Asymmetric Patents (Class 438/179)
  • Patent number: 11817355
    Abstract: A semiconductor device includes a substrate; a gate structure, located over the substrate, the gate structure including a first gate oxide layer, a second gate oxide layer, and a silicon layer. The first gate oxide layer is over the substrate, and the first gate oxide layer has a sloped sidewall on one side and a vertical sidewall on another side. The second gate oxide layer is over the substrate and on the sloped sidewall of the first gate oxide layer, and a thickness of the second gate oxide layer is less than a thickness of the first gate oxide layer. The silicon layer is formed over the first gate oxide layer and the second gate oxide layer.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: November 14, 2023
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Hu Wang, Shan Shan Wang, Feng Qiu, Wei Hu Zhang
  • Patent number: 11721753
    Abstract: An HFET includes a first and second semiconductor material. A first composite passivation layer includes a first insulation layer and a first passivation layer, and the first passivation layer is disposed between the first insulation layer and the second semiconductor material. The HFET includes a second passivation layer, where the first insulation layer is disposed between the first passivation layer and the second passivation layer. A gate dielectric is disposed between the second semiconductor material and the first passivation layer. A source electrode and a drain electrode are coupled to the second semiconductor material, and a gate electrode is disposed laterally between the source electrode and the drain electrode. A first gate field plate is disposed between the first passivation layer and the second passivation layer and electrically connected to the gate electrode, and a second gate field plate is disposed above first gate field plate.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: August 8, 2023
    Assignee: POWER INTEGRATIONS, INC.
    Inventors: Alexey Kudymov, Linlin Liu, Xiaohui Wang, Jamal Ramdani
  • Patent number: 11621340
    Abstract: The present disclosure relates to a method for fabricating a field-effect transistor structure on a substrate. The method includes forming a first semiconductor structure on the substrate, forming above the first semiconductor structure a gate structure that comprises a spacer layer laterally terminating the gate structure and has a lower etch rate than the first semiconductor structure with respect to a predetermined etchant, forming an undercut below the spacer layer by recessing the first semiconductor structure using the etchant, the undercut extending laterally below the spacer layer by not more than the thickness of the spacer layer, forming on the first semiconductor structure a second semiconductor structure filling the undercut, and forming a third semiconductor structure above the first semiconductor structure, wherein one of the second and third semiconductor structures forms the source of the field-effect transistor structure and the other one forms the drain.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: April 4, 2023
    Assignee: International Business Machines Corporation
    Inventors: Clarissa Convertino, Cezar Bogdan Zota, Lukas Czornomaz, Kirsten Emilie Moselund
  • Patent number: 9111957
    Abstract: A semiconductor structure includes a substrate, a first well region of a first conductivity type overlying the substrate, a second well region of a second conductivity type opposite the first conductivity type overlying the substrate, a cushion region between and adjoining the first and the second well regions, an insulation region in a portion of the first well region and extending from a top surface of the first well region into the first well region, a gate dielectric extending from over the first well region to over the second well region, wherein the gate dielectric has a portion over the insulation region, and a gate electrode on the gate dielectric.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: August 18, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Liang Chou, Chen-Bau Wu, Weng-Chu Chu, Tsung-Yi Huang, Fu-Jier Fan
  • Patent number: 8921170
    Abstract: Asymmetric transistors such as asymmetric pass transistors may be formed on an integrated circuit. The asymmetric transistors may have gate structures. Symmetric pocket implants may be formed in source-drains on opposing sides of each transistor gate structure. Selective heating may be used to asymmetrically diffuse the implants. Selective heating may be implemented by patterning the gate structures on a semiconductor substrate so that the spacing between adjacent gate structures varies. A given gate structure may be located between first and second adjacent gate structures spaced at different respective distances from the given gate structure. A larger gate structure spacing leads to a greater substrate temperature rise than a smaller gate structure spacing. The pocket implant diffuses more in portions of the substrate with the greater temperature rise, producing asymmetric transistors.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: December 30, 2014
    Assignee: Altera Corporation
    Inventors: Jun Liu, Albert Ratnakumar, Mark T. Chan, Irfan Rahim
  • Patent number: 8906769
