Incorporating Resilient Component (e.g., Spring, Etc.) Patents (Class 438/117)
  • Patent number: 8101459
    Abstract: A method for assembling semiconductor devices includes providing a first semiconductor device, securing spacers to noncircuit bond pads of the first semiconductor device, and positioning a second semiconductor device on the spacers. Adhesive material may be applied to a surface of one or both of the first and second semiconductor devices prior to positioning of the second semiconductor device, or introduced between first and second semiconductor devices. The noncircuit bond pads may be electrically isolated from other structures of the first semiconductor device or communicate with a ground or reference voltage plane, in which case the back side of the second semiconductor device may communicate with the ground or reference voltage plane upon being positioned against the spacers. Additional semiconductor devices may be added to the assembly. The first semiconductor device may be associated with a substrate. Assemblies and packages at least partially fabricated by the method are also disclosed.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: January 24, 2012
    Assignee: Micron Technology, Inc.
    Inventor: James M. Derderian
  • Patent number: 8093712
    Abstract: A method (10) for manufacturing a monolithic molded electronic assembly (12). A mold (14) having first and second mold potions (14a-b) that mate to form an interior chamber (16) is provided. The mold has an injection port (22) and channel (24) connecting into the chamber. Electronic parts (30) having electronic contacts (32) are populated onto the second mold portion, to be substantially contained in the chamber. The mold potions are mated together and a liquid insulating molding material (36) is injected through the injection port channel to fill the chamber. The molding material is hardened to a solid, thereby embedding the electronic parts in the molding material as a monolithic sub-assembly (40). The monolithic sub-assembly is removed from the mold and one or more solderless conductive circuits (50) are applied to the electronic contacts of the electronic parts, thereby providing the electronic assembly.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: January 10, 2012
    Assignee: Occam Portfolio LLC
    Inventor: Joseph C. Fjelstad
  • Patent number: 8093099
    Abstract: A three dimensional device stack structure comprises two or more active device and interconnect layers further connected together using through substrate vias. Methods of forming the three dimensional device stack structure comprise alignment, bonding by lamination, thinning and post thinning processing. The via features enable the retention of alignment through the lamination process and any subsequent process steps thus achieving a mechanically more robust stack structure compared to the prior art.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Sampath Purushothaman, Mary E. Rothwell, Ghavam Ghavami Shahidi, Roy Rongqing Yu
  • Patent number: 8089144
    Abstract: A semiconductor device includes: a sensor including a sensor structure on a first side of the sensor and a periphery element surrounding the sensor structure; and a cap covering the sensor structure and having a second side bonded to the first side of the sensor. The cap includes a first wiring layer on the second side of the cap. The first wiring layer steps over the periphery element. The sensor further includes a sensor side connection portion, and the cap further includes a cap side connection portion. The sensor side connection portion is bonded to the cap side connection portion. At least one of the sensor side connection portion and the cap side connection portion provides an eutectic alloy so that the sensor side connection portion and the cap side connection portion are bonded to each other.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: January 3, 2012
    Assignee: DENSO CORPORATION
    Inventors: Tetsuo Fujii, Akitoshi Yamanaka, Hisanori Yokura
  • Publication number: 20110318880
    Abstract: A contact spring applicator is provided which includes an applicator substrate, a removable encapsulating layer and a plurality of contact springs embedded in the removable encapsulating layer. The contact springs are positioned such that a bond pad on each contact spring is adjacent to an upper surface of the removable encapsulating layer. The contact spring applicator may also include an applicator substrate, a release layer, a plurality of unreleased contact springs on the release layer and a bond pad at an anchor end of each contact spring. The contact spring applicators apply contact springs to an integrated circuit chip, die or package or to a probe card by aligning the bond pads with bond pad landings on the receiving device. The bond pads are adhered to the bond pad landings. The encapsulating or release layer is then removed to separate the contact springs from the contact spring applicator substrate.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 29, 2011
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eugene M. Chow, Christopher L. Chua, Eric Peeters
  • Patent number: 8084348
    Abstract: A method for manufacturing a silicon chip package for a circuit board assembly provides a package with a silicon chip and an array of first contact pads that are provided by a first conductive material. A plurality of second contact pads are provided from a gold material having a hardness different than that of the first contact pads. The second contact pads are soldered to the first contact pads of the package. A circuit board assembly is assembled by providing a circuit board substrate with at least one socket with contact pads. The second contact pads of the package are assembled to the circuit board substrate contact pads.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 27, 2011
    Assignee: Oracle America, Inc.
