Making Device Array And Selectively Interconnecting Patents (Class 438/128)
  • Patent number: 8545790
    Abstract: Cross-linked carbon nanotube arrays forming a three-dimensional structure and methods of use including high thermal conductivity, high strength applications where repeated cycling is known, and chemical storage.
    Type: Grant
    Filed: June 4, 2005
    Date of Patent: October 1, 2013
    Inventor: Gregory Konesky
  • Patent number: 8541812
    Abstract: A semiconductor device (10) comprising a bipolar transistor and a field effect transistor within a semiconductor body (1) comprising a projecting mesa (5) within which are at least a portion of a collector region (22d and 22e) and a base region (33d) of the bipolar transistor. The bipolar transistor is provided with a first insulating cavity (92) provided in the collector region (22d and 22e). The base region (33d) is narrower in the plane of the substrate than the collector region (22d and 22e) due to a second insulating cavity (94) provided around the base region (33d) and between the collector region (22d and 22e) and the emitter region (4). By blocking diffusion from the base region the first insulating cavity (92) provides a reduction in the base collector capacitance and can be described as defining the base contact.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: September 24, 2013
    Assignee: NXP B.V.
    Inventors: Philippe Meunier-Beillard, Mark C. J. C. M. Kramer, Johannes J. T. M. Donkers, Guillaume Boccardi
  • Patent number: 8542513
    Abstract: An array of vertically stacked tiers of non-volatile cross point memory cells includes a plurality of horizontally oriented word lines within individual tiers of memory cells. A plurality of horizontally oriented global bit lines having local vertical bit line extensions extend through multiple of the tiers. Individual of the memory cells comprise multi-resistive state material received between one of the horizontally oriented word lines and one of the local vertical bit line extensions where such cross, with such ones comprising opposing conductive electrodes of individual memory cells where such cross. A plurality of bit line select circuits individually electrically and physically connects to individual of the local vertical bit line extensions and are configured to supply a voltage potential to an individual of the global horizontal bit lines. Other embodiments and aspects are disclosed.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 24, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gurtej S. Sandhu
  • Patent number: 8541284
    Abstract: A method of manufacturing a semiconductor device includes forming a plurality of strings spaced a first distance from each other, each string including first preliminary gate structures spaced a second distance, smaller than the first distance, between second preliminary gate structures, forming a first insulation layer to cover the first and second preliminary gate structures, forming an insulation layer structure to fill a space between the strings, forming a sacrificial layer pattern to partially fill spaces between first and second preliminary gate structures, removing a portion of the first insulation layer not covered by the sacrificial layer pattern to form a first insulation layer pattern, reacting portions of the first and second preliminary gate structures not covered by the first insulation layer pattern with a conductive layer to form gate structures, and forming a capping layer on the gate structures to form air gaps between the gate structures.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Hwang Sim
  • Patent number: 8535991
    Abstract: An electrically reprogrammable fuse comprising an interconnect disposed in a dielectric material, a sensing wire disposed at a first end of the interconnect, a first programming wire disposed at a second end of the interconnect, and a second programming wire disposed at a second end of the interconnect, wherein the fuse is operative to form a surface void at the interface between the interconnect and the sensing wire when a first directional electron current is applied from the first programming wire through the interconnect to the second programming wire, and wherein, the fuse is further operative to heal the surface void between the interconnect and the sensing wire when a second directional electron current is applied from the second programming wire through the interconnect to the first programming wire.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kaushik Chanda, Lynne M. Gignac, Wai-Kin Li, Ping-Chuan Wang
  • Patent number: 8535965
    Abstract: The present invention provides a method for forming by plasma CVD a silicon nitride film that can be formed over heat-sensitive elements as well as an electroluminescent element and that has favorable barrier characteristics. Further, the present invention also provides a semiconductor device, a display device and a light-emitting display device formed by using the silicon nitride film. In the method for forming a silicon nitride film by plasma CVD, silane (SiH4), nitrogen (N2) and a rare gas are introduced into a deposition chamber in depositing, and the reaction pressure is within the range from 0.01 Torr to 0.1 Torr.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 17, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinji Maekawa, Tetsuya Kakehata, Yuuichi Takehara
