Including Optical Measuring Or Testing Means Patents (Class 435/288.7)
  • Patent number: 8965574
    Abstract: A method for controlling an automated work cell which includes at least one robot arm having at least three degrees of freedom controlled according to a plurality of control axes; a control center; a device for controlling the robot arm which includes a plurality of motor controllers each controlling operation of one motor and suitable for operating at least one portion of the robot arm; and a communication bus between the control center and the device for controlling the robot arm; wherein the method includes steps of: a) sending instructions emitted by the control center to control the control axes to a single arithmetic unit belonging to the device for controlling the robot; b) determining, within the arithmetic unit and according to instructions received from the orders for each of the motors controlled by a motor controller; and c) sending each motor controller an order, determined in step b), for the motor controlled by each motor controller.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: February 24, 2015
    Assignee: Staubli Faverges
    Inventors: Luc Joly, Jean Michel Bonnet Des Tuves, François Pertin, Gérald Vogt
  • Patent number: 8962308
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: February 24, 2015
    Assignee: Beckman Coulter, Inc.
    Inventors: Brian D. Wilson, Sami D. Alaruri, Matthew S. Davis, Matthew D. Erickson, Alan N. Johnson, Garrick A. Maurer, Mark F. Sauerburger, Daniel R. Schmidt, Joshua D. Wiltsie, Thomas M. Stachelek, David L. Yang
  • Patent number: 8961898
    Abstract: The present invention provides a bilayer membrane produced using a microchannel capable of easily forming bilayer membranes such as planar lipid bilayer membranes in large quantities, and a production method thereof. A process for producing a bilayer membrane of the present invention comprises forming a state where two liquid phases or liquid and gaseous phases each containing amphipathic molecules are alternately arranged in a microchannel, discharging one of the two liquid phases or the gaseous phase of the liquid and gaseous phases through branch minichannels formed in the wall on one side or in the walls on both sides to contact the remaining liquid phases adjacent to each other, and thereby forming a side-by-side arrangement of bilayer membranes comprising the amphipathic molecules.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 24, 2015
    Assignee: Tokyo Institute of Technology
    Inventors: Takasi Nisisako, Takahiro Baba
  • Publication number: 20150050684
    Abstract: The present invention relates to an apparatus that uses shadow images of cells to continuously measure cell activity at a high processing rate in order to provide cell activity and cell number results. According to one embodiment of the present invention, instead of a highly experienced examiner or technician using a microscope, ELISA reader, etc. having to collect various cell activity measurements and cell numbers, the collection of said information can be automated so as to reduce cost and largely reduce errors in measurements through the development of computer software coupled with hardware using low cost and compact optoelectronic components and simple image processing techniques.
    Type: Application
    Filed: December 27, 2012
    Publication date: February 19, 2015
    Inventors: Sung-Kyu Seo, Geon-Soo Jin, Un-Hwan Ha, Se-Hwan Paek, Seung-Pil Pack
  • Publication number: 20150050688
    Abstract: A sorting flow cytometer identifies an undesirable drop charge sequence that is preassigned to adjacent drops before the drops have separated from a fluid stream. An example of an undesirable drop charge sequence is a sequence of adjacent drops that are charged with sufficiently high opposing charges that, after the drops are formed, would result in merging of the adjacent drops. The sorting flow cytometer adjusts the assignment of drop charges to avoid the undesired drop charge sequence.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 19, 2015
    Inventors: Thomas L. Thrasher, Bruce G. Bailey, Eric Von Seggern, Jeffrey W. Degeal
  • Publication number: 20150050723
    Abstract: The invention described herein provides methods for the detection of soluble antigens. In particular, the methods provide for the detection of soluble proteins and chemicals. In addition, the invention provides methods of detecting a nucleic acid sequence in a sample. Also described is an emittor cell comprising an Fc receptor and an emittor molecule for the detection of a target particle in a sample wherein the target particle to be detected is bound by one or more antibodies. Also provided is an optoelectronic sensor device for detecting a target particle in a plurality of samples.