    Inventor: Ashur S. Bet-Shliemoun
  • Patent number: 8076774
    Abstract: A transistor-clamping device for a transistor is provided with a holding block and a spring. The holding block engages over the transistor, so that the spring is pre-tensioned. A pressure plate is provided between the holding block and the transistor. The spring fixes the pressure plate on the transistor, so that a uniform pressure is applied to the transistor via the pressure plate, and, at the side facing away from the pressure plate, the latter accordingly provides a good thermal conduction to a cooling element.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: December 13, 2011
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Bernhard Kaehs, Johann Semerad
  • Patent number: 8071430
    Abstract: An F-RAM package having a semiconductor die containing F-RAM circuitry, a mold compound, and a stress buffer layer that is at least partially located between the semiconductor die and the mold compound. Also, a method for making an F-RAM package that includes providing a semiconductor die containing F-RAM circuitry, forming a patterned stress buffer layer over the semiconductor die, and forming a mold compound coupled to the stress buffer layer.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: December 6, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Kezhakkedath R. Udayakumar, John P. Campbell, Hugh P. McAdams
  • Patent number: 8058143
    Abstract: A method that in one embodiment is useful in bonding a first substrate to a second substrate includes forming a layer including metal over the first substrate. The layer including metal in one embodiment surrounds a semiconductor device, which can be a micro electromechanical system (MEMS) device. On the second substrate is formed a first layer comprising silicon. A second layer comprising germanium and silicon is formed on the first layer. A third layer comprising germanium is formed on the second layer. The third layer is brought into contact with the layer including metal. Heat (and pressure in some embodiments) is applied to the third layer and the layer including metal to form a mechanical bond material between the first substrate and the second substrate in which the mechanical bond material is electrically conductive. In the case of the mechanical bond surrounding a semiconductor device such as a MEMS, the mechanical bond can be particularly advantageous as a hermetic seal for protecting the MEMS.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 15, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruben B. Montez, Alex P. Pamatat
  • Patent number: 8039912
    Abstract: Anchor systems and methods anchor components of a Micro-Electro-Mechanical Systems (MEMS) device to a substrate. An exemplary embodiment has a trace anchor bonded to a substrate, a device anchor bonded to the substrate, and an anchor flexure configured flexibly couple the trace anchor and the device anchor to substantially prevent transmission of a stress induced in the trace anchor from being transmitted to the device anchor.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: October 18, 2011
    Assignee: Honeywell International Inc.
    Inventors: Michael Foster, Mark Williams, Mark Eskridge
  • Patent number: 8022539
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a lead frame having contact pads and connection leads; coupling a base integrated circuit to the contact pads; coupling a chip interconnect between the base integrated circuit, the connection leads, the contact pads, or a combination thereof; molding a package body on the connection leads, the base integrated circuit, and the chip interconnects, including having the contact pads exposed; and forming a bottom surface on the package body including forming the connection leads to be coplanar with the bottom surface.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: September 20, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Frederick Rodriguez Dahilig, Zigmund Ramirez Camacho, Henry Descalzo Bathan, Lionel Chien Hui Tay
  • Publication number: 20110215463
    Abstract: Flip chip packages having warpage control and methods for fabricating such packages are described. In one embodiment, the flip chip package comprises a package substrate; a chip coupled to the package substrate; and a ring structure coupled to the package substrate and positioned laterally around the periphery of the chip so that a surface of the chip is exposed, wherein the ring structure comprises one or more compressive members, each of the one or more compressive members compressively opposed to a surface of the package substrate to counter or absorb stresses in the package substrate.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yao LIN, Wen-Yi LIN
  • Patent number: 7994633
    Abstract: Substrate for electrical devices is disclosed. An embodiment for the substrate comprised of an insulator, a conductive element(s) and a conductive material(s), wherein the conductive element embedded in the insulator, and two surfaces of the conductive element exposed to two surfaces of the insulator for electrical connection respectively, wherein the upper surface of conductive element is below the upper surface of insulator and is plated by the conductive material, meanwhile the conductive element include a protruding portion which is protruded the insulator, in this manner, solder balls are not needed, moreover the conductive element can further include an extending portion; the present invention may be capable of affording a thinner electrical device thickness and enhanced reliability.
