Carrier Is Synthetic Resin Patents (Class 436/531)
  • Patent number: 7049152
    Abstract: The present invention herein provides the design, synthesis and characterization of compositions comprising asymmetric bolaamphiphilic lipids that form extended polymeric ribbons and wide sheets. These compositions may be doped, or interspersed, with various compounds to fine-tune the fluidity and rigidity of the bolaamphiphilic lipid composition, and promote other morphologies of the composition, including fluid vesicles and truncated flat sheets. Upon an increase in pH these compositions undergo a calorimetric and morphological transformation.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: May 23, 2006
    Assignee: The Regents of the University of California
    Inventors: Raymond C. Stevens, Quan Cheng, Jie Song
  • Patent number: 7049130
    Abstract: An improved multi-layered diagnostic sanitary test strip for receiving a heterogenous fluid, such as whole blood, to test for presence and/or amount of a suspected analyte in the fluid by facilitating a color change in the strip corresponding to the amount of the analyte in the fluid, wherein the test strip includes fluid volume control dams to prevent spillage of the fluid from the strip and a chemical reagent solution that facilitates end-point testing.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: May 23, 2006
    Assignee: Home Diagnostics, Inc.
    Inventors: Patrick Carroll, Jon Schneider, Douglas E. Bell
  • Patent number: 7045365
    Abstract: A method for producing a derivatized aldehydic support matrix material includes activating surface hydroxyl groups on the support matrix material and reacting the activated hydroxyl groups with an aldehydic alkoxy silane. The derivatized aldehydic support matrix material produced is useful for immobilizing bio-molecules in biological applications.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: May 16, 2006
    Assignee: United Chemical Technologies Inc.
    Inventors: Ann N. Coyne, John H. MacMillan, Michael J. Telepchak
  • Patent number: 7045367
    Abstract: Molecular chemical and/or biological sensors that exhibit a very high density of sensing functionality and which are applicable to a wide variety of different analytes, and enable rapid, convenient and economical detection of analytes are prepared by reacting a dendritic polymer with a diacetylene reagent wherein the diacetylene functional groups are subsequently intramolecularly polymerized to form segments having alternating conjugated double and triple bonds. Sensory groups that can bind with an analyte are bonded to the acetylene monomer units to form molecular sensors that produce observable and measurable color changes when an analyte binds with the sensory groups.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: May 16, 2006
    Assignee: Michigan Molecular Institute
    Inventors: Steven N. Kaganove, Petar R. Dvornic
  • Patent number: 7041510
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: May 9, 2006
    Assignee: BioArray Solutions Ltd.
    Inventors: Michael Seul, Chiu Wo Chau
  • Patent number: 7041509
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays. In particular, the devices and methods of the invention are useful in screening large numbers of different compounds for their effects on a variety of chemical, and preferably, biochemical systems.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: May 9, 2006
    Assignee: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Anne R. Kopf-Sill, Luc J. Bousse
  • Patent number: 7029856
    Abstract: The invention relates to analytical methods in which the partition of a labeled substance between a liquid and a solid phase is determined. The assays include solid-phase reagents which can be particulate or monolithic such as, for example, a coated tube. Assays of this type are known per se to the person skilled in the art and include immunoassays and immunometric assays.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: April 18, 2006
    Assignee: Dade Behring Marburg GmbH
    Inventor: Thomas Wissel
  • Patent number: 7026166
    Abstract: The present invention relates to the use of fluorogenic or chromogenic dyes as reporter molecules for detecting cell entry by a specific molecule.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: April 11, 2006
    Assignee: Chiron Corporation
    Inventors: Daniel J. Suich, Ronald N. Zuckermann
  • Patent number: 7022517
    Abstract: A system for the rapid characterization of multi-analyte fluids, in one embodiment, includes a light source, a sensor array, and a detector. The sensor array is formed from a supporting member into which a plurality of cavities may be formed. A series of chemically sensitive particles are, in one embodiment positioned within the cavities. The particles may be configured to produce a signal when a receptor coupled to the particle interacts with the analyte. Using pattern recognition techniques, the analytes within a multi-analyte fluid may be characterized.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: April 4, 2006