    Abstract: An insulating film and another insulating film are formed over a semiconductor substrate in that order to cover first, second, and third gate electrodes. The another insulating film is etched back to form sidewall spacers over side surfaces of the insulating film. Then, the sidewall spacers over the side surfaces of the insulating films corresponding to the sidewalls of the first and second gate electrodes are removed to leave the sidewall spacers over the side surfaces of the insulating film corresponding to the sidewalls of the third gate electrode. Then, the sidewall spacers and the insulating films are etched back, so that the sidewall spacers are formed of the insulating film over the sidewalls of the first, second, and third gate electrodes.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: December 9, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Koji Maekawa, Tatsuyoshi Mihara
  • Patent number: 8823094
    Abstract: A semiconductor device includes a substrate having first and second regions, a device isolation layer on the substrate defining an active region in each of the first and second regions, a gate pattern on the active region of each of the first and second regions, and a first dopant region and a second dopant region in each of the first and second regions of the substrate, the gate pattern in each of the first and second regions being between respective first and second dopant regions. At least one of upper surfaces of the first and second dopant regions in the second region is lower in level than an upper surface of the substrate under the gate pattern in the second region, the first and second dopant regions in the second region having an asymmetric recessed structure with respect to the gate pattern in the second region.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: September 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sangeun Lee
  • Patent number: 8765025
    Abstract: A metal nanoparticle composition includes an organic-stabilized metal nanoparticle and a solvent in which the solvent selected has the following Hansen solubility parameters: a dispersion parameter of about 16 MPa0.5 or more, and a sum of a polarity parameter and a hydrogen bonding parameter of about 8.0 MPa0.5 or less. The metal nanoparticle composition is suitable for printing conductive lines that are uniform, smooth and narrow on various substrate surfaces. The metal nanoparticle composition is able to form printed conductive features having a coffee ring effect ratio of about 1.2 to about 0.8, a surface roughness of about 15 or less and a line width of about 200 microns or less.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 1, 2014
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Yulin Wang, Mahya Mohktari, Roger E. Gaynor, Nan-Xing Hu, Marko D. Saban
  • Patent number: 8741707
    Abstract: A method for fabricating an edge termination, which can be used in conjunction with GaN-based materials, includes providing a substrate of a first conductivity type. The substrate has a first surface and a second surface. The method also includes forming a first GaN epitaxial layer of the first conductivity type coupled to the first surface of the substrate and forming a second GaN epitaxial layer of a second conductivity type opposite to the first conductivity type. The second GaN epitaxial layer is coupled to the first GaN epitaxial layer. The substrate, the first GaN epitaxial layer and the second GaN epitaxial layer can be referred to as an epitaxial structure.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 3, 2014
    Assignee: Avogy, Inc.
    Inventors: Donald R. Disney, Isik C. Kizilyalli, Linda Romano, Andrew Edwards, Hui Nie
  • Patent number: 8652916
    Abstract: A method of forming a semiconductor structure, including forming a gate structure on a substrate; performing a first angled implantation on a first side of the gate structure to form a first doped region in the substrate, the first doped region partially extends within a channel of the gate structure and the gate structure blocks the first angled implantation from affecting the substrate on a second side of the gate structure; forming sidewall spacers on sidewalls of the gate; and forming a second doped region in the substrate on the second side of the gate, spaced apart from the channel.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Paul Chang, Kangguo Cheng, Chengwen Pei, William R. Tonti
  • Patent number: 8637871
    Abstract: An asymmetric hetero-structure FET and method of manufacture is provided. The structure includes a semiconductor substrate and an epitaxially grown semiconductor layer on the semiconductor substrate. The epitaxially grown semiconductor layer includes an alloy having a band structure and thickness that confines inversion carriers in a channel region, and a thicker portion extending deeper into the semiconductor structure at a doped edge to avoid confinement of the inversion carriers at the doped edge.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Jeffrey B. Johnson, Edward J. Nowak, Robert R. Robison
  • Patent number: 8541296
    Abstract: The present invention provides a method of manufacturing a dummy gate in a gate last process, which comprises the steps of forming a dummy gate material layer and a hard mask material layer sequentially on a substrate; etching the hard mask material layer to form a top-wide-bottom-narrow hard mask pattern; dry etching the dummy gate material layer using the hard mask pattern as a mask to form a top-wide-bottom-narrow dummy gate. According to the dummy gate manufacturing method of the present invention, instead of vertical dummy gates used conventionally, top-wide-bottom-narrow trapezoidal dummy gates are formed, and after removing the dummy gates, trapezoidal trenches can be formed. It facilitates the subsequent filling of the high-k or metal gate material and enlarges the window for the filling process; as a result, the device reliability will be improved.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: September 24, 2013