    Type: Grant
    Filed: August 7, 2010
    Date of Patent: August 9, 2011
    Inventor: Chung-Cheng Wang
  • Patent number: 7993978
    Abstract: A method of manufacturing a semiconductor device capable of obtaining high joining force between a heat spreader and resin is provided. The method of manufacturing a semiconductor device according to the present invention includes: setting a heat spreader 60 on a face formed a plurality of apertures 22 in a cavity 21 of a first molding die 14; filling resin 20 into the cavity; setting a substrate 54 mounted with a semiconductor chip 50 a second molding die 12; and pressure-welding the first molding die 14 and the second molding die 12 so that the semiconductor chip is embedded in the resin 20, wherein a plurality of concave portion is formed on one face of the heat spreader 60, a plurality of convex portions is formed on the other face of the heat spreader 60, and the plurality of concave portions and the plurality of convex portions are overlapped in plan view.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: August 9, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Yuko Sato
  • Patent number: 7989945
    Abstract: A connector for electrically connecting to pads formed on a semiconductor device includes a substrate and an array of contact elements of conductive material formed on the substrate. Each contact element includes a base portion attached to the top surface of the substrate and a curved spring portion extending from the base portion and having a distal end projecting above the substrate. The curved spring portion is formed to curve away from a plane of contact and has a curvature disposed to provide a controlled wiping action when engaging a respective pad of the semiconductor device.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: August 2, 2011
    Assignee: Neoconix, Inc.
    Inventors: John David Williams, Eric Michael Radza
  • Publication number: 20110183471
    Abstract: An F-RAM package having a semiconductor die containing F-RAM circuitry, a mold compound, and a stress buffer layer that is at least partially located between the semiconductor die and the mold compound. Also, a method for making an F-RAM package that includes providing a semiconductor die containing F-RAM circuitry, forming a patterned stress buffer layer over the semiconductor die, and forming a mold compound coupled to the stress buffer layer.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 28, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott R. Summerfelt, Kezhakkedath R. Udayakumar, John P. Campbell, Hugh P. McAdams
  • Patent number: 7972906
    Abstract: A clip structure and semiconductor die package. The clip structure includes a first portion and a second portion, with a connecting structure located between the first and second portion. The clip structure is substantially planar. The semiconductor die package includes a semiconductor die located between a leadframe structure and a clip structure. Slots are formed within the molding material covering portions of the semiconductor die package. The slots are located between a first portion and the second portion of the clip structure, and the slot overlap with the semiconductor die.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 5, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Erwin Victor R. Cruz, Maria Cristina B. Estacio
  • Publication number: 20110147921
    Abstract: A semiconductor package includes a curved body and a plurality of semiconductor die. The curved body includes first and second opposing end regions and an intermediate center region. The curved body has a first inflection point at the center region, a second inflection point at the first end region and a third inflection point at the second end region. The center region has a convex curvature with a minimal extremum at the first inflection point, the first end region has a concave curvature with a maximal extremum at the second inflection point and the second end region has a concave curvature with a maximal extremum at the third inflection point. The plurality of semiconductor die are attached to an upper surface of the curved body between the maximal extrema.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: INFINEON TECHNOLOGIES NORTH AMERICA CORP.