    Assignee: Board of Regents, The University of Texas System
    Inventors: John T. McDevitt, Eric V. Anslyn, Jason B. Shear, Dean P. Neikirk, Damon V. Borich
  • Patent number: 7018830
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: March 28, 2006
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 7011963
    Abstract: The invention relates to a process for synthesis, by inverse bead polymerization of a monomer phase, of a bead-like, cross-linked, hydrophilic copolymer which has binding activity toward ligands containing nucleophilic groups. The invention relates to support polymer materials with high binding capacity for penicillin acylase and low swelling factor, as well as to use of the same.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: March 14, 2006
    Assignee: Roehm GmbH & Co KG
    Inventors: Christian Meier, Thomas Suefke, Hans-Ulrich Petereit, Roger Recktenwald, Thomas Boller
  • Patent number: 7005292
    Abstract: Disclosed are devices for detecting the presence of a preselected analyte in a fluid sample. The devices comprise a substrate microfabricated to define a sample inlet port, and a mesoscale flow system that includes a sample flow channel extending from the inlet port. The mesoscale flow system further includes an analyte detection region in fluid communication with the flow channel comprised of a binding moiety for specifically binding the analyte. The detection region is constructed with a mesoscale dimension sufficiently small to enhance binding of the binding moiety and the analyte. The binding moiety may be immobilized in the detection region. The mesoscale detection systems of the invention may be used in a wide range of applications, including the detection of cells or macromolecules, or for monitoring reactions or cell culture growth.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: February 28, 2006
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka, Jay N. Zemel
  • Patent number: 7005271
    Abstract: The present invention relates to determining the prethrombotic state, in particular determining an amount or presence of circulating microparticles and/or stimulated procoagulant cells.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: February 28, 2006
    Inventors: Jean-Marie Freyssinet, Benedicte Antoni, Frederic Donie, Helmut Lill
  • Patent number: 7001776
    Abstract: This invention provides a novel device and method for preparing cytology slides. The device comprises a book-like form including an absorbent material and filter attached to the inside surface of a front cover and a cytology slide removeably attached to an inside surface of a back cover. A sample is removed from the body of a patient, placed in a liquid-based solution, and then on the filter. When the book-like form is closed, the sample is effectively transferred to the slide. The device can be modified so that a plurality of slides are prepared at the same time.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: February 21, 2006
    Assignee: Digene Corporation
    Inventors: Gerson Botacini das Dores, Iwona Mielzynska-Lohnas, Eliane Taromaru, William J. Payne, Joseph P. Slattery, James G. Lazar
  • Patent number: 6991912
    Abstract: Novel magnetic assay methods and systems. According to a preferred embodiment, a chromatographic medium, which preferably comprises a test strip, is provided that is designed to be contacted with a test solution having activated magnetic particles such that the solution flows bilaterally thereacross. A magnetic field, generated by a magnet or electromagnet, is selectively applied to the medium which causes the charged particles to become substantially bound at a site on the medium specified by the position of the magnet, to thus form a captured line or zone. In one preferred embodiment, the magnetic field is applied at the site on the medium at which the test solution is contacted. The degree of magnetic force applied to the membrane may be selectively adjusted to vary the width or surface area of the capture line or zone.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: January 31, 2006
    Assignee: Wavesesense, LLC
    Inventor: Christopher Feistel
  • Patent number: 6991941
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: January 31, 2006
    Assignee: BioArray Solutions Ltd.
    Inventor: Michael Seul
  • Patent number: 6991940
    Abstract: An improved multi-layered diagnostic sanitary test strip for receiving a heterogenous fluid, such as whole blood, to test for presence and/or amount of a suspected analyte in the fluid by facilitating a color change in the strip corresponding to the amount of the analyte in the fluid, wherein the test strip includes fluid volume control dams to prevent spillage of the fluid from the strip and a chemical reagent solution that facilitates end-point testing.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: January 31, 2006
    Assignee: Home Diagnostics, Inc.