    Type: Application
    Filed: September 9, 2014
    Publication date: February 19, 2015
    Inventors: Eric D. Schwoebel, James D. Harper, Martha S. Petrovick, Frances E. Nargi, Todd H. Rider, Kristine E. Hogan, Richard H. Mathews, Joseph Lacirignola, Mark Hennessy, Trina R. Vian, Rose M. Joseph, Raymond S. Uttaro, Shaun Berry, Bernadette Johnson, Mark A. Hollis
  • Patent number: 8956861
    Abstract: Provided are a container tray in which a position and orientation of a container is hardly displaced from a predetermined position and orientation; a tray base used together with the container tray; and an observation unit. The container tray 8 includes a mounting plate 81 having a mounting surface 811 on which the container is to be mounted, an elastic body 82, and a biasing mechanism 83, 842. The elastic body 82 is arranged on the mounting surface 811 of the mounting plate 81 around a mounting region R where the container is to be mounted. The biasing mechanism 83, 842 is capable of switching states between a biased state in which the elastic body 82 is biased inward by applying a pressing force to the elastic body 82 from outside and a bias released state in which the bias on the elastic body 82 is released.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 17, 2015
    Assignee: Panasonic Healthcare Holdings Co., Ltd.
    Inventor: Mikio Houjou
  • Publication number: 20150044690
    Abstract: FRET measurement uses a FRET probe that includes a probe element X containing a donor fluorescent substance and a probe element Y containing an acceptor fluorescent substance and enables FRET to occur when the probe element X and the probe element Y approach to each other or bind together. The modulation frequency of laser light with which the FRET probe is irradiated is adjusted to an optimum modulation frequency that maximizes a difference between the phase difference of donor fluorescence emitted from the donor fluorescent substance with respect to intensity modulation of the laser light at the time when FRET occurs and the phase difference of donor fluorescence emitted from the donor fluorescent substance with respect to intensity modulation of the laser light at the time when FRET does not occur.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 12, 2015
    Applicants: Mitsui Engineering & Shipbuilding Co., Ltd., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shigeyuki Nakada, Yusuke Ohba, Kyouji Doi, Yumi Asano
  • Publication number: 20150044696
    Abstract: An integrated microfluidic device for carrying out a series of fluidic operations includes a housing including a plurality of n microfluidic conduits, wherein n is at least three, and a rotating valve having an internal channel with an entrance port and an exit port that are angularly separated. The rotating valve is positionable in a first position to connect two of the n fluidic conduits via the internal channel, and upon rotating the valve to a second position, two other of the n fluidic conduits are connected by the internal channel. The device further may include one or more fluidic chambers in fluid communication with respective fluidic conduits. Fluid contained in one fluidic chamber is transferrable by application of positive or negative gas pressure through associated fluidic conduits into another fluidic chamber via the internal channel. The device may be utilized to perform a variety of fluidic operations.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Pamela Ann DOTHIE, Daniel Christopher SPENCER
  • Publication number: 20150044763
    Abstract: FRET measurement uses a FRET probe that includes a probe element X labeled with a donor fluorescent substance and a probe element Y labeled with an acceptor fluorescent substance and enables FRET to occur when the probe element X and the probe element Y approach to each other or bind together. A test sample as a measuring object in FRET measurement contains a test object about which it is unknown whether or not it has an approaching/binding property of allowing the probe element X and the probe element Y to approach to each other or bind together or a separating property of separating from each other the probe element X and the probe element Y that are in a state where they adjoin each other or bind together. A plurality of sets of a fluorescence lifetime ?sample and a ratiometry Rsample obtained by this measurement are used to judge whether or not the test object has the approaching/binding property or the separating property.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 12, 2015
    Applicants: Mitsui Engineering & Shipbuilding Co., Ltd., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shigeyuki Nakada, Yusuke Ohba, Kyouji Doi, Yumi Asano
  • Publication number: 20150044770
    Abstract: The present invention relates to a method for selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays. More particularly, conducting polymers or metal oxides having exothermic characteristics upon irradiation of near infrared light is used as a cell culture scaffold, thus selectively attaching/detaching cells without an enzyme treatment. The scaffold has an effect of promoting proliferation or differentiation of stem cells, and therefore, can be used as a stem cell culture scaffold. The scaffold enables cell attachment/detachment without temporal or spatial restrictions, thus enabling cell patternization.