    Inventors: Anwar A. Mohammed, Soon Ing Chew, Donald Fowlkes, Alexander Komposch, Benjamin Pain-Fong Law, Michael Opiz Real
  • Patent number: 7952170
    Abstract: A system includes a supporting substrate and at least one semiconductor substrate. The semiconductor component includes a semiconductor substrate having a circuit side with integrated circuits and substrate contacts and a back side, a plurality of through interconnects in the substrate, and redistribution conductors on the back side of the substrate. Each through interconnect includes a via aligned with a substrate contact, and a conductive layer at least partially lining the via in physical and electrical contact with the substrate contact. Each redistribution conductor is formed by a portion of the conductive layer.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: May 31, 2011
    Assignee: Micron Technology, Inc.
    Inventor: David S. Pratt
  • Patent number: 7943956
    Abstract: A housing for a semiconductor device is disclosed. In an exemplary embodiment of the present invention, the housing comprises a semiconductor substrate that is arranged between two contact elements, one contact element forming an anode contact element and another contact element forming a cathode contact element, the semiconductor substrate having, on at least one surface, a gate electrode that is contacted by a gate contact element, the first contact element forming a surface arranged across from the gate electrode and at a distance from the gate electrode. Also included is at least one driver unit for generating a gate current, the driver unit comprising a first terminal that is contacted with the gate contact element, and a second terminal that is contacted with a first of the two contact elements.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: May 17, 2011
    Inventors: Rik W. De Doncker, Peter Koellensperger
  • Patent number: 7937824
    Abstract: A method for manufacturing a nonreciprocal circuit device in which a ferrite-magnet device including ferrite having first and second center electrodes arranged to intersect and be electrically insulated from each other and a pair of permanent magnets fixed to both principal surfaces of the ferrite so as to apply a direct current magnetic field to the ferrite is solder-bonded to a surface of a substrate. The ferrite-magnet device is solder-bonded to the surface of the substrate while a magnetic plate is disposed on a back surface of the substrate.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: May 10, 2011
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yoshinori Taguchi
  • Patent number: 7927923
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: April 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Publication number: 20110084378
    Abstract: An integrated electromagnetic interference (EMI) shield for a semiconductor module package. The integrated EMI shield includes a plurality of wirebond springs electrically connected between a ground plane in the substrate of the package and a conductive layer printed on the top of the package mold compound. The wirebond springs have a defined shape that causes a spring effect to provide contact electrical connection between the tops of the wirebond springs and the conductive layer. The wirebond springs can be positioned anywhere in the module package, around all or some of the devices included in the package, to create a complete EMI shield around those devices.
    Type: Application
    Filed: December 2, 2010
    Publication date: April 14, 2011
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Patrick L. Welch, Yifan Guo
  • Patent number: 7893524
    Abstract: In a wiring substrate of a semiconductor device, a hollow portion is provided under a pad wiring portion including a connection pad, and thus a wiring layer has a cantilever structure in which the pad wiring portion is formed as an aerial wiring, and a semiconductor chip is flip-chip connected to the connection pad. The pad wiring portion including the connection pad is formed on a sacrifice layer which is filled in a recess portion in an interlayer insulating layer of the wiring substrate, then the semiconductor chip is flip-chip connected to the connection pad, and then the hollow portion is provided by removing the sacrifice layer.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: February 22, 2011
    Assignee: Shinko Electric Industries, Co., Ltd.