    Inventors: Patrick Carroll, Jon Schneider, Douglas E. Bell
  • Patent number: 6989240
    Abstract: This invention provides a method for determining the presence of hemolyzed erythrocytes in blood by detecting erythrocyte adenylate kinase in a serum sample from the blood. This invention also provides a method for diagnosing a hemolytic condition in a subject suspected to be suffering from hemolysis, as well as a method for monitoring hemolysis in a subject undergoing treatment for a hemolytic condition.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: January 24, 2006
    Assignee: Albert Einstein College of Medicine of Yeshiva University
    Inventors: Edward R. Burns, Vadiraja Murthy
  • Patent number: 6984528
    Abstract: Two-dimensional and three-dimensional arrays of a polydiacetylene backbone having a substrate incorporated are used in chemical sensing methods to detect the interaction of an analyte with the substrate by monitoring the change in the fluorescence of the array.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: January 10, 2006
    Assignee: Analytical Biological Services Inc.
    Inventors: Mary A. Reppy, Sarah A. Sporn, Charles F. Saller
  • Patent number: 6979567
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide with an integral semicylindrical lens, and has multi-analyte features and calibration features, along with improved evanescent field intensity. A preferred embodiment of the biosensor and assay method has patches of capture molecules, each specific for a different analyte disposed adjacently within a single reservoir. The capture molecules are immobilized to the patches on the waveguide surface by site-specific coupling of thiol groups on the capture molecules to photo-affinity crosslinkers, which in turn are coupled to the waveguide surface or to a nonspecific binding-resistant coating on the surface. The patches of different antibodies are produced by selectively irradiating a portion of the waveguide surface during the process of coupling the photo-affinity crosslinkers, the selective irradiation involving a mask, a laser light source, or the like.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: December 27, 2005
    Assignee: BioCentrex, LLC
    Inventors: James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Karin Caldwell, Vera Janatová, Shao-Chie Huang
  • Patent number: 6979544
    Abstract: Disclosed is a sensor for sensing the presence of an analyte component without relying on redox mediators. This sensor includes (a) a plurality of conductive polymer strands each having at least a first end and a second end and each aligned in a substantially common orientation; (b) a plurality of molecular recognition headgroups having an affinity for the analyte component and being attached to the first ends of the conductive polymer strands; and (c) an electrode substrate attached to the conductive polymer strands at the second ends. The electrode substrate is capable of reporting to an electronic circuit reception of mobile charge carriers (electrons or holes) from the conductive polymer strands. The electrode substrate may be a photovoltaic diode.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: December 27, 2005
    Assignee: Keensense, Inc.
    Inventor: Randy E. Keen
  • Patent number: 6979573
    Abstract: The present invention provides imprint compositions useful for capturing, isolating, detecting and/or quantifying macromolecules in a sample, methods of making and using the same. Generally, the imprint compositions comprise a matrix material defining an imprint of a template molecule, and the template molecule typically corresponds to a portion of a macromolecule of interest.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: December 27, 2005
    Assignee: Aspira Biosystems, Inc.
    Inventor: Chin-Shiou Huang
  • Patent number: 6974707
    Abstract: In a dextran coated surface disposed on a carrier, the connections between the dextran and the carrier surface are formed by a photolinker, the dextran coating being attached to the carrier surface by co-immobilization of a mixture of dextran and the photolinker.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: December 13, 2005
    Assignees: Forschungszentrum Karlsruhe GmbH, Centre Suisse d'Electronique et de Microtechnique S.A.
    Inventors: Nicole Barie, Jean Gobet, Michael Rapp, Hans Sigrist
  • Patent number: 6969615
    Abstract: The present disclosure is directed to devices, arrays, kits and methods for detecting biomolecules in a tissue section (such as a fresh or archival sample, tissue microarray, or cells harvested by an LCM procedure) or other substantially two-dimensional sample (such as an electrophoretic gel or cDNA microarray) by creating “carbon copies” of the biomolecules eluted from the sample and visualizing the biomolecules on the copies using one or more detector molecules (e.g., antibodies or DNA probes) having specific affinity for the biomolecules of interest. Specific methods are provided for identifying the pattern of biomolecules (e.g., proteins and nucleic acids) in the samples. Other specific methods are provided for the identification and analysis of proteins and other biological molecules produced by cells and/or tissue, especially human cells and/or tissue.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: November 29, 2005
    Assignees: 20/20 GeneSystems, Inc., The United States of America as represented by the Department of Health and Human Services
    Inventors: Vladimir Knezevic, Michael R. Emmert-Buck, Galina Baibakova, Dan-Paul Hartmann, Stephen M. Hewitt, Capre Denise Mitchell, Kevin Gardner
  • Patent number: 6969605
    Abstract: A hand held, self-contained, automatic, low power and rapid sensor platform for detecting and quantifying a plurality of analytes. A sample solution potentially containing an unknown amount of an analyte is passed through an affinity column which contains antibodies to which the analyte binds thereby extracting the analyte. The affinity column is then rinsed to remove any other chemicals that may fluoresce. The rinsed affinity column is then eluted with a known volume of elution fluid causing the analyte to release from the antibody and dissolve in the fluid (eluant). The eluant is then placed in the quartz cuvette of a fluorometer. The analyte suspended in the eluant fluoresces at a waveband which is different than that of the light source that excites it. The amount of fluorescence is measured and the level of analyte determined.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: November 29, 2005
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, C. Brent Bargeron, Richard C. Benson, Micah A. Carlson, Allan B. Fraser, John D. Groopman, Harvey W. Ko, David R. Kohler, Terry E. Phillips, Paul T. Strickland
  • Patent number: 6967240
    Abstract: The present invention relates to a protienaceous compound or functionally active derivative or part thereof having a binding site for a group represented by formula (I) which is part of a group of toxins derived from various cyanobacteria, to a method for its production, to diagnostic kits and to an affinty matrix (e.g. for use in immunoaffinity columns, online detection and purifications devices) containing the proteinaceous compound as well as to methods for substantially decreasing the amount of a compound containing the group represented by formula (I) in fluids or for concentrating compounds, e.g. toxins, containing the group represented by formula (I) from fluids such as crude water samples, extracts of algae or other tissue samples, e.g. to determine toxin concentrations.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: November 22, 2005
    Assignees: The Regent of the University of California, New Zealand Agricultural Research Institute Limited
    Inventors: Daniel R. Dietrich, Werner Fischer, A. Richard Chamberlin, James B. Aggen, Ian Garthwaite, Christopher O. Miles, Kathryn M. Ross, Neale R. Towers
  • Patent number: 6958245
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled elektrokinetic assembly of particles near surfaces relies on the combination of three functional elements, the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: October 25, 2005
    Assignee: Bioarray Solutions Ltd.
    Inventors: Michael Seul, Alice X. Li
  • Patent number: 6951716
    Abstract: Immunoassay methods and apparatus are provided which utilize flow cytometry, coated latex microspheres, and fluorochrome labeled antibodies, to simultaneously detect the presence and amount of one or more analytes in a sample. Beads of several different sizes, colors or shapes, each bead are coated with a different analyte, for the simultaneous detection of one or more analytes and of cell components. The invention is also directed to platelet Ig positive control reagents and assays which provide for the setting of the fluorescence positive region for each patient. The platelet control is sized to fit between the platelets and red cells and thus making it ideal as a true biological control.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: October 4, 2005
    Inventor: Mark Hechinger
  • Patent number: 6951715
    Abstract: Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: October 4, 2005
    Assignee: SRU Biosystems, Inc.