  • Patent number: 8535990
    Abstract: An integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in semiconductor material with one crystal orientation and the SRAM cells are formed in a second semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the logic transistors are formed in a top semiconductor layer with one crystal orientation and the SRAM cells are formed in an epitaxial semiconductor layer with another crystal orientation. A process of forming an integrated circuit containing logic transistors and an array of SRAM cells in which the SRAM cells are formed in a top semiconductor layer with one crystal orientation and the logic transistors are formed in an epitaxial semiconductor layer with another crystal orientation.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Publication number: 20130234210
    Abstract: A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is proviced. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Yen-Hao Shih, Ying-Tso Chen, Shih-Chang Tsai, Chun-Fu Chen
  • Patent number: 8530996
    Abstract: A semiconductor device includes a high-side field-effect transistor including a high-side drain electrode, a high-side gate electrode, and a high-side source electrode; and a first low-side field-effect transistor including a first low-side drain electrode, a first low-side gate electrode and a first low-side source electrode, wherein the high-side source electrode and the first low-side drain electrode are shared as a single source and drain electrode, and the high-side drain electrode, the high-side gate electrode, the source and drain electrode, the first low-side gate electrode and the first low-side source electrode are arranged in this order while being interposed by gaps, respectively.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 10, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Ken Shono
  • Publication number: 20130229846
    Abstract: A three-dimensional memory is formed as an array of memory elements across multiple layers positioned at different distances above a semiconductor substrate. Cylindrical stacks of memory elements are formed where a cylindrical opening has read/write material deposited along its wall, and a cylindrical vertical bit line formed along its central axis. Memory elements formed on either side of such a cylinder may include sheet electrodes that extend into the read/write material.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 5, 2013
    Applicant: SanDisk 3D LLC
    Inventors: Henry Chien, Yao-Sheng Lee, George Samachisa, Johann Alsmeier
  • Patent number: 8525552
    Abstract: A semiconductor integrated circuit device includes cells A-1, B-1, and C-1 that have the same logic. Cell B-1 has cell width W2 larger than a cell width of cell A-1, but gate length L1 of a MOS transistor is equal to that of cell A-1. Cell C-1 has cell width W2 equal to a cell width of cell B-1, but has a MOS transistor having large gate length L2. A circuit delay of cell C-1 becomes large as compared with that of cells A-1 and B-1, but leak current becomes small. Therefore, by replacing cell A-1 adjacent to a space area with cell B-1, and by replacing cell B-1 in a path having room in timing with cell C-1, for example, leak current can be suppressed without increasing a chip area.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: September 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Takashi Ando, Keiichi Kusumoto, Kenji Shimazaki, Kazuyuki Nakanishi, Tetsurou Toubou
  • Patent number: 8519425
    Abstract: A light-emitting device includes a substrate and a planarizing film above the substrate. The planarizing film has a recessed portion between non-recessed portions. A bottom electrode layer is above the non-recessed portions. A semiconductor interlayer is above the bottom electrode layer. A filling layer is above the recessed portion. The filling layer comprises a same material as the semiconductor layer and has an inner portion between outer portions. A bank is above the recessed portion of the planarizing film and edge portions of the bottom electrode layer, with each of the edge portions of the bottom electrode layer neighboring the recessed portion of the planarizing film. The filling layer inner portion has a thickness of t1, the filling layer outer portions have a thickness of t2, and t1 is greater than t2.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: August 27, 2013
    Assignee: Panasonic Corporation
    Inventor: Shuhei Yada
  • Patent number: 8519392
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 27, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20130214278
    Abstract: An array substrate for a display device and manufacturing method thereof is disclosed. The device comprises: a substrate; a gate line formed on the substrate along a first direction; a data line formed over the substrate along a second direction, wherein the data line and the gate line cross each other to define a pixel region; a thin film transistor formed in the pixel region, and having a gate electrode connected to the gate line, a source electrode connected to the data line, and a drain electrode; a pixel electrode formed in the pixel region and connected to the drain electrode; a first auxiliary gate pattern formed over the gate line and contacting the gate line; and a first auxiliary data pattern formed over the data line and contacting the data line.