    Inventors: Masahiro Sunohara, Yoshihiro Machida
  • Patent number: 7883908
    Abstract: A method for fabricating a semiconductor component with an encapsulated through wire interconnect includes the steps of providing a substrate having a first side, a second side and a substrate contact; forming a via in the substrate contact and the substrate to the second side; placing a wire in the via; forming a first contact on the wire proximate to the first side and a second contact on the wire proximate to the second side; and forming a polymer layer on the first side leaving the first contact exposed. The polymer layer can be formed using a film assisted molding process including the steps of: forming a mold film on tip portions of the bonding members, molding the polymer layer, and then removing the mold film to expose the tip portions of the bonding members. The through wire interconnect provides a multi level interconnect having contacts on opposing sides of the semiconductor substrate.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: February 8, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Alan G. Wood
  • Patent number: 7879649
    Abstract: The present invention provides a method and apparatus for a programmable capacitor associated with an input/output pad in the semiconductor device. The apparatus includes a semiconductor die having an upper surface, a first capacitor deployed above the upper surface of the semiconductor die, a separation layer deployed above the first capacitor, and a bond pad deployed above the separation layer such that at least a portion of the bond pad lies above the first capacitor.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: February 1, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sion C. Quinlan, Bryan Almond, Ken S. Hunt, Andrew M. Lever, Joe A. Ward
  • Patent number: 7875528
    Abstract: A method, system and program product for bonding two circuitry-including semiconductor substrates, and a related stage, are disclosed. In one embodiment, a method of bonding two circuitry-including substrates includes: providing a first stage for holding a first circuitry-including substrate and a second stage for holding a second circuitry-including substrate; identifying an alignment mark on each substrate; determining a location and a topography of each alignment mark using laser diffraction; creating an alignment model for each substrate based on the location and topography the alignment mark thereon; and bonding the first and second circuitry-including substrates together while aligning the first and second substrate based on the alignment model.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Douglas C. La Tulipe, Jr., Steven E. Steen, Anna W. Topol
  • Patent number: 7871859
    Abstract: A vertically mountable semiconductor device assembly including a semiconductor device and a mechanism for attaching the semiconductor device to a carrier substrate. The semiconductor device has each of its bond pads disposed proximate a single edge thereof. Preferably, at least a portion of the semiconductor device is exposed. An alignment device is attached to a carrier substrate. A mounting element on the vertically mountable semiconductor device package engages the alignment device to interconnect the semiconductor device and the alignment device. Preferably, the alignment device secures the vertically mountable semiconductor device package perpendicular relative to the carrier substrate. The distance between the bond pads and corresponding terminals on the carrier substrate is very small in order to reduce impedance. The vertically mountable semiconductor device package may also be readily user-upgradable.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: January 18, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Larry D. Kinsman, Jerry M. Brooks, Warren M. Farnworth, Walter L. Moden, Terry R. Lee
  • Patent number: 7867817
    Abstract: A method for manufacturing a wafer level package of an integrated circuit element for direct attachment to a wiring board is disclosed. An integrated circuit element includes input/output pads located on an active side. A non-conductive support structure is formed on the active side of the integrated circuit element in an area that is free from input/output pads. A conductive path is formed upon the support structure and a non-conductive coating is formed on over the active side of the integrated circuit element such that a surface is formed which leaves interface pads accessible.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: January 11, 2011
    Assignee: Qimonda AG
    Inventors: Stephan Dobritz, Harry Hedler, Henning Mieth
  • Publication number: 20100327466
    Abstract: A processing technique facilitating the fabrication of the integrated circuit with microsprings at different vertical positions relative to a surface of a substrate is described. During the fabrication technique, microsprings are lithographically defined on surfaces of a first substrate and a second substrate. Then, a hole is created through a first substrate. Moreover, the integrated circuit may be created by rigidly mechanically coupling the two substrates to each other such that the microsprings on the surface of the second substrate are within a region defined at least in part by an edge around the hole. Subsequently, photoresist that constrains the microsprings on the surfaces of the two substrates may be removed. In this way, microsprings at the different vertical positions can be fabricated.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Robert J. Drost, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 7858438
    Abstract: A semiconductor device has a chip, a first bump electrode, a conductive wire and a second bump electrode. The chip has at least one contact pad, and the first bump electrode is formed on the contact pad. The conductive wire is disposed on an active surface of the chip and electrically connected to the first bump electrode. The second bump electrode is formed on the conductive wire, and the second bump electrode is not disposed over any contact pad of the chip. In addition, a method for packaging a chip and an IC package are also disclosed.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: December 28, 2010
    Assignee: Himax Technologies Limited
    Inventors: Chien-Ru Chen, Ying-Lieh Chen
  • Patent number: 7838987
    Abstract: An electronic device comprises a semiconductor device having a package substrate with bumps. The semiconductor device is bonded to a mounting substrate by flip-chip bonding. A standoff member supports the package substrate on the mounting substrate with a predetermined standoff between the package substrate and the mounting substrate. The standoff member comprises a hole provided in the mounting substrate, an insertion portion provided to be contained in the hole, and a standoff portion provided to contact and support the package substrate such that the standoff portion has a height, equivalent to the predetermined standoff, on the mounting substrate and enables relative displacement of the package substrate to the mounting substrate.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: November 23, 2010
    Assignee: Fujitsu Limited
    Inventor: Tsuyoshi So
  • Patent number: 7824945
    Abstract: A method for making micro-electromechanical system devices includes: (a) forming a sacrificial layer on a device wafer; (b) forming a plurality of loop-shaped through-holes in the sacrificial layer so as to form the sacrificial layer into a plurality of enclosed portions; (c) forming a plurality of cover caps on the sacrificial layer such that the cover caps respectively enclose the enclosed portions of the sacrificial layer; (d) forming a device through-hole in each of active units of the device wafer so as to form an active part suspended in each of the active units; and (e) removing the enclosed portions of the sacrificial layer through the device through-holes in the active units of the device wafer.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: November 2, 2010
    Assignee: Asia Pacific Microsystems, Inc.