    Inventors: Brian T. Cunningham, Jane Pepper, Bo Lin, Peter Li, Homer Pien, Jean Qiu
  • Patent number: 6939721
    Abstract: The invention includes a composition of matter and method that utilizes energy transfer between one or more donor and acceptor molecules. The composition of matter includes an encapsulation vesicle having a matrix, a surface coating of an organo-metallic complex and a transparent protection layer. The transparent protection layer is capable of modification by addition of biomolecules to the surface in order to bind other molecules. The proximity of the bound biomolecules to the protective layer allows for energy transfer from a donor molecule internal to the protection layer to an acceptor molecule outside the protection layer. The protection layer acts to diminish the effects of collisional quenching on the donor molecules caused by ubiquitous small molecules such as molecular oxygen. The application also teaches a method of making and applying the complexes to immunoassays.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: September 6, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Ganapati R. Mauze, Dan-Hui Yang
  • Patent number: 6936477
    Abstract: Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detachable from the particle or retained on the particle.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: August 30, 2005
    Assignees: The Trustees of Columbia University in the City of New York, Cold Spring Harbor Laboratory
    Inventors: W. Clark Still, Michael H. J. Ohlmeyer, Lawrence W. Dillard, John C. Reader, Michael H. Wigler
  • Patent number: 6933106
    Abstract: Immunoassay methods and apparatus are provided which utilize flow cytometry, coated latex microspheres, and fluorochrome labeled antibodies, to simultaneously detect the presence and amount of one or more analytes in a sample. By combining FALS and fluorescence, it is practical to use beads of several different sizes, colors or shapes, each bead coated with a different analyte, for the simultaneous detection of one or more analytes and of cell components such as platelets in a sample.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: August 23, 2005
    Inventor: Mark Hechinger
  • Patent number: 6929955
    Abstract: The present invention relates to an interactive system comprising at least one active surface of plastic from monomers containing at least one structural element derived from a carbon dioxide (A), and at least one substance associated to a linker with at least one structural element (B) capable of establishing a hydrogen bond, and involving an interaction between the structural elements (A) and (B). That interactive system is suitable for presenting and eliminating substances in liquids.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: August 16, 2005
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Berlin
    Inventors: Elke Bucha, Götz Nowak
  • Patent number: 6924153
    Abstract: This invention provides solid phase specific binding lateral flow assay methods, devices and kits for quantitating high and low molecular weight analytes. The methods and devices of the invention employ labelled reagents which are either analyte analogs or complementary specific binding pair members for the analyte and a novel arrangement of capture zones comprising immobilized specific binding substances for either the analyte or the labelled reagent to effect bound from unbound labelled reagent as a function of analyte concentration. The capture zones are disposed on a non-bibulous matrix defining a flow path from a sample receiving zone to the capture zone. The devices of this invention also include multilane flow paths and multiple capture zones to quantitate analyte.
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: August 2, 2005
    Assignee: Quidel Corporation
    Inventors: Hans Boehringer, Gerald Rowley, Allan Pronovost
  • Patent number: 6913936
    Abstract: A novel compound comprising an immunologically invisible polyethylene glycol copolymer is used to carry one or more immunologically reactive substances. The novel compounds may be used as part of kits for immunological assays.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: July 5, 2005
    Assignee: University of Medicine and Dentistry of New Jersey
    Inventors: Bo Qiu, Guobao Zhang, Stanley Stein, Leonard H Sigal, Michael Brunner, Michael Katz
  • Patent number: 6911344
    Abstract: A step-gradient composite waveguide for evanescent sensing in fluorescent binding assays comprises a thick substrate layer having one or more thin film waveguide channels deposited thereon. In one embodiment, the substrate is silicon dioxide and the thin film is silicon oxynitride. Specific binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide further includes light input coupling means integrally adapted to the thin film channels. Such light coupling means can be a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has a thick input waveguide of high refractive index which receives the laser light through one end and propagates it by total internal reflection.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: June 28, 2005
    Assignee: BioCentrex, LLC
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Jacob D. Durtschi
  • Patent number: 6911345
    Abstract: The present invention provides an apparatus for analyzing the sequences of polynucleotides. The apparatus comprises (a) flow cell which has at least one microfabricated multilayer elastomeric synthesis channel; and (b) an inlet port and an outlet port. The inlet port and outlet ports are in fluid communication with the flow cell for flowing fluids into and through the flow cell.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: June 28, 2005
    Assignee: California Institute of Technology
    Inventors: Stephen Quake, Wayne Volkmuth, Marc Unger
  • Patent number: 6902884
    Abstract: Method of diagnosing and/or prognosticating HIV infection in a subject comprising the steps of: (a) performing in vitro a measurement of the level of a marker in the form of (i) urokinase plasminogen activator receptor (uPAR), (ii) soluble urokinase plasminogen activator receptor (suPAR), (iii) urokinase-type plasminogen activator (uPA), (iv) one or more degradation products of (i), (ii), or (iii), and/or (v) an mRNA for (i), (ii) or (iii), in a biological fluid sample from a subject, and (b) using the measurement value obtained to evaluate the state of the subject.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: June 7, 2005
    Assignee: Virogates ApS
    Inventor: Jesper Eugen-Olsen
  • Patent number: 6890729
    Abstract: This invention provides a novel device and method for preparing cytology slides. The device comprises a book-like form including an absorbent material and filter attached to the inside surface of a front cover and a cytology slide removeably attached to an inside surface of a back cover. A sample is removed from the body of a patient, placed in a liquid-based solution, and then on the filter. When the book-like form is closed, the sample is effectively transferred to the slide.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: May 10, 2005
    Assignee: Digene Corporation
    Inventors: Iwona Mielzynska, Jay Payne, James Lazar
  • Patent number: 6887431
    Abstract: A bead dispensing system is provided for delivering small amounts of substances onto substrates. The system can include, for example, a movable support structure having an array of spaced-apart projections depending from its lower side. An attraction source, such as a vacuum, magnetic, and/or electrostatic force, is operable at each projection end region to attract and retain one bead. The projection array can be aligned with an array of bead-receiving regions of a substrate, e.g., an array of spaced-apart wells of a micro-plate or card. In one embodiment, a plurality of reagent-carrying beads are picked up, retained at respective projection end regions, and moved to a location over a multi-well plate. The beads are then released in a fashion permitting each bead to land in a respective well. The system of the invention is particularly useful for fabricating arrays of reagents.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: May 3, 2005
    Assignees: Applera Corporation
    Inventors: Charles S. Vann, Dennis Lehto
  • Patent number: 6881589
    Abstract: The invention provides compositions and kits for performing a binding assay for an analyte of interest present in a sample based upon electrochemiluminescence. The compositions and kits comprise an electrochemiluminescent label, collectable particles, binding reagents, and an electrolyte.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: April 19, 2005
    Assignee: BioVeris Corporation
    Inventors: John K. Leland, Haresh P. Shah, John H. Kenten, Jack E. Goodman, George E. Lowke, Yuzaburo Namba, Gary F. Blackburn, Richard J. Massey
  • Patent number: 6875619
    Abstract: The present invention is directed to a variety of microfluidic devices with configurations including the use of biochannels or microchannels comprising arrays of capture binding ligands to capture target analytes in samples. The invention provides microfluidic cassettes or devices that can be used to effect a number of manipulations on a sample to ultimately result in target analyte detection or quantification.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: April 5, 2005
    Assignee: Motorola, Inc.
    Inventor: Gary Blackburn
  • Patent number: 6869770
    Abstract: Pregnancy-associated glycoproteins (PAGs) are structurally related to the pepsins, thought to be restricted to the hoofed (ungulate) mammals and characterized by being expressed specifically in the outer epithelial cell layer (chorion/trophectoderm) of the placenta. By cloning expressed genes from ovine and bovine placental cDNA libraries, the inventors estimate that cattle, sheep, and most probably all ruminant Artiodactyla, possess possibly 100 or more PAG genes, many of which are placentally expressed. The PAGs are highly diverse in sequence, with regions of hypervariability confined largely to surface-exposed loops. Selected PAG that are products of the iOnvasive binucleate cells, expressed highly in early pregnancy at the time of trophoblast invasion and expressed weakly, if at all, in late gestation are useful in the early diagnosis of pregnancy. In a preferred embodiment, the invention relates to immunoassays for detecting these PAGs.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: March 22, 2005
    Assignee: The Curators of the University of Missouri
    Inventors: Robert Michael Roberts, Jonathan Andrew Green, Sancai Xie
  • Patent number: 6867052
    Abstract: The present invention relates to articles of manufacture inclusive of or in combination with a biological assay material, formed from a material capable of detecting and identifying the presence of one or more particular toxic substances, wherein said toxic substances may comprise a multiplicity of biological materials.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: March 15, 2005
    Assignee: Toxin Alert, Inc.