    Type: Application
    Filed: August 16, 2012
    Publication date: August 22, 2013
    Inventors: Seung-Hee Nam, Soon-Sung Yoo, Tae-Hyoung Moon, Tae-Joon Song, Kyu-Hwang Lee
  • Patent number: 8513064
    Abstract: Some embodiments include methods of forming memory arrays. A stack of semiconductor material plates may be patterned to subdivide the plates into pieces. Electrically conductive tiers may be formed along sidewall edges of the pieces. The pieces may then be patterned into an array of wires, with the array having vertical columns and horizontal rows. Individual wires may have first ends joining to the electrically conductive tiers, may have second ends in opposing relation to the first ends, and may have intermediate regions between the first and second ends. Gate material may be formed along the intermediate regions. Memory cell structures may be formed at the second ends of the wires. A plurality of vertically-extending electrical interconnects may be connected to the wires through the memory cell structures, with individual vertically-extending electrical interconnects being along individual columns of the array. Some embodiments include memory arrays incorporated into integrated circuitry.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Janos Fucsko
  • Patent number: 8507390
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Sandisk Corporation
    Inventors: Jian Chen, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce
  • Patent number: 8492828
    Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20130182490
    Abstract: Balanced electrical performance in a static random access memory (SRAM) cell with an asymmetric context such as a buffer circuit. Each memory cell includes a circuit feature, such as a read buffer, that has larger transistor sizes and features than the other transistors within the cell, and in which the feature asymmetrical influences the smaller cell transistors. For best performance, pairs of cell transistors are to be electrically matched with one another. One or more of the cell transistors nearer to the asymmetric feature are constructed differently, for example with different channel width, channel length, or net channel dopant concentration, to compensate for the proximity effects of the asymmetric feature.
    Type: Application
    Filed: May 22, 2012
    Publication date: July 18, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xiaowei Deng, Wah Kit Loh, Anand Seshadri, Zhonghai Shi
  • Publication number: 20130182486
    Abstract: Arrays of memory cells having a common gate terminal and methods of operating and forming the same are described herein. As an example, an array of memory cells may include a group of memory cells each having a resistive storage element coupled to a select device. Each select device includes a first terminal, a second terminal, and a gate terminal, where the gate terminal is common to each memory cell of the group.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Rajesh N. Gupta, Farid Nemati
  • Patent number: 8486767
    Abstract: An interconnect structure in a semiconductor device may be formed to include a number of segments. Each segment may include a first metal. A barrier structure may be located between the plurality of segments to enable the interconnect structure to avoid electromigration problems.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 16, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jun Zhai, Fei Wang
  • Publication number: 20130175598
    Abstract: The technology relates to a damascene word line for a three dimensional array of nonvolatile memory cells. Conductive lines such as silicon are formed over stacked nonvolatile memory structures. Word line trenches separate neighboring ones of the silicon lines. The silicon lines separated by the word line trenches are oxidized, making insulating surfaces in the word line trenches. Word lines are made in the word line trenches.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 11, 2013
    Applicant: Macronix International Co., Ltd.
    Inventors: Shih-Hung Chen, Hang-Ting Lue, Yen-Hao Shih
  • Publication number: 20130171777
    Abstract: A processing unit comprises a plurality of individual integrated circuits (ICs) electrically connected to one another via a common configuration of electrical interconnects (e.g., through-silicon vias). At least two of the ICs may be configured for a different function. In some examples, the processing unit is formed by selecting the ICs from stored groups of ICs. The stored ICs can be, for example, modular ICs in that the ICs can be mixed and matched in any suitable number or type in order to meet a particular set of functional requirements for the processing unit, which may depend on the application for the processing unit. Electrical coupling of these individual ICs via the electrical interconnects of the ICs results in a single processing unit that is configured to perform functions specifically suited for a particular application or set of applications.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 4, 2013
    Applicant: Honeywell International Inc.
    Inventors: Eric Grobelny, David Paul Campagna, David Jay Kessler
  • Patent number: 8476675
    Abstract: A semiconductor device (10) comprising a bipolar transistor and a field 5 effect transistor within a semiconductor body (1) comprising a projecting mesa (5) within which are at least a portion of a collector region (22c and 22d) and a base region (33c) of the bipolar transistor. The bipolar transistor is provided with an insulating cavity (92b) provided in the collector region (22c and 22d). The insulating cavity (92b) may be provided by providing a layer (33a) in the collector region (22c), creating an access path, for example by selectively etching polysilicon towards monocrystalline, and removing a portion of the layer (33a) to provide the cavity using the access path. The layer (33a) provided in the collector region may be of SiGe:C. By blocking diffusion from the base region the insulating cavity (92b) provides a reduction in the base collector capacitance and can be described as defining the base contact.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 2, 2013
    Assignee: NXP B.V.
