Complementary Bipolar Transistors Patents (Class 438/203)
  • Patent number: 7521310
    Abstract: In a complementary SiGe bipolar process, a pnpn thyristor structure is formed from some of the layers of a pnp transistor and an npn transistor formed on top of each other and making use of the SiGe gates to define the blocking junction.
    Type: Grant
    Filed: October 29, 2005
    Date of Patent: April 21, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Alexel Sadovnikov, Peter J. Hopper
  • Patent number: 7462530
    Abstract: An n-type buried diffusion layer is formed on the surface layer of the prescribed area of a p-type silicon substrate, and a p-type first high-concentration isolation diffusion layer is formed in the silicon substrate so as to surround the buried diffusion layer. An n-type epitaxial layer is formed on the silicon substrate, the buried diffusion layer, and the first high-concentration isolation diffusion layer. A p-type second high-concentration isolation diffusion layer is formed in the epitaxial layer on the first high-concentration isolation diffusion layer. A p-type low-concentration isolation diffusion layer for isolating the epitaxial layer into a plurality of island regions is formed in the epitaxial layer on the second high-concentration isolation diffusion layer.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: December 9, 2008
    Assignee: Renesas Technology Corp.
    Inventor: Satoshi Rittaku
  • Patent number: 7439140
    Abstract: Wells are formed in a substrate where standard Vt and low Vt devices of both a first and second type are to be fabricated. Wells defining the locations of first type standard Vt devices are masked, and a first voltage threshold implant adjustment is performed within wells defining the second type standard Vt devices, and each of the first and second type low Vt devices. Wells that define the locations of second type standard Vt devices are masked, and a second voltage threshold implant adjustment is performed to the wells defining the first type standard Vt devices, and each of the first and second type low Vt devices. Doped polysilicon gate stacks are then formed over the wells. Performance characteristics and control of each device Vt is controlled by regulating at least one of the first and second voltage threshold implant adjustments, and the polysilicon gate stack doping.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Mark Helm, Xianfeng Zhou
  • Publication number: 20080227250
    Abstract: A CMOS device having dual-epi channels comprises a first epitaxial region formed on a substrate, a PMOS device formed on the first epitaxial region, a second epitaxial region formed on the substrate, wherein the second epitaxial region is formed from a different material than the first epitaxial region, an NMOS device formed on the second epitaxial region, and electrical contacts coupled to the PMOS and NMOS devices, wherein the electrical contacts are self-aligned.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 18, 2008
    Inventors: Pushkar Ranade, Keith E. Zawadzki
  • Patent number: 7314791
    Abstract: An integrated circuit including a bipolar transistor with improved forward second breakdown is disclosed. In one embodiment, the bipolar transistor includes a base, a collector, a plurality of emitter sections coupled to a common emitter and a ballast emitter for each emitter section. Each ballast resistor is coupled between the common emitter and an associated emitter section. The size of each ballast resistor is selected so that the size of the ballast resistors vary across a two dimensional direction in relation to a lateral surface of the bipolar transistor.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: January 1, 2008
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Patent number: 7282401
    Abstract: A method used in fabrication of a recessed access device transistor gate has increased tolerance for mask misalignment. One embodiment of the invention comprises forming a vertical spacing layer over a semiconductor wafer, then etching the vertical spacing layer and the semiconductor wafer to form a recess in the wafer. A conductive transistor gate layer is then formed within the trench and over the vertical spacing layer. The transistor gate layer is etched, which exposes the vertical spacing layer. A spacer layer is formed over the etched conductive gate layer and over the vertical spacing layer, then the spacer layer and the vertical spacing layer are anisotropically etched. Subsequent to anisotropically etching the vertical spacing layer, a portion of the vertical spacing layer is interposed between the semiconductor wafer and the etched conductive transistor gate layer in a direction perpendicular to the plane of a major surface of the semiconductor wafer.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7271044
    Abstract: A method for forming semiconductor transistor. The method comprises providing a structure including (a) a semiconductor region, and (b) first and second dopant source regions on and in direct physical contact with the semiconductor region, wherein each region of the first and second dopant source regions comprises a dielectric material which contains dopants; causing the dopants to diffuse from the first and second dopant source regions into the semiconductor region so as to form first and second source/drain extension regions, respectively, wherein the first and second source/drain extension regions define a channel region disposed between; forming a gate dielectric region on a channel region; and forming a gate region on the gate dielectric region, wherein the gate dielectric region electrically insulates the gate region from the channel region.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventor: Anthony C. Speranza
  • Patent number: 7265012
    Abstract: Wells are formed in a substrate where standard Vt and low Vt devices of both a first and second type are to be fabricated. Wells defining the locations of first type standard Vt devices are masked, and a first voltage threshold implant adjustment is performed within wells defining the second type standard Vt devices, and each of the first and second type low Vt devices. Wells that define the locations of second type standard Vt devices are masked, and a second voltage threshold implant adjustment is performed to the wells defining the first type standard Vt devices, and each of the first and second type low Vt devices. Doped polysilicon gate stacks are then formed over the wells. Performance characteristics and control of each device Vt is controlled by regulating at least one of the first and second voltage threshold implant adjustments, and the polysilicon gate stack doping.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: September 4, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Mark Helm, Xianfeng Zhou
  • Patent number: 7265010