    Inventors: Terri Lander, William T. Bodenhamer
  • Patent number: 6864048
    Abstract: A library for determining the sequence of monomers in a polymer which is complementary to a receptor includes groups of pooled polymer products; wherein each pool is ordered such that a monomer sequence which binds to a receptor can be identified from the pool order in the library.
    Type: Grant
    Filed: April 28, 1993
    Date of Patent: March 8, 2005
    Assignee: Affymetrix, Inc.
    Inventors: Stephen P. A. Fodor, Lubert Stryer
  • Patent number: 6855508
    Abstract: The vascular endothelial growth factor (VEGF) activity in a patient's bloodstream or other biological sample can serve as a diagnostic and prognostic index for cancer, diabetes, heart conditions, and other pathologies. Antibody-sandwich ELISA method and kits for VEGF as an antigen were developed to detect VEGF levels in biological samples from animal models and human patients and are used as a diagnostic/prognostic index.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: February 15, 2005
    Assignee: Genentech, Inc.
    Inventors: David Tai Wai Fei, Kristen Tomita
  • Patent number: 6844166
    Abstract: The invention is based on the discovery of reduced valency carbohydrate binding ligands (CBLs) that can be used to to detect or quantitate (i.e., evaluate) carbohydrates in a sample. CBLs can be used with fluorescence resonance energy transfer (FRET) to evaluate free carbohydrates or those within a carbohydrate containing compound.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: January 18, 2005
    Assignee: Sensor Technologies Inc.
    Inventor: David E. Wolf
  • Patent number: 6844162
    Abstract: A method and kit for monitoring autoantibodies to thyroid stimulating hormone (TSH) receptor in a sample of body fluid, which employs the steps of: (i) incubating TSH receptor with a sample of body fluid; (ii) reacting the incubated sample of body fluid with at least one binding agent which is capable of binding to the TSH receptor in competitive reaction with TSH receptor autoantibodies (TRAb), or in a case where TSH receptor is complexed to labelled antibody, reacting the sample of body fluid with at least one binding agent which can bind to TRAb in such a way as not substantially to interfere with binding of the TRAb to the TSH receptor; and (iii) detecting bound TRAb in the reacted incubated sample of body fluid.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: January 18, 2005
    Assignee: RSR Limited
    Inventors: Bernard Rees Smith, Jane Sanders, Jadwiga Furmaniak
  • Patent number: 6841393
    Abstract: A system and method for removing contaminants from a surface. The system is designed to use very small particles having means thereon which are capable of selectively binding to a contaminant or contaminants of interest. The particles may contain a dye to render the particles visible in order for a user to observe the application and removal of the particles. The particles also have magnetic properties which may be provided by a high iron content. A carrier can be used to apply the particles to a surface whereupon the targeted contaminants bind to the particles. The particles may then be readily removed from the surface using magnets. When the particle is removed, the targeted contaminants are also removed. The invention is especially useful for the removal of contaminants from skin.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: January 11, 2005
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: David W. Koenig
  • Patent number: 6841392
    Abstract: The present invention relates to bioassay materials useful for the detection of toxic substances and, more particularly, to packaging materials for food and other products, along with methods for their manufacture and use. The invention provides a unique composite material capable of detecting and identifying multiple biological materials within a single package. The biological material identification system is designed for incorporation into existing types of flexible packaging material such as polyvinylchloride or polyolefin films, and its introduction into the existing packaging infrastructure will require little or no change to present systems or procedures.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: January 11, 2005
    Assignee: Toxin Alert, Inc.
    Inventor: William T. Bodenhamer