    Inventors: Philippe Meunier-Beillard, Johannes J. T. M. Donkers, Erwin Hijzen
  • Publication number: 20130154027
    Abstract: A memory cell and array and a method of forming a memory cell and array are disclosed. An embodiment is a memory cell comprising first and second pull-up transistors, first and second pull-down transistors, first and second pass-gate transistors, and first and second isolation transistors. Drains of the first pull-up and first pull-down transistors are electrically coupled together at a first node. Drains of the second pull-up and second pull-down transistors are electrically coupled together at a second node. Gates of the second pull-up and second pull-down transistors are electrically coupled to the first node, and gates of the first pull-up and first pull-down transistors are electrically coupled to the second node. The first and second pass-gate transistors are electrically coupled to the first and second nodes, respectively. The first and second isolation transistors are electrically coupled to the first and second nodes, respectively.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon-Jhy Liaw
  • Publication number: 20130141963
    Abstract: Methods and apparatus for providing finFET SRAM cells. An SRAM cell structure is provided including a central N-well region and a first and a second P-well region on opposing sides of the central N-well region, having an area ratio of the N-well region to the P-well regions between 80-120%, the SRAM cell structure further includes at least one p-type transistor formed in the N-well region and having a gate electrode comprising a gate and a gate dielectric over a p-type transistor active area in the N-well region; and at least one n-type transistor formed in each of the first and second P-well regions and each n-type transistor having a gate electrode comprising a gate and a gate dielectric over an n-type transistor active area in the respective P-well region. Methods for operating the SRAM cell structures are disclosed.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 8455939
    Abstract: A NAND device including a source, a drain and a channel located between the source and drain. The NAND device also includes a plurality of floating gates located over the channel and a plurality of electrically conducting fins. Each of the plurality of electrically conducting fins is located over one of the plurality of floating gates. The plurality of electrically conducting fins include a material other than polysilicon. The NAND device also includes a plurality of control gates. Each of the plurality of control gates is located adjacent to each of the plurality of floating gates and each of the plurality of electrically conducting fins.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 4, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Johann Alsmeier, Vinod Purayath, James Kai, George Matamis
  • Patent number: 8450154
    Abstract: Methods, devices, and systems associated with oxide based memory can include a method of forming an oxide based memory cell. Forming an oxide based memory cell can include forming a first conductive element, forming a substoichiometric oxide over the first conductive element, forming a second conductive element over the substoichiometric oxide, and oxidizing edges of the substoichiometric oxide by subjecting the substoichiometric oxide to an oxidizing environment to define a controlled oxygen vacancy conduction path near a center of the oxide.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: May 28, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Gurtej Sandhu
  • Patent number: 8445880
    Abstract: A phase change memory device capable of fully discharging bit lines, even while occupying a relatively small area, and a fabricating method thereof are presented. The phase change memory device includes a semiconductor substrate, a word line area, a discharge line area, a switching PN diode, a dummy PN diode, a phase change structure, and a bit line. The word line area is formed in a memory cell area of the semiconductor substrate. The discharge line area is formed in the bit-line discharge area of the semiconductor substrate. The switching PN diode is formed on the word line area. The dummy PN diode is formed on the discharge line area. The phase change structure is formed on the switching PN diode and is electrically connected to the switching diode. The bit line is electrically connected to the phase change structure and the dummy PN diode.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: May 21, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hae Chan Park
  • Publication number: 20130121087
    Abstract: A memory bit cell includes a latch, a write port coupled to the latch, and a read port coupled to the latch. The write port includes a first set of devices having a first threshold voltage and a second set of devices having a second threshold voltage that is greater than the first threshold voltage. The read port includes a third set of devices having a third threshold voltage that is less than the first threshold voltage.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon Jhy LIAW
  • Patent number: 8440486
    Abstract: A method of fabricating an electrophoretic display device includes forming a gate line along a direction, a gate electrode extending from the gate line, a common line parallel to the gate line, and a first storage electrode extending from the common line on a substrate, forming a gate insulating layer on an entire surface of the substrate including the gate line, the gate electrode, the common line and the first storage electrode, forming a semiconductor layer, a data line, and source and drain electrodes through a mask process, wherein the semiconductor layer is disposed over the gate electrode, the data line crosses the gate line to define a pixel region, the source electrode extends from the data line, and the drain electrode is spaced apart from the source electrode over the semiconductor layer.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 14, 2013
    Assignee: LG Display Co., Ltd.
    Inventor: Sung-Jin Park
  • Patent number: 8438724
    Abstract: Methods for producing a substrate for mounting a device and for producing a semiconductor module are provided. The methods comprise preparing a metal plate on one major surface of which a plurality of projected electrodes are provided. An insulating resin layer is formed on the major surface so as to cover the top surface of the projected electrodes. The top surface of at least one of the plurality of projected electrodes is exposed by removing the insulating resin layer so that a major surface of the insulating resin layer opposite to the metal plate is level. A plurality of counter electrodes is arranged having a counterface to face the top face of the plurality of projected electrodes or a semiconductor device having a plurality of device electrodes is arranged to face the top face of the plurality of projected electrodes.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: May 14, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kouichi Saitou, Yoshio Okayama, Yoh Takano, Mayumi Nakasato
  • Patent number: 8431446
    Abstract: Embodiments disclosed herein may relate to electrically conductive vias in cross-point memory array devices. In an embodiment, the vias may be formed using a lithographic operation also utilized to form electrically conductive lines in a first electrode layer of the cross-point memory array device.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: April 30, 2013
    Assignee: MicronTechnology, Inc
    Inventor: Stephen Tang
  • Patent number: 8426859
    Abstract: A semiconductor device includes a semiconductor layer, a first insulating layer, a gate electrode which is formed on the first insulating layer and has a portion overlapping a channel region of the semiconductor layer with the first insulating layer sandwiched in between, a second insulating layer which is formed on the first insulating layer and covers the gate electrode, and a capacitor electrode which is formed on the second insulating layer and has a portion facing the gate electrode with the second insulating layer sandwiched in between. The second insulating layer has a thin portion, whose thickness is thinner than that of the second insulating layer in surrounding regions, on the portion of the gate electrode overlapping the channel region. A part of the capacitor electrode faces the portion of the gate electrode overlapping the channel region with the thin portion of the second insulating layer sandwiched in between.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 23, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nobuaki Kakinuma
  • Patent number: 8426257
    Abstract: A method for fabricating a semiconductor device includes forming a fuse over a substrate, the fuse having a barrier layer, a metal layer, and an anti-reflective layer stacked, selectively removing the anti-reflective layer, forming an insulation layer over a whole surface of the resultant structure including the fuse, and performing repair-etching such that part of the insulation layer remains above the fuse.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 23, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyun-Sik Park, Hae-Jung Lee, Jae-Kyun Lee
  • Patent number: 8426304
    Abstract: Methods of manufacturing a semiconductor device include forming a stopping layer pattern in a first region of a substrate. A first mold structure is formed in a second region of the substrate that is adjacent the first region. The first mold structure includes first sacrificial patterns and first interlayer patterns stacked alternately. A second mold structure is formed on the first mold structure and the stopping layer pattern. The second mold structure includes second sacrificial patterns and second interlayer patterns stacked alternately. The second mold structure partially covers the stopping layer pattern. A channel pattern is formed and passes through the first mold structure and the second mold structure.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Chul Yoo, Chan-Jin Park, Ki-Hyun Hwang, Han-Mei Choi, Joon-Suk Lee
  • Patent number: 8420452
    Abstract: A leadframe-based semiconductor package and a fabrication method thereof are provided. The leadframe-based semiconductor package includes a chip implanted with a plurality of first and second conductive bumps thereon, and a leadframe having a plurality of leads. The first conductive bumps are bonded to the leads to electrically connect the chip to the leadframe. The chip, the first and second conductive bumps, and the leadframe are encapsulated by an encapsulant, with bottom ends of the second conductive bumps and bottom surfaces of the leads being exposed from the encapsulant. This allows the second conductive bumps to provide additional input/output electrical connections for the chip besides the leads.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 16, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Han-Ping Pu, Chien-Ping Huang
  • Patent number: 8421187
    Abstract: A first insulating film includes five extension lines formed between connection pad portions of adjacent two predetermined wiring lines. The first insulating film also includes peripheral portions of the adjacent two connection pad portions on both sides of the five extension lines. A second insulating film made of a polyimide resin or the like is formed on the upper surface of the first insulating layer by a screen printing method or ink jet method. Since a short circuit may be easily caused by electromigration in a region where the five extension lines are parallel to another, the short circuit due to the electromigration can be prevented by covering only that region with the second insulating film. Accordingly, the region where the second insulating film is formed can be as small as possible, and the semiconductor wafer does not easily warp.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 16, 2013
    Assignee: Teramikros, Inc.
    Inventor: Syouichi Kotani
  • Publication number: 20130087834
    Abstract: Systems and methods are disclosed for forming a custom integrated circuit (IC) with a first fixed (non-programmable) region on a wafer with non-customizable mask layers, wherein the first fixed region includes multiplicities of transistors and a first interconnect layer and a second interconnect layer above the first interconnect layer which form base cells; and a programmable region above the first fixed region with customizable mask layers, wherein at least one mask layer in the programmable region is coupled to the second interconnect layer which provides electrical access to all transistor nodes of the base cells and wherein the programmable region comprises a third interconnect layer coupled to the customizable mask layers to customize the IC. A second fixed region may be formed above the programmable region to provide multiple fixed regions and reduce the number of required masks in customizing the custom IC.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: Jonathan C. Park, Salah M. Werfelli, Weizhi Kang, Wan Tat Hooi, Kok Siong Tee, Jeremy Jia Jian Lee
  • Patent number: 8409887
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 2, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Soo-Beom Jo, Dong-Hyun Lee, Kil-Won Lee, Maxim Lisachenko, Yun-Mo Chung, Bo-Kyung Choi, Jong-Ryuk Park, Ki-Yong Lee
  • Patent number: 8411477
    Abstract: An array of vertically stacked tiers of non-volatile cross point memory cells includes a plurality of horizontally oriented word lines within individual tiers of memory cells. A plurality of horizontally oriented global bit lines having local vertical bit line extensions extend through multiple of the tiers. Individual of the memory cells comprise multi-resistive state material received between one of the horizontally oriented word lines and one of the local vertical bit line extensions where such cross, with such ones comprising opposing conductive electrodes of individual memory cells where such cross. A plurality of bit line select circuits individually electrically and physically connects to individual of the local vertical bit line extensions and are configured to supply a voltage potential to an individual of the global horizontal bit lines. Other embodiments and aspects are disclosed.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gurtej S. Sandhu
  • Publication number: 20130075701
    Abstract: The present invention discloses a hexagonal programmable array based on a silicon nanowire field effect transistor and a method for fabricating the same. The array includes a nanowire device, a nanowire device connection region and a gate connection region, wherein, the nanowire device has a cylinder shape, and includes a silicon nanowire channel, a gate dielectric layer, and a gate region, the nanowire channel being surrounded by the gate dielectric layer, and the gate dielectric layer being surrounded by the gate region; the nanowire devices are arranged in a hexagon shape to form programming unit, the nanowire device connection region is a connection node of three nanowire devices and secured to a silicon supporter. The present invention can achieve a complex control logic of interconnections and is suitable for a digital/analog and a mixed-signal circuit having a high integration degree and a high speed.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 28, 2013
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Jibin Zou, Runsheng Wang, Jiewen Fan, Changze Liu, Yangyuan Wang
  • Patent number: 8405086
    Abstract: The present invention provides a pixel structure of a display panel and a method for manufacturing the same. The method comprises the following steps: forming a first transistor and a second transistor on a substrate, wherein the first transistor is connected between the second transistor and a data line, wherein the second transistor is connected to a first gate line and a second gate line; and forming a pixel electrode, wherein the pixel electrode is connected to the first transistor. The present invention can improve a deformation problem of signal waveforms due to delay.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: March 26, 2013
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventor: Hung-lung Hou
  • Publication number: 20130070508
    Abstract: According to an embodiment, a method of manufacturing a semiconductor device including a memory array provided on a substrate, and a control circuit provided on a surface of the substrate between the substrate and the memory array, includes steps of forming, in an insulating layer covering a p-type semiconductor region and an n-type semiconductor region of the control circuit, a first contact hole communicating with the p-type semiconductor region; forming a contact plug, in contact with the p-type semiconductor region, within the first contact hole; forming, in the insulating layer, a second contact hole communicating with the n-type semiconductor region; and forming an interconnection contacting the contact plug and the n-type semiconductor region exposed within the second contact hole.