    Type: Application
    Filed: April 12, 2013
    Publication date: February 12, 2015
    Applicant: Industry-Academic Cooperation Foundation Yonsei University
    Inventors: Eun Kyung Kim, Hyun Ok Kim, Jung Mok You, Jeong Hun Kim, Tea Hoon Park, Byeon Gwan Kim, June Seok Heo, Han Soo Kim
  • Publication number: 20150044759
    Abstract: A biological sensing structure includes a mesa integrally connected a portion of a substrate, wherein the mesa has a top surface and a sidewall surface adjacent to the top surface. The biological sensing structure includes a first light reflecting layer over the top surface and the sidewall surface of the mesa. The biological sensing structure includes a filling material surrounding the mesa, wherein the mesa protrudes from the filling material. The biological sensing structure includes a stop layer over the filling material and a portion of the first light reflecting layer. The biological sensing structure includes a second light reflecting layer over a portion of the stop layer and a portion of the top surface of the mesa. The biological sensing structure includes an opening in the second light reflecting layer to partially expose the top surface of the mesa.
    Type: Application
    Filed: September 19, 2014
    Publication date: February 12, 2015
    Inventors: Hung-Hua LIN, Li-Cheng CHU, Ming-Tung WU, Yuan-Chih HSIEH, Lan-Lin CHAO, Chia-Shiung TSAI
  • Publication number: 20150044710
    Abstract: Disclosed herein are methods, compositions and devices for detecting oxygen in various samples such as environmental and biological samples.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Inventors: Anjan Kr. DASGUPTA, Sanhita RAY, Arumoy CHATTERJEE, Tamoghna BHATTACHARYYA, Satarupa BHADURI, Anirban BOSE
  • Publication number: 20150044764
    Abstract: The present invention relates to a biochemical assay cartridge. More particularly, the present invention provides a biochemical assay cartridge including an insertion-type solution cartridge and a reaction cartridge receiving the insertion-type solution cartridge, in which the solution cartridge is inserted into the reaction cartridge to catch a protruding protection film inducement unit by a latch in the reaction cartridge and thus break the protection film inducement unit and a protection film for sealing a reaction solution storage unit attached to the solution cartridge is automatically detached to discharge the reaction solution from the solution cartridge to the reaction cartridge.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Guen Sig Cha, Hakhyun Nam, Dongxuan Shen, Joo Young Cho, Kap Soo Park, Jihoon Kim
  • Patent number: 8951474
    Abstract: The present invention provides an apparatus for analyzing particles in a solution including a unit configured to place a flow cell having a flow path for flowing a sample solution containing the particles; a unit configured to illuminate the sample solution flowing through the flow path of the flow cell; a photodetector that detects a scattered light and/or fluorescence generated from the particles in the sample solution; and a unit configured to analyze the particles based on their signal intensities detected by the photodetector, wherein the flow cell has the flow path formed in a substrate, a reflection plane is formed on the side surface of the flow path, the reflection plane leads the lights generated in the flow path of the flow cell and advancing in the substrate in-plane direction to a specified region of the surface of the flow cell, and the photodetector detects the light exiting from the specified region to the outside.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 10, 2015
    Assignee: On-Chip Biotechnologies Co., Ltd.
    Inventor: Kazuo Takeda
  • Patent number: 8951783
    Abstract: Systems and methods to analyze contaminants including a plurality of stages configured to detect contaminants in a sample, wherein the plurality of stages are configured to detect a plurality of contaminants at substantially the same time.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 10, 2015
    Inventor: Jaydeep Bhattacharya
  • Publication number: 20150037877
    Abstract: A fast fluorescence lifetime microscopic system images FRET between multiple labels in live cells and deep tissue, using a quantitative analysis method to reconstruct the molecular machinery behind the multiplexed FRET phenomenon. The system measures fluorescence lifetime, intensity and anisotropy as images of excitation-emission matrices (EEM) in real time and high speed within a single image scan, performs high-resolution deep-penetrating 3D FRET imaging in live samples, and fully analyzes all possible photon pathways of multiplexed FRET. The system provides a way for systematic and dynamic imaging of biochemical networks in cells, tissue and live animals, which will help to understand mechanisms of genetic disorders, cancers, and more.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: The Arizona Board of Regents on behalf of the University of Arizona
    Inventors: Leilei Peng, Ming Zhao
  • Publication number: 20150037835
    Abstract: An automated microscope apparatus comprises an outer housing having an external wall; optionally but preferably an internal wall in the housing configured to form a first compartment and a separate second compartment in the outer housing; a microscope assembly in the housing (preferably in the first compartment); a microprocessor in the housing (preferably in the second compartment), and (optionally but preferably) a heat sink mounted on the housing external wall, preferably adjacent the second compartment, with the microprocessor thermally coupled to said heat sink and operatively associated with the microscope assembly. Systems and methods employing the same are also described, along with component parts thereof.
    Type: Application
    Filed: July 3, 2013
    Publication date: February 5, 2015
    Inventors: Stefano Bresolin, David A. Calderwood, Tobias M. Heineck, David Newcomb, Chris Paul, Jasper N. Pollard, Rodolfo R. Rodriguez, Demetris Young
  • Publication number: 20150037831
    Abstract: Provided are an apparatus for filtering a fluid, the apparatus including a first flow channel and a second flow channel which are connected to each other in a fluid communicable manner via a filtration medium, and a method of isolating particles using the apparatus.
    Type: Application
    Filed: February 4, 2014
    Publication date: February 5, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hun-joo LEE, Jong-myeon Park
  • Patent number: 8945913
    Abstract: The present invention provides kits, apparatus and methods for determining a biological condition in a mammalian subject, the method includes incubating a specimen from a patient with at least one composition in a kit for a predetermined period of time to form at least one reaction product, when the subject has said biological condition, and receiving an indication of the at least one reaction product responsive to at least one reporter element in the kit thereby providing the indication of the biological condition in the subject.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: February 3, 2015
    Assignee: LeukoDx Ltd.
    Inventors: Harvey Lee Kasdan, Julien Meissonnier, Yoav Zuta, Bruce Davis, Micha Rosen, Yael Himmel, Yehoshua Broder
  • Patent number: 8945914
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 3, 2015
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch
  • Patent number: 8945481
    Abstract: Exemplary embodiments provide microfludic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: February 3, 2015
    Assignee: Applied Biosystems, LLC
    Inventors: Mark F. Oldham, Kenneth J. Livak, Jason E. Babcoke, H. Pin Kao, Stephen J. Gunstream, Kevin S. Bodner, Douglas P. Greiner, Nigel P. Beard, Dar Bahatt
  • Patent number: 8945486
    Abstract: A microwell device is provided. The device includes a plate having a upper surface. The upper surface has first and second recesses formed therein. Each recess has an outer periphery. First and second portions of microwells are formed in upper surface of the plate. The first portion of microwells are spaced about the outer periphery of the first recess and the second portion of microwells spaced about the outer periphery of the first recess. A first barrier is about a first portions of the microwells for fluidicly isolating the first portion of the microwells and a second barrier about a second portions of microwells for fluidicly isolating the second portion of the microwells.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 3, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Jay W. Warrick, John Yin, Stephen M. Lindsay
  • Patent number: 8945939
    Abstract: The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 3, 2015
    Assignee: Ecolab USA Inc.
    Inventors: Amy M. Tseng, Brian V. Jenkins, Robert Mack
  • Patent number: 8947656
    Abstract: A mobile computing device that includes an image sensor may be used to detect the result of a biomolecular assay. The biomolecular assay may be performed in an optical assay medium that provides an optical output in response to light from a light source, with the optical output indicating result. A wavelength-dispersive element may be used to disperse the optical output into spatially-separated wavelength components. The mobile computing device may be positioned relative to the wavelength-dispersive element such that different wavelength components are received at different locations on the image sensor. With the mobile computing device positioned in this way, the image sensor may be used to obtain one or more images that include the separated wavelength components of the optical output. A wavelength spectrum of the optical output may be determined from the one or more images, and the result may be determined from the wavelength spectrum.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Brian T. Cunningham
  • Patent number: 8945472
    Abstract: The present invention provides a biosensor system comprising a light source, a cartridge adapted to be illuminated by said light source, a light detector adapted for detecting a signal originating from the cartridge, an illumination control means adapted to vary the illumination of the cartridge between at least two different states, a means for generating a first oscillation with a first frequency, and a means for generating a second oscillation with a second frequency, wherein the frame rate of the light detector is triggered by the first oscillation and the illumination control means is triggered by the second oscillation.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: February 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Josephus Arnoldus Henricus Maria Kahlman, Bart Michiels