    Assignee: The Institute Of Microelectronics Chinese Academy of Science
    Inventors: Tao Yang, Chao Zhao, Jiang Yan, Junfeng Li, Yihong Lu, Dapeng Chen
  • Patent number: 8530291
    Abstract: Exposure is performed by controlling an exposure amount applied to a photosensitive resin 23 arranged on a metal film 22, and development is performed to the photosensitive resin 23, and thus a resist 25 provided with an edge section 25b having a tilted surface 25a having a tilt angle ? of at least 20° but no more than 60° is formed. Then, a metal wiring is formed by etching the metal film 22 by using the resist 25 as a mask.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: September 10, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Makoto Kita
  • Patent number: 8524547
    Abstract: Disclosed herein are improved fin-type field effect transistor (FinFET) structures and the associated methods of manufacturing the structures. In one embodiment FinFET drive current is optimized by configuring the FinFET asymmetrically to decrease fin resistance between the gate and the source region and to decrease capacitance between the gate and the drain region. In another embodiment device destruction at high voltages is prevented by ballasting the FinFET. Specifically, resistance is optimized in the fin between the gate and both the source and drain regions (e.g., by increasing fin length, by blocking source/drain implant from the fin, and by blocking silicide formation on the top surface of the fin) so that the FinFET is operable at a predetermined maximum voltage.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: September 3, 2013
    Assignee: International Business Machines Corporation
    Inventor: Edward J. Nowak
  • Patent number: 8513738
    Abstract: An electrostatic discharge protection device, methods of fabricating an electrostatic discharge protection device, and design structures for an electrostatic discharge protection device. A drain of a first field-effect transistor and a diffusion resistor of higher electrical resistance may be formed as different portions of a doped region. The diffusion resistor, which is directly coupled with the drain of the first field-effect transistor, may be defined using an isolation region of dielectric material disposed in the doped region and selective silicide formation. The electrostatic discharge protection device may also include a second field-effect transistor having a drain as a portion the doped region that is directly coupled with the diffusion resistor and indirectly coupled by the diffusion resistor with the drain of the first field-effect transistor.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: John B. Campi, Jr., Shunhua T. Chang, Kiran V. Chatty, Robert J. Gauthier, Jr., Junjun Li, Rahul Mishra, Mujahid Muhammad
  • Patent number: 8445341
    Abstract: A semiconductor device includes a substrate; a nitride based compound semiconductor layer placed on the substrate; an active area which is placed on the nitride based compound semiconductor layer, and is composed of an aluminum gallium nitride layer (AlxGa1-xN) (where 0.1<=x<=1); an isolation region which performs isolation of the active area mutually; a gate electrode, a source electrode, and a drain electrode which have been placed on the active area surrounded by the isolation region; and a trench region formed by etching for a part of the active area under the gate electrode. The semiconductor device is highly reliable, high performance and high power and a fabrication method for the same is also provided.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: May 21, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Keiichi Matsushita
  • Patent number: 8426279
    Abstract: According to one exemplary embodiment, an asymmetric transistor includes a channel region having a drain-side channel portion and a source-side channel portion. The asymmetric transistor can be an asymmetric MOSFET. The source-side channel portion can comprise silicon, for example. The drain-side channel portion can comprise germanium, for example. The asymmetric transistor comprises a vertical heterojunction situated between the drain-side channel portion and the source-side channel portion. According to this exemplary embodiment, the bandgap of the source-side channel portion is higher than the bandgap of the drain-side channel portion and the carrier mobility of the drain-side channel portion is higher than the carrier mobility of the source-side channel portion. The transistor can further include a gate oxide layer situated over the drain-side channel portion and the source-side channel portion, and can also include a gate situated over the gate oxide layer.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: April 23, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Qiang Chen
  • Patent number: 8390000
    Abstract: A III-N device is described with a III-N material layer, an insulator layer on a surface of the III-N material layer, an etch stop layer on an opposite side of the insulator layer from the III-N material layer, and an electrode defining layer on an opposite side of the etch stop layer from the etch stop layer from the insulator layer. A recess is formed in the electrode defining layer. An electrode is formed in the recess. The insulator can have a precisely controlled thickness, particularly between the electrode and III-N material layer.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: March 5, 2013
    Assignee: Transphorm Inc.
    Inventors: Rongming Chu, Robert Coffie
  • Publication number: 20120267642
    Abstract: Provided is a nitride semiconductor device including: a nitride semiconductor layer over a substrate wherein the nitride semiconductor has a two-dimensional electron gas (2DEG) channel inside; a drain electrode in ohmic contact with the nitride semiconductor layer; a source electrode in Schottky contact with the nitride semiconductor layer wherein the source electrode is spaced apart from the drain electrode; a dielectric layer formed on the nitride semiconductor layer between the drain electrode and the source electrode and on at least a portion of the source electrode; and a gate electrode disposed on the dielectric layer to be spaced apart from the drain electrode, wherein a portion of the gate electrode is formed over a drain-side edge portion of the source electrode with the dielectric layer interposed therebetween, and a manufacturing method thereof.
    Type: Application
    Filed: August 4, 2011
    Publication date: October 25, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Woo Chul Jeon, Ki Yeol Park, Young Hwan Park
  • Patent number: 8283243
    Abstract: This invention discloses a bottom-anode Schottky (BAS) diode that includes an anode electrode disposed on a bottom surface of a semiconductor substrate. The bottom-anode Schottky diode further includes a sinker dopant region disposed at a depth in the semiconductor substrate extending substantially to the anode electrode disposed on the bottom surface of the semiconductor and the sinker dopant region covered by a buried Schottky barrier metal functioning as a Schottky anode.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 9, 2012
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: François Hébert
  • Patent number: 8211774
    Abstract: The invention provides a method for forming a semiconductor structure. A substrate is provided. A conductive layer is formed on the substrate. A first patterned mask layer is formed on the conductive layer. The conductive layer exposed by the first patterned mask layer is removed to expose a first sidewall of the conductive layer. A doped region is formed in the substrate by a doping step using the first patterned mask layer as a mask. The first patterned mask layer is removed. A second patterned mask layer is formed on the conductive layer. The conductive layer exposed by the second patterned mask layer is removed to expose a second sidewall opposite to the first sidewall of the conductive layer. The second patterned mask layer is removed.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: July 3, 2012
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Wen-Hsun Lo, Hsing-Chao Liu, Jin-Dong Chern, Po-Shun Huang
  • Patent number: 8193053
    Abstract: An object of the present invention is to provide an integrated semiconductor nonvolatile storage device that can be read at high speed and reprogrammed an increased number of times. In the case of conventional nonvolatile semiconductor storage devices having a split-gate structure, there is a tradeoff between the read current and the maximum allowable number of reprogramming operations. To overcome this problem, an integrated semiconductor nonvolatile storage device of the present invention is configured such that memory cells having different memory gate lengths are integrated on the same chip. This allows the device to be read at high speed and reprogrammed an increased number of times.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: June 5, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Digh Hisamoto, Shin'ichiro Kimura, Daiske Okada, Kan Yasui
  • Patent number: 8138550
    Abstract: A method of manufacturing a semiconductor device, has forming a gate insulating film over a surface of a substrate, eliminating a portion of the gate insulating film in a region, forming a gate electrode over the gate insulating film and a drain electrode on the region, implanting first impurities into the substrate using the gate electrode and the drain electrode as a mask, forming an insulating film to fill the space between the gate electrode and the drain electrode, and implanting second impurities into the substrate to form a source region using the gate electrode, the drain electrode and the insulating film as a mask.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: March 20, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hajime Kurata
  • Patent number: 8134180
    Abstract: A nitride semiconductor device includes: a semiconductor base layer made of a conductive group III nitride semiconductor having a principal plane defined by a nonpolar plane or a semipolar plane; an insulating layer formed on the principal plane of the semiconductor base layer with an aperture partially exposing the principal plane; a nitride semiconductor multilayer structure portion, formed on a region extending onto the insulating layer from the aperture, having a parallel surface parallel to the principal plane of the semiconductor base layer as well as a +c-axis side first inclined surface and a ?c-axis side second inclined surface inclined with respect to the principal plane of the semiconductor base layer and including two types of group III nitride semiconductor layers at least having different lattice constants; a gate electrode formed to be opposed to the second inclined surface; a source electrode arranged to be electrically connected with the group III nitride semiconductor layers; and a drain ele
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Hirotaka Otake, Shigefusa Chichibu
  • Patent number: 8093115
    Abstract: A method of manufacturing a semiconductor device, the method comprising: taking an SOI substrate comprising a bulk substrate, a buried insulating layer and an active layer, and implanting the bulk substrate from the side of and through the insulating layer and the active layer so as to generate an area having an increased doping concentration in the bulk substrate at the interface between the bulk substrate and the insulating layer.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: January 10, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Wolfgang Schwartz, Alfred Haeusler, Vladimir Frank Drobny
  • Patent number: 8063447
    Abstract: A microelectronic device includes a P-I-N (p+ region, intrinsic semiconductor, and n+ region) semiconductive body with a first gate and a second gate. The first gate is a gate stack disposed on an upper surface plane, and the second gate accesses the semiconductive body from a second plane that is out of the first plane.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: November 22, 2011
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jack Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung
  • Patent number: 8043906
    Abstract: A III-nitride device includes a recessed electrode to produce a nominally off, or an enhancement mode, device. By providing a recessed electrode, a conduction channel formed at the interface of two III-nitride materials is interrupted when the electrode contact is inactive to prevent current flow in the device. The electrode can be a schottky contact or an insulated metal contact. Two ohmic contacts can be provided to form a rectifier device with nominally off characteristics. The recesses formed with the electrode can have sloped sides. The electrode can be formed in a number of geometries in conjunction with current carrying electrodes of the device. A nominally on device, or pinch resistor, is formed when the electrode is not recessed. A diode is also formed by providing non-recessed ohmic and schottky contacts through an insulator to an AlGaN layer.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: October 25, 2011
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Patent number: 8034692
    Abstract: A plurality of gate structures are formed on a substrate. Each of the gate structures includes a first gate electrode and source and drain regions. The first gate electrode is removed from each of the gate structures. A first photoresist is applied to block gate structures having source regions in a source-down direction. A first halo implantation is performed in gate structures having source regions in a source-up direction at a first angle. The first photoresist is removed. A second photoresist is applied to block gate structures having source regions in a source-up direction. A second halo implantation is performed in gate structures having source regions in a source-down direction at a second angle. The second photoresist is removed. Replacement gate electrodes are formed in each of the gate structures.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hasan M. Nayfeh, Andres Bryant, Arvind Kumar, Nivo Rovedo, Robert R. Robison
  • Patent number: 7994612
    Abstract: A method patterns pairs of semiconducting fins on an insulator layer and then patterns a linear gate conductor structure over and perpendicular to the fins. Next, the method patterns a mask on the insulator layer adjacent the fins such that sidewalls of the mask are parallel to the fins and are spaced from the fins a predetermined distance. The method performs an angled impurity implant into regions of the fins not protected by the gate conductor structure and the mask. This process forms impurity concentrations within the fins that are asymmetric and that mirror one another in adjacent pairs of fins.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: August 9, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Josephine B. Chang, Omer H. Dokumaci, Edward J. Nowak
  • Patent number: 7859063
    Abstract: According to a feature of the present invention, a semiconductor device includes a SOI substrate, including a semiconductor substrate; an insulating layer formed on the semiconductor substrate and a silicon layer formed on the insulating layer. A drain region and a source region are formed in the silicon layer so that the source region is in contact with the insulating layer but the drain region is not in contact with the insulating layer.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: December 28, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Hirokazu Hayashi
  • Patent number: 7785945
    Abstract: A method for fabricating a PMOS transistor is disclosed herein. In one embodiment, the method can include forming a gate insulation layer and a polysilicon layer over a semiconductor substrate; asymmetrically etching the polysilicon layer; doping the asymmetrically etched polysilicon layer with a P-type dopant; diffusing the dopant in the asymmetrically etched polysilicon layer towards the semiconductor substrate; planarizing the asymmetrically etched polysilicon layer; forming a gate metal layer over the planarized polysilicon layer; forming a hard mask, which delimits a region to be formed with a gate of the PMOS transistor, over the gate metal layer; forming a gate stack by patterning the gate metal layer, the planarized polysilicon layer, and the gate insulation layer; and forming a source/drain in the semiconductor substrate at both sides of the gate stack.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: August 31, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyoung Bong Rouh