    Inventors: Tso-Chi Chang, Mingching Wu
  • Publication number: 20100264546
    Abstract: The present invention provides a semiconductor device and manufacturing method of the semiconductor device which can prevent breaks in an interlayer insulation film (12) and electrode (13) that arise with bonding while maintaining bonding strength. A semiconductor element (1) mounted on a semiconductor device including an interlayer insulation film (12) which has an aperture part (123) having an opening shape which is defined by an extension part (121) which covers the gate electrode (116) and extends in the first direction, a connection part (122), the extension part (121) and the connection part (122) which connects at fixed intervals in the first direction a pair of extension parts (121) which are adjacent to the second direction, and which exposes a main surface of a base region (112) and a main surface of an emitter region (113).
    Type: Application
    Filed: September 19, 2008
    Publication date: October 21, 2010
    Applicant: SANKEN ELECTRIC CO., LTD.
    Inventors: Katsuyuki Torii, Arata Shiomi
  • Publication number: 20100258924
    Abstract: A method for making a premolded clip structure is disclosed. The method includes obtaining a first clip and a second clip, and forming a molding material around the first clip comprising a first surface and the second clip comprising a second surface. The first surface of the first clip structure and the second surface of the second clip structure are exposed through the molding material, and a premolded clip structure is then formed.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Inventors: Erwin Victor Cruz, Maria Cristina B. Estacio
  • Publication number: 20100258923
    Abstract: A method for making a premolded clip structure is disclosed. The method includes obtaining a first clip and a second clip, and forming a molding material around the first clip comprising a first surface and the second clip comprising a second surface. The first surface of the first clip structure and the second surface of the second clip structure are exposed through the molding material, and a premolded clip structure is then formed.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Inventors: Erwin Victor Cruz, Maria Cristina B. Estacio
  • Patent number: 7808100
    Abstract: The invention relates to a power semiconductor module comprising at least one power semiconductor chip, and comprising a pressure apparatus which exerts a pressure on the top side of the power semiconductor chip when the power semiconductor module is fixed to a heat sink. In addition, a bonding wire which is arranged distant from the pressure element, is bonded to the top side. The invention also relates to methods for fabricating a power semiconductor module, and for fabricating a power semiconductor arrangement comprising a power semiconductor module and a heat sink.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: October 5, 2010
    Assignee: Infineon Technologies AG
    Inventor: Reinhold Bayerer
  • Publication number: 20100244867
    Abstract: Based upon a layout of a semiconductor wafer comprising a plurality of integrated circuits at pre-defined locations, each integrated circuit comprising a set of electrical connection pads, a probe chip contactor is established, having a unit standard cell on the probe side of the probe chip to correspond to each of the arranged integrated circuits. The unit standard cell is stepped and repeated for the probe side of the probe chip contactor, to establish a wafer scale standard cell layout. The opposite contact side of the probe chip contactor is connectable to a central structure, e.g. a Z-block or PC board, typically comprising a fixed array of vias with fixed X, Y, and Z locations. The routing of contact side of the probe chip contactor is preferably routed automatically, such as implemented on one or more computers, to provide electrical connections between the substrate through vias and the Z-block through vias.