  • Publication number: 20150031121
    Abstract: Disclosed is a sample holding carrier allowing samples to be measured accurately, and a fluorescence detection device for use with the sample holding carrier. A biosensor substrate includes a base substrate, a plurality of wells formed on a first surface side of the base substrate; and grooves formed on the first surface side of the base substrate separately from the wells and generating fluorescence under exposure to excitation light. The fluorescence detection device applies excitation light to the grooves, thereby figuring out the level of the fluorescence to be detected from the biosensor substrate. As a result, the fluorescence detection device can amplify the detection signals of the fluorescence generated when the excitation light is applied to the wells to an appropriate level, thereby accurately detecting the fluorescence generated in the samples.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Morio NAKATANI, Masaya NAKATANI, Yoshiyuki MATSUMURA, Kenji NAGATOMI, Akio OKI
  • Publication number: 20150031070
    Abstract: A neural network is disclosed. The neural network comprises a plurality of optogenetically modified neural cells being three-dimensionally distributed in a hydrogel medium and being disconnected from any solid support having a shear modulus above 1 GPa.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: SHY SHOHAM, ANAT MAROM, SANJEEV KUMAR MAHTO
  • Publication number: 20150031120
    Abstract: A MEMS-based system and a method are described for separating a target particle from the remainder of a fluid stream. The system makes use of a unique, microfabricated movable structure formed on a substrate, which moves in a rotary fashion about one or more fixed points, which are all located on one side of the axis of motion. The movable structure is actuated by a separate force-generating apparatus, which is entirely separate from the movable structure formed on its substrate. This allows the movable structure to be entirely submerged in the sample fluid.
    Type: Application
    Filed: July 29, 2013
    Publication date: January 29, 2015
    Applicant: Innovative Micro Technology
    Inventors: John S. Foster, Daryl W. Grummitt, John C. Harley, Jaquelin K. Spong, Kimberly L. Turner
  • Publication number: 20150031119
    Abstract: The device permitting an early detection, without measurement of the fluorescence, of colonies resulting from the multiplication of micro-organisms present in a sample to be tested, includes a substantially flat and horizontal detection surface, on which at least one support for growing the micro-organisms in the form of colonies is arranged immobile. The support is of the type membrane or agar medium. There is a detection system, such as a linear scanner, mounted movable and flat for scanning the whole or part of the surface, including at least one CCD sensor associated with an optical system comprised of at least one lighting and at least one optical device, such as a lens. The CCD sensor has a resolution higher than or equal to 2400 dpi. The detection system images colonies having a diameter smaller than 50 [mu]m through a useful magnification higher than or equal to 60.
    Type: Application
    Filed: January 24, 2013
    Publication date: January 29, 2015
    Inventor: Joseph Pierquin
  • Publication number: 20150031012
    Abstract: An integrated automated system comprising a microfluidic cassette, and methods of use thereof, for intracytoplasmic sperm injection assisted fertilization. The microfluidic cassette and the integrated automated system provides a complete set-up of human gametes for assisted in vitro fertilization, including proper cell stage recognition, gamete propulsion via microfluidic currents, microinjection of a spermatozoon into an oocyte, and subsequent embryo culture and monitoring, thus allowing widespread distribution of in vitro insemination by favoring affordability.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Inventor: Gianpiero D. Palermo
  • Patent number: 8940523
    Abstract: The present invention relates to a pipette tip (100, 200, 201, 300) comprising a tip body (110) having an inner surface and an outer surface (112). The inner surface (111) defines an inner cavity (120, 320), which has an upper end and a lower end. The upper end has an upper opening (131); and the lower end has a lower opening (141). At least a part of the inner surface (111) is provided with capturing agents (151) of at least one type forming at least one capturing-agent region (150) on the at least one inner surface. The at least one capturing agent region (150) is capable of selectively binding target substances (152) of at least one type comprised in a sample to form at least agent-target conjugates (155), the arrangement of which define at least one agent-target region (156).