  • Patent number: 7767508
    Abstract: Methods are provided for the fabrication of abrupt and tunable offset spacers for improved transistor short channel control. The methods include the formation of a gate electrode within a dielectric layer, with only a top portion of the gate electrode exposed. Silicon is added on the top portion of the gate electrode, by selective epitaxial growth, for example. Etching of the dielectric layer is performed with added silicon at the top portion of the gate electrode serving as a silicon mask to prevent etching of the dielectric layer directly underneath the silicon mask, which includes overhangs over the gate electrode sidewalls. The etching creates offset spacers in a production-worthy manner, and can be used to form offset spacers that are asymmetrical in width. By running the methodology in a microloading regime, wider offset spacers may be created on narrower polysilicon gate features, thereby improving Vt roll-off.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: August 3, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Philip A. Fisher, Laura A. Brown, Johannes Groschopf, Huicai Zhong
  • Patent number: 7666745
    Abstract: A method of manufacturing a semiconductor device, has forming a gate insulating film over a surface of a substrate, eliminating a portion of the gate insulating film in a region, forming a gate electrode over the gate insulating film and a drain electrode on the region, implanting first impurities into the substrate using the gate electrode and the drain electrode as a mask, forming an insulating film to fill the space between the gate electrode and the drain electrode, and implanting second impurities into the substrate to form a source region using the gate electrode, the drain electrode and the insulating film as a mask.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: February 23, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventor: Hajime Kurata
  • Patent number: 7560324
    Abstract: Drain extended MOS transistors (52) and fabrication methods (100) therefor are presented, in which a voltage drop region (80) is provided in a well (82) of a second conductivity type between a channel (78) of a first conductivity type and a drain (74) to inhibit channel hot carrier or direct tunneling degradation of the transistor gate dielectric (64) for high voltage operation. The voltage drop region (80) has more dopants of the first conductivity type and/or fewer dopants of the second conductivity type than does the well (82) so as to shift the high fields away from the transistor gate dielectric (64).
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: July 14, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Pr Chidambaram
  • Patent number: 7507597
    Abstract: A method of fabricating a CMOS image sensor is provided.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: March 24, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: In Gyun Jeon
  • Patent number: 7504286
    Abstract: A method is provided for fabricating a memory device. A semiconductor substrate is provided which includes a first well region having a first conductivity type, a second well region having the first conductivity type, a first gate structure overlying the first well region and the second gate structure overlying the second well region. An insulating material layer is conformally deposited overlying exposed portions of the semiconductor substrate. Photosensitive material is provided over a portion of the insulating material layer which overlies a portion of the second well region. The photosensitive material exposes portions of the insulating material layer. The exposed portions of the insulating material layer are anisotropically etched to provide a sidewall spacer adjacent a first sidewall of the second gate structure, and an insulating spacer block formed overlying a portion of the second gate structure and adjacent a second sidewall of the second gate structure.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: March 17, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Hyun-Jin Cho
  • Patent number: 7456057
    Abstract: A semiconductor-on-insulator structure including first and second layers which are attached to one another either directly or through one or more intermediate layers. The first layer includes a substantially single crystal germanium semiconductor material while the second layer comprises a glass or a glass-ceramic material having a linear coefficient thermal of expansion (25-300° C.) which is within the range of +/?20×10?7/° C. of the linear coefficient thermal of expansion of the germanium first layer.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 25, 2008
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Paul Stephen Danielson, Matthew John Dejneka, Josef Chauncey Lapp, Linda Ruth Pinckney
  • Patent number: 7416917
    Abstract: A method for fabrication organic light emitting diode (OLED) displays. A white light OLED element is formed on the first substrate. A micro-cavity layer is formed on a second substrate. A color filter is formed on the micro-cavity layer. The first and the second substrates are assembled, wherein the light of white OLED element passes through the color filter and the micro-cavity layer.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: August 26, 2008
    Assignee: Au Optronics Corp.
    Inventor: Chung-Wen Ko
  • Patent number: 7314814
    Abstract: Semiconductor devices and methods of fabricating the same are disclosed. A disclosed method comprises: partially forming a first gate stack; partially forming a second gate stack adjacent the first gate stack; forming a first interlayer dielectric; and completing the formation of the first and second gate stacks after the first interlayer dielectric has filled a distance between the first and second gate electrodes.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: January 1, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jae-Suk Lee
  • Patent number: 7265399
    Abstract: High power transistors are provided. The transistors include a source region, a drain region and a gate contact. The gate contact is positioned between the source region and the drain region. First and second ohmic contacts are provided on the source and drain regions, respectively. The first and second ohmic contacts respectively define a source contact and a drain contact. The source contact and the drain contact have respective first and second widths. The first and second widths are different. Related methods of fabricating transistors are also provided.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 4, 2007
    Assignee: Cree, Inc.
    Inventors: Saptharishi Sriram, Jason Henning
  • Patent number: 7183149
    Abstract: Provided is a method of manufacturing a field effect transistor (FET).
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: February 27, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Ho Kyun Ahn, Jong Won Lim, Hong Gu Ji, Woo Jin Chang, Jae Kyoung Mun, Hae Cheon Kim
  • Patent number: 7107170
    Abstract: A multiport vector network analyzer calibration employs measurements of an asymmetric reciprocal device to determine a value of a defining parameter of a calibration standard in a set of calibration standards. A method of determining a parameter value determines and reports the parameter value. A method of compensating a calibration determines the parameter value and employs the determined parameter value to optimize a set of error coefficients of an error model of the multiport vector network analyzer. A multiport vector network analyzer that includes a controller, a test set, and computer program executed by the controller, compensates a calibration using the determined parameter value and a set of optimized error coefficients. A calibration compensation system that includes a multiport vector network analyzer, a computer, and a computer program executed by the computer, determines and reports the parameter value.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: September 12, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Tiberiu Jamneala, Burhan Zaini, David A. Feld
  • Patent number: 7033897
    Abstract: The present invention pertains to formation of a transistor in a manner that mitigates parasitic capacitance, thereby facilitating, inter alia, enhanced switching speeds. More particularly, a sidewall spacer formed upon a semiconductor substrate adjacent a conductive gate structure includes a material having a low dielectric constant (low-k) to mitigate parasitic capacitance between the gate structure, the sidewall spacer and a conductive drain formed within the semiconductor substrate. The low-k sidewall spacer is encapsulated within a nitride material which is selective to etchants such that the spacer is not altered during subsequent processing. The spacer thus retains its shape and remains effective to guide dopants into desired locations within the substrate.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 25, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Yuanning Chen, Antonio L. P. Rotondaro, Karen H. Kirmse
  • Patent number: 6838323
    Abstract: A structure and process for making a non-aligned MOSFET structure for ESD protection using resistor wells as the diffusions and adjustable capacitors. The present invention compensates the shallow extension region without the need for additional masks. The source/drain doping is less than that of a normal MOSFET but extends deeper into the silicon since the present invention uses a resistor well as the source/drain. The deeper emitter/collector increases the second trigger current of the NFET when used as an ESD protection device.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: January 4, 2005
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Edward J. Nowak, Xiaowei Tian, Minh H. Tong, Steven H. Voldman
  • Patent number: 6821853
    Abstract: Methods of manufacturing are provided. In one aspect, a method of manufacturing is provided that includes forming first and second gate stacks on a substrate and forming an insulating layer on the substrate. The insulating layer has portions adjacent to the first stack and portions adjacent to the second gate stack. A first pair of insulating structures is formed adjacent to the first gate stack and a second pair of insulating structures is formed adjacent to the second gate stack. The first pair of insulating structures is removed. The portions of the insulating layer adjacent to the first gate stack are thickened while the second pair of insulating structures prevents thickening of the portions of the insulating film adjacent to the second gate stack. Differential insulating layer thickness for different gate devices is permitted to enable reduction in leakage currents for selected devices without harming speed performance for others.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: November 23, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James F. Buller, Scott Luning