    Type: Application
    Filed: January 31, 2008
    Publication date: September 30, 2010
    Inventors: Fu Chiung Chong, William R. Bottoms, Ehr-kong Chieh, Nim Cho Lam
  • Patent number: 7799612
    Abstract: Methods and systems of applying a plurality of pieces of die attach film to a plurality of singulated dice are provided. The method can involve making intervals between rows and columns of a plurality of pieces of die attach film. The interval can be made by expanding an underlaid expandable film on which the plurality of pieces of die attach film are placed or by removing portions of the die attach film between rows and columns of the plurality of pieces of die attach film. The method can further involve placing a plurality of singulated dice back side down on the plurality of pieces of die attach film.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: September 21, 2010
    Assignee: Spansion LLC
    Inventors: Sally Foong, Tan Kiah Ling, Kee Cheng Sim, Wong Kwet Nam, Yue Ho Foong
  • Publication number: 20100233857
    Abstract: A method of fabricating a semiconductor integrated circuit device uses a mold which is provided with a plurality of air vents and movable pins which are formed such that the movable pins include grooves in the distal ends thereof which project into the air vents. By clamping the mold in a state such that the distal ends of the movable pins are pushed against a multi-cavity board at the time of clamping the mold, resin can be filled while leaking air inside the cavity through the grooves formed in the distal ends of the movable pins by setting the depths of the respective air vents to a fixed value irrespective of the irregularities in thickness of the multi-cavity boards. Accordingly, it is possible to prevent insufficient filling of resin in the cavity, the leaking of resin or defective welding, whereby the yield rate of products can be enhanced.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 16, 2010
    Inventors: Bunshi KURATOMI, Fukumi Shimizu
  • Patent number: 7786567
    Abstract: Substrate for electrical devices and methods of manufacturing such substrate are disclosed. An embodiment for the substrate comprised of an insulator and a plurality of conductive elements, wherein the conductive elements embedded in the insulator, and two surfaces of the conductive element exposed to two surfaces of the insulator for electrical connection respectively, meanwhile a portion of conductive element may protrude the insulator, in this manner, solder balls are not needed, moreover the conductive element of substrate may further include either an extending portion or a protruding portion, and the present invention may be capable of affording a thinner electrical device thickness, enhanced reliability, and a decreased cost in production.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: August 31, 2010
    Inventor: Chung-Cheng Wang
  • Patent number: 7785927
    Abstract: A semiconductor die package is provided. The semiconductor die package includes a plurality of dies arranged in a stacked configuration. Through-silicon vias are formed in the lower or intermediate dies to allow electrical connections to dies stacked above. The lower die is positioned face up and has redistribution lines electrically coupling underlying semiconductor components to the through-silicon vias. The dies stacked above the lower die may be oriented face up such that the contact pads are facing away from the lower die or flipped such that the contact pads are facing the lower die. The stacked dies may be electrically coupled to the redistribution lines via wire bonding or solder balls. Additionally, the lower die may have another set of redistribution lines on an opposing side from the stacked dies to reroute the vias to a different pin-out configuration.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 31, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Shien Chen, Kai-Ming Ching, Chih-Hua Chen, Chen-Cheng Kuo
  • Patent number: 7781868
    Abstract: A semiconductor component includes a semiconductor substrate having a circuit side with integrated circuits and substrate contacts and a back side, a plurality of through interconnects in the substrate, and redistribution conductors on the back side of the substrate. Each through interconnect includes a via aligned with a substrate contact, and a conductive layer at least partially lining the via in physical and electrical contact with the substrate contact. Each redistribution conductor is formed by a portion of the conductive layer. A system includes a supporting substrate and at least one semiconductor substrate having the through interconnects and the redistribution conductors.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: August 24, 2010
    Assignee: Micron Technology, Inc.