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 27, 2015
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique S.A.—Recherche et Developpement
    Inventors: Stéphane Follonier, Linsey Fan, Pierre Indermuhle
  • Patent number: 8940237
    Abstract: An optic light guide test sensor comprises a light guide, a reagent-coated membrane, and a mesh layer. The reagent-coated membrane and the mesh layer are attached to the light guide at an output end of the light guide. The light guide test sensor is adapted to be used to test the level of an analyte in a biological fluid sample when used with a readhead. A method of manufacturing the light guide test sensor involves providing a plurality of light guides, providing a strip of reagent-coated membrane, and providing a strip of mesh layer. The reagent-coated membrane and mesh layer are attached to the light guides by ultrasonic welding. The reagent-coated membrane and mesh layer may also be attached to the light guides by adhesive.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: January 27, 2015
    Assignee: Bayer HealthCare LLC
    Inventors: Jeffery S. Reynolds, Steven C. Charlton, Sung-Kwon Jung, Suny J. George
  • Publication number: 20150024476
    Abstract: Apparatus and Methods are provided for a microfabricated fluorescence activated cell sorter based on a switch for rapid, active control of cell routing through a microfluidic channel network. This sorter enables low-stress, highly efficient sorting of populations of small numbers of cells (i.e., 1000-100,000 cells). The invention includes packaging of the microfluidic channel network in a self-contained plastic cartridge that enables microfluidic channel network to macro-scale instrument interconnect, in a sterile, disposable format. Optical and/or fluidic switching forces are used alone or in combination to effect switching.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 22, 2015
    Inventors: William F. Butler, Haichuan Zhang, Philippe Marchand, Keunho Ahn, Yi Zhang, John Francis, Benjamin Lai, Eugene Tu
  • Publication number: 20150024477
    Abstract: This biosensor chip is placed in a biosensor device and is rotated while a specimen is measured, the biosensor chip comprising a main body, a holding chamber, a dispensing chamber, a plurality of quantification chambers, and a plurality of measurement chambers. The main body has an inlet into which a biochemical analysis specimen is poured. The holding chamber holds the poured specimen inside the main body. The dispensing chamber is connected to the holding chamber via a first channel and dispenses the specimen. The plurality of quantification chambers are connected to the dispensing chamber, hold a specific amount of dispensed specimen, and are disposed at positions located away from the rotational center of the rotary motion according to the distance from the first channel. The plurality of measurement chambers are connected to the quantification chambers via a second channel and react the specimen with a biochemical analysis reagent.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 22, 2015
    Inventors: Kazuyoshi MORI, Masahiro KOUGE, Fumihisa KITAWAKI, Takako MATSUMURA, Seiji ONISHI
  • Publication number: 20150024426
    Abstract: A device for use in imaging a liquid sample comprises an inlet for accepting the sample, a connection conduit and a detection chamber for detection of the sample, preferably optical detection of the sample. The connection conduit connects the inlet to the detection chamber and contains one or more dry reagents for reaction with the sample as the sample passes through the connection conduit. Specific embodiments include devices arranged for treating a blood sample, in particular lysing and staining the sample. The liquid flow may be driven by capillary effect. The device may further include liquid handling structures arranged for centrifugally driven liquid flow, for example to meter a volume of sample and separate the sample into phases by centrifugation.
    Type: Application
    Filed: March 12, 2013
    Publication date: January 22, 2015
    Inventors: João Manuel De Oliveira Garcia Da Fonseca, Ricardo Cabeça
  • Patent number: 8936933
    Abstract: A method of processing a sample may include introducing a sample into a vessel, the vessel having proximal and distal ends, the sample being introduced into the proximal end of the vessel; incubating the sample in the vessel with a substance capable of specific binding to a preselected component of the sample; propelling components of the incubated sample, other than the preselected component, toward the proximal end of the vessel by clamping the vessel distal to the incubated sample and compressing the vessel where the incubated sample is contained; propelling the preselected component toward a distal segment of the vessel by clamping the vessel proximal to the preselected component and compressing the vessel where the preselected component is contained; and mixing the preselected component with a reagent in the distal segment of the vessel.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: January 20, 2015
    Assignee: IQumm, Inc.
    Inventors: Shuqi Chen, Lingjun Chen
  • Publication number: 20150017101
    Abstract: The document proposes a diagnostic chewing gum for identifying the presence of inflammatory tissues in the mouth, in particular in or adjacent to the mandible, the maxilla, an implant or the teeth of a user, comprising a base material or particles (3) embedded and/or attached to said base material; an element (1, 5-7), like e.g. a releasable flavor molecule, attached to said base material and/or said particles, for the generation of a change in the chewing gum directly detectable by the user; wherein the element (1, 5-7) generates the change upon direct or indirect contact with a marker (4), e.g. a proteolytic enzyme, which is released by inflammatory tissue in response to bacterial mediators.
    Type: Application
    Filed: March 7, 2013
    Publication date: January 15, 2015
    Applicant: THOMMEN MEDICAL AG
    Inventors: Matthias Schnabelrauch, Lorenz Meinel, Falko Schlottig, Ralf Wyrwa
  • Publication number: 20150017678
    Abstract: Embodiments are generally related to differentiating and/or separating portions of a sample that are of interest from the remainder of the sample. Embodiments may be directed towards separating cells of interest from a cell sample. In some embodiments, acoustic impedances of the cells of interest may be modified. For example, the acoustic properties of the cells of interest may be modified by attaching bubbles to the cells of interest. The cell sample may then be subjected to an acoustic wave. The cells of interest may be differentiated and/or separated from the remainder of the sample based on relative displacements and/or volumetric changes experienced by the cells of interest in response thereto. The cells of interest may be separated using a standing wave and sorted into separate channels of a flow cell. Optionally, the cells may be interrogated by a light source and differentiated by signals generated in response thereto.
    Type: Application
    Filed: April 16, 2014
    Publication date: January 15, 2015
    Applicant: University of Washington Through Its Center for Commercialization
    Inventors: Thomas Matula, Andrew A. Brayman, Oleg A. Sapozhnikov, Brian MacConaghy
  • Patent number: 8932874
    Abstract: The invention is directed towards methods and compositions for identifying the amount of ammonium acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of ammonium acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of ammonium acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the ammonium acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: January 13, 2015
    Assignee: Nalco Company
    Inventors: Amy M. Tseng, Brian V. Jenkins, Robert M. Mack
  • Publication number: 20150010941
    Abstract: The disclosure provides culture devices and methods useful for detecting acid-producing bacteria in a sample. The devices include a nutrient medium and a pH indicator to detect and differentiate acid-producing microorganisms, such as lactic acid bacteria. Methods of use include detecting or enumerating acid-producing microorganisms. The methods further provide for the detection of gas-producing acid-producing bacteria.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventors: ROBERT F. YOUNG, PATRICK A. MACH, MICHAEL E. HUGHES, CHRISTINE A. BINSFELD, JASON W. BJORK, MARA S. CELT, HENRY J. LUBRANT
  • Publication number: 20150011406
    Abstract: The present invention includes a method and system for enhancing the signal-to-noise ratio in emission detection comprising: selecting a probe capable of at least one of fluorescence, phosphorescence, or delayed fluorescence in or about a sample that comprises interfering background signal; and exposing the probe to one or more controllable bursts, each burst comprising two or more pulses, wherein the one or more controllable bursts of high repetition energy pulses enhance the signal from the probe above that of the background signal.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Inventors: Ryan M. Rich, Ignacy Gryczynski, Julian Borejdo, Zygmunt Gryczynski
  • Publication number: 20150010994
    Abstract: A system and method for measuring at least one bioprocess parameter utilizes a barrier that separates an external sensor from a culture medium. The barrier allows analytes to diffuse in and out of the culture vessel, thereby allowing the bioprocess parameter to be measured non-invasively by the external sensor.
    Type: Application
    Filed: June 10, 2014
    Publication date: January 8, 2015
    Applicant: University of Maryland Baltimore County
    Inventors: Govind RAO, Yordan KOSTOV, Leah TOLOSA
  • Publication number: 20150010995
    Abstract: There is provided a microchip-based platelet multi-function test apparatus. The apparatus includes a sample container configured to accommodate a blood sample therein, a stirrer that is installed inside the sample container and induces a shear flow in the blood sample, a parallel channel configured to divide and flow the blood stirred by the stirrer into a plurality of paths, a vacuum device that is connected to an end of each parallel channel, maintains constant pressure, allows the stirred blood to flow along the parallel channel, a light source that is installed in a rear side of the parallel channel and radiates light to the parallel channel, and an image sensor that receives light transmitted through the blood in the parallel channel, converts the light into an electrical signal, and measures a flowing distance of a blood flow.
    Type: Application
    Filed: August 9, 2012
    Publication date: January 8, 2015
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventors: Se Hyun Shin, Jeong Hun Nam, Chae Seung Lim
  • Publication number: 20150010993
    Abstract: A system for conducting the identification and quantification of micro-organisms, e.g., bacteria in urine samples which includes: 1) several disposable cartridges for holding four disposable components including a centrifuge tube, a pipette tip having a 1 ml volume, a second pipette tip having a 0.5 ml volume, and an optical cup or cuvette; 2) a sample processor for receiving the disposable cartridges and processing the urine samples including transferring the processed urine sample to the optical cups; and 3) an optical analyzer for receiving the disposable cartridges and configured to analyze the type and quantity of micro-organisms in the urine sample. The disposable cartridges with their components including the optical cups or cuvettes are used in the sample processor, and the optical cups or cuvettes containing the processed urine samples are used in the optical analyzer for identifying and quantifying the type of micro-organism existing in the processed urine samples.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 8, 2015
    Inventors: Gal Ingber, William G. Atterbury, Russell H. Barnes, Douglas E. Boyd, Joseph D. Dennis, Jonathan Gurfinkel, Dave Holley, Steven E. Huckaby, Thomas A. Klausing, Kevin Sadeski, Jason A. Schaefer, K. Bryan Scott, Carol Stillman, Sherwood Talbert, John Tallarico, John S. Laudo
  • Patent number: 8926906
    Abstract: The present application is directed to a technological platform with integrated microfluidic and optical modules for bio-detection. The platform enables in-situ detection by integrating fluidics with optical source and detection capabilities within a fabricated microchip. The platform is a polymer-based microfluidic chip having integrated excitation source and detection elements in a vicinity of a microfluidic reaction chamber configured to contain a micro-volume of a test sample. The principle of detection is based on an excitation source induced fluorescence of the test sample within the microfluidic reaction chamber.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 6, 2015
    Assignee: Concordia University
    Inventors: Muthukumaran Packirisamy, Ashwin L. Acharya
  • Patent number: 8927264
    Abstract: Methods and apparatus are disclosed herein to improve on and expand the range of electrical and electromagnetic frequencies used in therapeutic electro medical devices. The present invention uses electrical and electromagnetic frequency generators and detectors integrated with a live cell imaging system that provides feedback to the frequency generators using data derived from said imaging system.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: January 6, 2015
    Inventor: Howard Letovsky
  • Publication number: 20150004620
    Abstract: A method of identifying inhibitors of epithelial-mesenchymal transition (EMT). The method may comprise comparing different sets of image data obtained from one or more cell colonies before (T1) and after (T2) exposure to a possible inhibitor of epithelial-mesenchymal transition. The method may further comprise measuring the cell number and a spreading coefficient value in the one or more cell colonies for determining cell count ratio (CCR) and normalized cell dispersion ratio (CDR) for the one or more colonies. The possible inhibitor may then be identified to be an inhibitor of EMT if the determined CCR and CDR indicates that the possible inhibitor i) does not or marginally inhibit growth and inhibits EMT, or ii) inhibits growth and inhibits cell dispersion and optionally inhibits also EMT, or iii) is cytotoxic and inhibits cell dispersion and optionally inhibits also EMT.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 1, 2015
    Inventors: Jean Paul Thiery, Kian Nigiap Chuo, Wen Jing Sim
  • Publication number: 20150004636
    Abstract: A biosensor combines a neuron with an optical sensor to detect toxins in fluids. The present disclosure provides an embodiment for an instrument that can utilize neurons as a biosensor that can provide optical methods to detect and measure low amounts of toxin exposure in humans.
    Type: Application
    Filed: September 21, 2012
    Publication date: January 1, 2015
    Applicant: SAINT LOUIS UNIVERSITY
    Inventors: Hannah Kutosky, Rebecca Kuntz Willits, Amy B. Harkins, Shelley Minteer
  • Publication number: 20150004629
    Abstract: The present invention relates to functional, modified glucose-galactose binding proteins (GGBPs), that have a greater melting temperature (Tm) than a reference GGBP. The present invention also relates to biological sensors, e.g., glucose sensors, comprising these thermostable GGBPs. The present invention also relates to nucleic acids encoding these thermostable GGBPs.
    Type: Application
    Filed: June 6, 2014
    Publication date: January 1, 2015
    Applicant: Becton, Dickinson and Company
    Inventors: Terry J. Amiss, Erin M. Gill, Douglas Byron Sherman