    Type: Application
    Filed: March 20, 2012
    Publication date: March 21, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Takeshi Imamura, Hideaki Aochi
  • Patent number: 8399307
    Abstract: A method of forming a memory device includes providing a substrate having a surface region, defining a cell region and first and second peripheral regions, sequentially forming a first dielectric material, a first wiring structure for a first array of devices, and a second dielectric material over the surface region, forming an opening region in the first peripheral region, the opening region extending in a portion of at least the first and second dielectric materials to expose portions of the first wiring structure and the substrate, forming a second wiring material that is overlying the second dielectric material and fills the opening region to form a vertical interconnect structure in the first peripheral region, and forming a second wiring structure from the second wiring material for a second array of devices, the first and second wiring structures being separated from each other and electrically connected by the vertical interconnect structure.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: March 19, 2013
    Assignee: Crossbar, Inc.
    Inventor: Scott Brad Herner
  • Patent number: 8395935
    Abstract: A programmable memory array is disclosed in which the phase change memory cells are self-aligned at the access devices and at the cross-points of the bit lines and the word lines. A method for making the array employs one line mask to define the bit lines and another line mask to define the word lines. The front end of line (FEOL) memory cell elements are in the same layer as the polysilicon gates. The bit lines and the word lines intersect over the devices, and the memory cell elements are formed at the intersections of the bit lines and the word line.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: March 12, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsiang-Lan Lung, Erh-Kun Lai
  • Patent number: 8389315
    Abstract: A method for manufacturing a display device is provided. The method includes forming a circuit part; forming a planarization insulating layer on the circuit part; forming a separator in an area outside a display area in which a plurality of light emitting elements are formed by removing the planarization insulating layer at a position surrounding the display area; forming an electrically-conductive layer including a plurality of first electrodes and an auxiliary interconnect on the planarization insulating layer; forming an aperture-defining insulating layer that insulates the first electrodes from each other and has an aperture through which part of the first electrode is exposed; and forming a plurality of light emitting elements by stacking the first electrode, an organic layer, and a second electrode common to the plurality of light emitting elements.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: March 5, 2013
    Assignee: Sony Corporation
    Inventors: Akiko Tsuji, Toshiki Matsumoto, Hirofumi Fujioka, Mitsuru Asano, Hiroshi Sagawa, Kiwamu Miura
  • Patent number: 8389316
    Abstract: A semiconductor structure includes an active region; a gate strip overlying the active region; and a metal-oxide-semiconductor (MOS) device. A portion of the gate strip forms a gate of the MOS device. A portion of the active region forms a source/drain region of the MOS device. The semiconductor structure further includes a stressor region over the MOS device; and a stressor-free region inside the stressor region and outside the region over the active region.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: March 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Sen Wang, Chung-Te Lin, Min Cao, Sheng-Jier Yang
  • Publication number: 20130048981
    Abstract: An apparatus comprising an integrated circuit, an interconnect layer within said integrated circuit, and one or more connections. The integrated circuit may be configured to provide an electrically measurable interconnect pattern by enabling one or more of a plurality of components. The one or more connections may each configured to enable a respective one of the components. The connections may be programmable while the apparatus is part of a wafer. The interconnect pattern may be configured to identify the apparatus after the apparatus has been manufactured.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventor: Alexandre Jean-Marie Bessemoulin
  • Patent number: 8372696
    Abstract: A repair method for repairing an active device array substrate is provided. The active device array substrate includes a substrate, scan lines, data lines, active devices, pixel electrodes, and common lines. At least one of the scan line has an open defect. The scan lines and the data lines are intersected to define sub-pixel regions. The active devices are electrically connected with the scan lines and the data lines correspondingly. Each pixel electrode is disposed in one of the sub-pixel regions and electrically connected with one of the active devices. The repair method includes cutting one of the common lines neighboring to the open defect to form a cutting block that is electrically insulated from the common lines; and welding the cutting block, the scan line having the open defect and two active devices located at two opposite sides of the open defect.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: February 12, 2013
    Assignee: Au Optronics Corporation
    Inventor: Tung-Chang Tsai
  • Patent number: 8372742
    Abstract: An integrated circuit (IC) design method providing a circuit design layout having a plurality of functional blocks disposed a distance away from each other; identifying a local pattern density to an approximate dummy region, on the circuit design layout, within a predefined distance to one of the functional blocks; performing a local dummy insertion to the approximate dummy region according to the local pattern density; repeating the identifying and performing to at least some other of the functional blocks; and implementing a global dummy insertion to a non-local dummy region according to a global pattern density.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: February 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Chou Cheng, Cheng-Lung Stanley Tsai, Tsong-Hua Ou, Cheng Kun Tsai, Ru-Gun Liu, Wen-Chun Huang