    Inventor: David S. Pratt
  • Patent number: 7763970
    Abstract: A power semiconductor module comprises a housing. The housing comprises a casing and at least one coating of high resistance to surface tracking. A plurality of electrical conductors is provided on the housing. The coating is provided on a creepage distance that is provided between the electrical conductors.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: July 27, 2010
    Assignee: Infineon Technologies AG
    Inventors: Roman Tschirbs, Reinhold Spanke
  • Patent number: 7759165
    Abstract: A nanospring is formed by first forming a stack of alternating layers of materials which have different susceptibilities to a selective etch solution. The stack is formed over a substrate and is subsequently etched with a substantially non-isotropic etch to create a via having substantially straight sidewalls. The sidewalls of the via are exposed to the selective etch solution, thereby creating irregular sidewalls of the via. A metal film is conformally deposited within the via, and, after excess metal is removed, the stack of alternating layers of materials is etched to expose remaining portions of the conformably deposited film, which comprise the nanospring.
    Type: Grant
    Filed: March 1, 2009
    Date of Patent: July 20, 2010
    Inventor: Rajeev Bajaj
  • Patent number: 7752738
    Abstract: Systems and methods are provided for fabricating compliant spring contacts for use in, for example, IC packaging and interconnection between multi-layers in stacked IC packages and electronic components. Internal stresses generated within an formed film are released to cause the film to buckle and/or bow away from a supporting terminal. A thin stressed metal film layer is selectively broken away from the substrate of the supporting terminal allowing the stressed metal film to take on a bowed and/or spring-like shaped through minute deformation based on a release of the internal stresses. The resultant thin compliant spring contact can deform a small amount as the spring contact is then pressed against a compatible mating contact surface in an overlying layer.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: July 13, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Thomas H. DiStefano
  • Publication number: 20100133676
    Abstract: A power semiconductor arrangement including a clamping device including a first clamping element and a second clamping element. A plurality of power semiconductor elements are stacked on each other between the first and second clamping elements of the clamping device. The first clamping element receives a clamping force in an axial direction of the stack of the power semiconductor elements. At least one spring element is arranged between the first clamping element and the power semiconductor elements. The at least one spring element presents at least one support surface with which the at least one spring element bears against at least one corresponding support surface of an adjacent element. The at least one spring element includes a helical spring.
    Type: Application
    Filed: March 30, 2007
    Publication date: June 3, 2010
    Applicant: ABB TECHNOLOGY LTD.
    Inventor: Björn Sandin
  • Patent number: 7713388
    Abstract: A structure has at least one structure component formed of a first material residing on a substrate, such that the structure is out of a plane of the substrate. A first coating of a second material then coats the structure. A second coating of a non-oxidizing material coats the structure at a thickness less than a thickness of the second material.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: May 11, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Christopher L. Chua, Thomas Hantschel, David K. Fork, Koenraad F. Van Schuylenbergh, Yan Yan Yang
  • Publication number: 20100084761
    Abstract: A semiconductor device includes a mounting substrate, a plurality of semiconductor chips mounted on the mounting substrate, and a heat-dissipation area formed above the plurality of semiconductor chips. A distance between one of the plurality of semiconductor chips which generates a greatest amount of heat and the heat-dissipation area is smaller than a distance between the other semiconductor chips and the heat-dissipation area.
    Type: Application
    Filed: August 10, 2009
    Publication date: April 8, 2010
    Inventor: Masatoshi Shinagawa
  • Patent number: 7687318
    Abstract: A semiconductor device is manufactured by, first, providing a wafer, designated with a saw street guide, and having a bond pad formed on an active surface of the wafer. The wafer is taped with a dicing tape. The wafer is singulated along the saw street guide into a plurality of dies having a plurality of gaps between each of the plurality of dies. The dicing tape is stretched to expand the plurality of gaps to a predetermined distance. An organic material is deposited into each of the plurality of gaps. A top surface of the organic material is substantially coplanar with a top surface of a first die of the plurality of dies. A redistribution layer is patterned over a portion of the organic material. An under bump metallization (UBM) is deposited over the organic material in electrical communication, through the redistribution layer, with the bond pad.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 30, 2010
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan