media having a flat growth area on which microorganisms can grow. Samples are collected by contacting the device with any environmental sample, e.g., rolling device on a work surface or exposing device to air, or by filtering a sample through a membrane. Microorganisms deposited on the membrane derive nutrients from the underlying media and grow into colonies that can then be detected using methods known in the art. The detected colonies can be imaged digitally or with film.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 12, 2015
    Inventors: Douglas J. Browne, Sarkis Karakozian, Xiaowei Chen
  • Publication number: 20150072373
    Abstract: System and Method for measuring the growth of a bacterial culture and its response to one or more antimicrobials using measurement of mass of individual microbes. Methods include periodic sampling, determining change in mass and concentration, and comparing growth rates of cultures in nutrient broth vs. mixtures containing various antibiotic mixtures. A number of antimicrobials can be compared in one measurement by multiplexing or using multiple sensors to measure in parallel. Growth and antibiotic efficacy can be assessed at low concentrations at the onset of growth, typically within 1 to 2 hours.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 12, 2015
    Applicant: AFFINITY BIOSENSORS, LLC
    Inventors: Ken Babcock, Cynthia Schneider
  • Patent number: 8973531
    Abstract: A system and method for determining the concentration of zooplankton in a continuous zooplankton culture system. The system may include a transmissiometer, a sample tube, a first sample containing water and microalgae, and a second sample containing water, microalgae, and zooplankton. The concentration of zooplankton in the system may be calculated by comparing the transmissiometer output from the first sample and the second sample, wherein each of the outputs are obtained by moving each sample into the sample tube such that the transmissionmeter is positioned to take a reading across the tube.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: March 10, 2015
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventor: Kelly A. Rusch
  • Publication number: 20150064742
    Abstract: Disclosed is a sample analyzing method comprising: flowing a measurement specimen prepared by mixing a sample and reagent through a flow cell; irradiating particles in the measurement specimen flowing through the flow cell with linearly polarized light and thereby producing scattered light; detecting a change of polarization condition of the scattered light produced by the particles; and discriminating erythrocytes from crystals in the measurement specimen based on the change of polarization condition.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Inventors: Mitsumasa SAKAMOTO, Masatsugu OZASA
  • Publication number: 20150064777
    Abstract: Provided is an apparatus for detecting microorganisms, including: a sample accommodation container having an accommodation space in which a measurement sample in which a number of living microorganisms is to be counted is accommodated; an electrode portion installed at the sample accommodation container so as to apply electrical stimulation to the microorganisms of the sample accommodated in the accommodation space; a current applying control portion that is capable of controlling a current applied by the electrode portion; and an image processor that captures an image of the sample accommodated in the sample accommodation container and counts the number of living microorganisms.
    Type: Application
    Filed: April 25, 2012
    Publication date: March 5, 2015
    Applicant: GLOBAL OPTICAL COMMUNICATION CO., LTD.
    Inventors: Jun Hyung Kim, In Chul Park
  • Publication number: 20150064737
    Abstract: An imaging apparatus for imaging a two-dimensional image of an imaging object comprises a holder which holds a sample container carrying a biological sample as the imaging object on a carrying surface, a light emitting part which emits light toward the carrying surface, an imager which includes a strip-like light receiving part, receives the light incident on the light receiving part and thereby images an image of a strip-like region of the carrying surface, a strip-like light shield which shields a part of light emitted from the illuminator toward the strip-like region, and a mover which integrally and relatively moves the light emitting part, the light receiving part and the light shield with respect to the sample container.
    Type: Application
    Filed: June 25, 2014
    Publication date: March 5, 2015
    Inventors: Sanzo MORIWAKI, Hiroki FUJIMOTO
  • Publication number: 20150064778
    Abstract: A Raman spectroscopic apparatus analyzes a substance under analysis and includes a light source that emits light of a first wavelength, an optical device that adsorbs the substance under analysis and is irradiated with the light of the first wavelength, and an optical detector that receives light radiated from the optical device. The optical device includes a first structural member that generates charge transfer resonance in response to the light of the first wavelength and a second structural member that is less than or equal to 5 nm from the first structural member and generates surface plasmon resonance in response to the light of the first wavelength. The first structural member is made of a metal or a semiconductor, and the second structural member is made of a metal different from the material of the first structural member.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Inventor: Kohei YAMADA
  • Patent number: 8968674
    Abstract: Provided herein is a fluid sensor, which includes a closed reaction unit in which reaction of a fluid sample takes place. The reaction unit is tapered on a side through which the fluid is injected so as to prevent generation of air bubbles during the injection of the fluid. Thus, the sensor has improved sensitivity.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun Joo Lee, Soo Suk Lee, Jung Nam Lee
  • Patent number: 8968677
    Abstract: An improved apparatus and method for dispersion of a labeling conjugate in a diagnostic assay, the result being a one-step assay. By eliminating a conjugate pad as in conventional lateral diagnostic devices, and forming a frazil ice pellicle (FIP), rehydration and flow are improved resulting in better reproducibility, improved sensitivity, and reduced costs of individual assay devices. The formation of a frazil ice film formed on a super cooled surface of a sample receiving means simplifies assay assembly. Lyophilization of the FIP improves the release of a sample/analyte/label matrix into a macro channel as in a direct flow assay, while at the same time allowing reagents to mix and flow, thereby optimizing the assay performance. The reagents of the conjugate and the formation of the FIP stabilize the conjugate proteins and provide extended shelf life to the diagnostic assay device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 3, 2015
    Assignee: Quantum Design International, Inc.
    Inventors: Ronald T. LaBorde, Nicholas J. Neild
  • Patent number: 8969086
    Abstract: A sample processing system 101 that may be automated and methods are disclosed where sample(s) 198 are arranged on a carrier element 197 and a process operation control system 171 automatically processes the sample(s) perhaps robotically according to an desired aggregation of event dictated by an input 173. Alteration of an initial aggregated event topology may be accepted while the system is processing an initial aggregation and varied-parameter robotic control simulation functionalities 606 may be accomplished to determine an enhanced sequence for processing. Suggested operator actions may be displayed that might further enhance the scheduling of the altered aggregated event topology together with an automatic operator need prompt 608 that may inform an operator of a need for a particular action in order to accomplish the desired tasks.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: March 3, 2015
    Assignee: Dako Denmark A/S
    Inventors: Marc Key, Gordon Feingold, Rosanne Welcher
  • Patent number: 8969099
    Abstract: Provided is a microanalysis method and system using a Field Effect Transistor (FET). The microanalysis method includes a channel region having a receptor molecule fixed; forming a nano-particle conjugate in the channel region by supplying a sample for test and the nano-particle conjugate to the FET; growing a probe material on the channel region; and measuring a current flowing through the channel region, wherein the receptor molecule is a material that is selectively bonded to a target molecule in the sample for test.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 3, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chil Seong Ah, Jong-Heon Yang, Chan Woo Park, Chang-Geun Ahn, Gun Yong Sung
  • Publication number: 20150056607
    Abstract: The current invention concerns a flow cytometric system and method for observing, analyzing and/or separating objects in a liquid sample, comprising a digital holographic microscope (DHM) and at least one fluidic system, whereby the DHM comprises illumination means, an interferometric system and digital recording means, whereby the fluidic system is capable of guiding said objects through an illumination beam of the illumination means of said DHM, whereby the fluidic system comprises a mechanism for inducing a liquid sample stream through the fluidic system, whereby preferably the fluidic system comprises a stream size controlling device for controlling the transverse dimensions of a liquid sample stream inside said fluidic system, preferably said stream size controlling device is capable of lining up the objects one-by-one or multiple objects at a time in said liquid sample stream.
    Type: Application
    Filed: February 3, 2013
    Publication date: February 26, 2015
    Inventors: Serge Jooris, Philip Mathuis
  • Publication number: 20150056690
    Abstract: The invention features a method including: (i) providing spectrally resolved information about light coming from different spatial locations in a sample comprising deep tissue in response to an illumination of the sample, wherein the light includes contributions from different components in the sample; (ii) decomposing the spectrally resolved information for each of at least some of the different spatial locations into contributions from spectral estimates associated with at least some of the components in the sample; and (iii) constructing a deep tissue image of the sample based on the decomposition to preferentially show a selected one of the components.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Inventors: Richard Levenson, Paul J. Cronin, Kirk William Gossage, Clifford C. Hoyt
  • Publication number: 20150056645
    Abstract: An apparatus to provide a label-free or native particle analysis comprises a light generating system producing first light pulses at a first wavelength and second light pulses at a second wavelength; and a flow cell coupled to the light generating system to convey particles for analysis. The light generating system is configured to chirp at least one of the first light pulses and the second light pulses to analyze the particles.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 26, 2015
    Inventor: Giacomo Vacca
  • Patent number: 8962341
    Abstract: An assay system designed to detect a protein biomarker in urine that is diagnostic for interstitial cystitis (IC). The presence of a 9 amino acid glycopeptide, antiproliferative factor (APF), in urine is unique to patients with IC. Urine samples from patients who exhibit symptoms consistent with IC are added to the assay system. Binding of APF to the cytoskeletal associated protein 4 (CKAP4) is positive for the presence of APF in urine and diagnostic for IC. The diagnostic system is a significant and surprising advance in diagnosis of IC and has commercial applications relevant to women and men who suffer from symptoms consistent with IC.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: February 24, 2015
    Assignees: The Commonwealth Medical College, University of Florida Research Foundation, Inc.
    Inventors: David Alan Zacharias, Sonia Lobo Planey