  • Patent number: 6818488
    Abstract: The invention relates to a process for making a gate for a CMOS transistor structure, made from a stack realized on a face in a semi-conducting material of a substrate, said stack comprising a gate isolation layer, a gate material layer and a gate mask in sequence, the process comprising the following steps: a) anisotropic etching of the top part of the gate material layer not masked by the gate mask, this etching step leaving the bottom part of the gate material layer and leading to the formation of a deposit composed of etching products on the etching sides resulting from the anisotropic etching, b) treatment of the deposit composed of etching products, to make a protection layer reinforced against subsequent etching of the gate material, c) etching of the bottom part of the gate material layer as far as the gate isolation layer, this etching comprising isotropic etching of the gate material layer to make the gate shorter at the bottom than at the top.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: November 16, 2004
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche
    Inventors: Olivier Joubert, Giles Cunge, Johann Foucher, David Fuard, Marceline Bonvalot, Laurent Vallier
  • Publication number: 20040014262
    Abstract: A semiconductor device including an IGFET (insulated gate field effect transistor) (30) is disclosed. IGFET (30) may include a source/drain area (15) having an impurity concentration distribution that may be formed shallower at a higher concentration than the impurity concentration distribution in another source/drain area (7). A gate oxide film may include a first gate oxide film (5) adjacent to source/drain area (7) and a second gate oxide film (12) adjacent to source drain area (15). Second gate oxide film (12) may be thinner than first gate oxide film (5). An impurity concentration distribution of a second channel impurity area (11) under second gate oxide film (12) may be at a higher concentration than an impurity concentration distribution of a first channel impurity area (9) under first gate oxide film (5). In this way, an electric field at a PN junction of source/drain area (7) may be reduced.
    Type: Application
    Filed: July 11, 2003
    Publication date: January 22, 2004
    Inventor: Kazutaka Manabe
  • Publication number: 20030227027
    Abstract: A process and related product in which ohmic contacts are formed in High Electron Mobility Transistors (HEMTs) employing compound substrates such as gallium nitride. An improved device and an improvement to a process for fabrication of ohmic contacts to GaN/AlGaN HEMTs using a novel two step resist process to fabricate the ohmic contacts are described. This novel two-step process consists of depositing a plurality of layers having compounds of Group III V elements on a substrate; patterning and depositing a first photoresist on one of the layers; etching recessed areas into this layer; depositing ohmic metals on the recessed areas; removing the first photoresist; patterning and depositing a second photoresist, smaller in profile than the first photoresist, on the layer; depositing more ohmic metal on the layer allowing for complete coverage of the recessed areas; removing the second photoresist, and annealing the semiconductor structure.
    Type: Application
    Filed: June 9, 2003
    Publication date: December 11, 2003
    Applicant: HRL Laboratories, LLC
    Inventors: Miroslav Micovic, Tahir Hussain, Paul Hashimoto, Janna Ruth Duvall
  • Patent number: 6638801
    Abstract: A semiconductor device including an IGFET (insulated gate field effect transistor) (30) is disclosed. IGFET (30) may include a source/drain area (15) having an impurity concentration distribution that may be formed shallower at a higher concentration than the impurity concentration distribution in another source/drain area (7). A gate oxide film may include a first gate oxide film (5) adjacent to source/drain area (7) and a second gate oxide film (12) adjacent to source drain area (15). Second gate oxide film (12) may be thinner than first gate oxide film (5). An impurity concentration distribution of a second channel impurity area (11) under second gate oxide film (12) may be at a higher concentration than an impurity concentration distribution of a first channel impurity area (9) under first gate oxide film (5). In this way, an electric field at a PN junction of source/drain area (7) may be reduced.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: October 28, 2003
    Assignees: NEC Corporation, NEC Electronics Corporation
    Inventor: Kazutaka Manabe
  • Patent number: 6624057
    Abstract: Methods are disclosed for the fabrication of novel polysilicon structures having increased surface areas to achieve lower resistances after silicidation. The structures are applicable, for example, to semiconductor interconnects, polysilicon gate, and capacitor applications. The inventive method provides additional means of obtaining suitable sheet resistivity and resistances for deep submicron applications. Techniques are disclosed for improving the conductivities of a silicided gate structure, a silicided interconnect structure, and capacitor component structures, each of such are situated on a substrate assembly, such as a semiconductor wafer.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: September 23, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Fernando Gonzalez