    Abstract: The invention includes a method and resulting structure for fabricating high performance vertical NPN and PNP transistors for use in BiCMOS devices. The resulting high performance vertical PNP transistor includes an emitter region including silicon and germanium, and has its PNP emitter sharing a single layer of silicon with the NPN transistor's base. The method adds two additional masking steps to conventional fabrication processes for CMOS and bipolar devices, thus representing minor additions to the entire process flow. The resulting structure significantly enhances PNP device performance.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Peter B. Gray, Jeffrey B. Johnson
  • Patent number: 7247532
    Abstract: A high voltage transistor operating through a high voltage and a method for fabricating the same are provided. The high voltage transistor includes: an insulation layer on a substrate; an N+-type drain junction region on the insulation layer; an N?-type drain junction region on the N+-type drain junction region; a P?-type body region provided in a trench region of the N?-type drain junction region; a plurality of gate patterns including a gate insulation layer and a gate conductive layer in other trench regions bordered by the P?-type body region and the N?-type drain junction region; a plurality of source regions contacted to a source electrode on the P?-type body region; and a plurality of N+-type drain regions contacted to the N?-type drain junction region and individual drain electrodes.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 24, 2007
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Jae-Il Ju
  • Patent number: 7220633
    Abstract: A method of monolithically fabricating an LDMOS transistor with a fabrication process that is compatible with a sub-micron CMOS fabrication process. The specification further describes an LDMOS transistor. The LDMOS transistor is implemented in a first impurity region on a substrate. The LDMOS transistor has a source that includes a second impurity region. The second impurity region is implanted into the surface of the substrate within the first impurity region. Additionally, the LDMOS transistor has a drain that includes a third impurity region. The third impurity region is implanted into the surface of the substrate within the first impurity region. The third impurity region is spaced a predetermined distance away from a gate of the LDMOS transistor. The drain of the LDMOS transistor further includes a fourth impurity region within the third impurity region. The fourth impurity region provides an ohmic contact for the drain.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: May 22, 2007
    Assignee: Volterra Semiconductor Corporation
    Inventors: Budong You, Marco A. Zuniga
  • Patent number: 7098094
    Abstract: A capping layer (118) is used during an anneal to form fully silicided NiSi gate electrodes (120). The capping layer (118) comprises a material with an affinity for boron, such as TiN. The capping layer (118) serves as a boron trap that reduces the interface boron concentration for PMOS transistors without reducing the interface arsenic concentration for NMOS transistors.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: August 29, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Jiong-Ping Lu
  • Patent number: 7056779
    Abstract: A p type base layer is formed in one surface region of an n type base layer. An n type emitter layer is formed in a surface region of the p type base layer. An emitter electrode is formed on the n type emitter layer and the p type base layer. A trench is formed in the n type emitter layer such that extends through the p type base layer to the n type base layer. A trench gate electrode is formed in the trench. The n type base layer has such a concentration gradient continuously changing in a thickness direction thereof that its portion in contact with the p type base layer has a lower concentration than its portion in contact with the p type collector layer, with the p type collector layer having a thickness of 1 ?m or less.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: June 6, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetaka Hattori
  • Patent number: 7015551
    Abstract: A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: March 21, 2006
    Assignee: Sony Corporation
    Inventors: Kenichi Ookubo, Hideki Mori, Shigeru Kanematsu
  • Patent number: 7009259
    Abstract: A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: March 7, 2006
    Assignee: Sony Corporation
    Inventors: Kenichi Ookubo, Hideki Mori, Shigeru Kanematsu
  • Patent number: 7001806
    Abstract: A semiconductor structure comprises a buried first semiconductor layer of a first doping type, a second semiconductor layer of the first doping type on the buried semiconductor layer, which is less doped than the buried first semiconductor layer, a semiconductor area of a second doping type on the second semiconductor layer, so that a pn junction is formed between the semiconductor area and the second semiconductor layer, and a recess present below the semiconductor area in the buried first semiconductor layer, which comprises a semiconductor material of the first doping type, which can be less doped than the buried first semiconductor layer and has a larger distance to the semiconductor area of the second doping type on the second semiconductor layer, such that the breakdown voltage across the pn junction is higher than if the recess were not provided.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: February 21, 2006
    Assignee: Infineon Technologies AG
    Inventors: Armin Tilke, Wolfgang Klein
  • Patent number: 6995055
    Abstract: A method of fabricating CMOS transistors of first and second conductivity types in an SOI substrate includes the steps of etching contact holes and alignment marks through the semiconductor and insulating films and into the support substrate of an SOI substrate, forming a thermal oxide film on the semiconductor layer inside the contact holes, forming back regions of the CMOS transistors in the substrate, forming a well regions of the CMOS transistors in the semiconductor film, forming a gate oxide film, gate electrodes, source regions, drain regions, and body regions, forming an interlayer insulating film, forming contacts of the source regions, drain regions, and body regions, forming openings in the interlayer insulating film over the contact holes, and forming wiring on the interlayer insulating film.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: February 7, 2006
    Assignee: Seiko Instruments Inc.
    Inventors: Yoshifumi Yoshida, Miwa Wake
  • Patent number: 6987039
    Abstract: A method of forming a lateral bipolar transistor without added mask in CMOS flow including a p-substrate; patterning and n-well implants; pattern and implant pocket implants for core nMOS and MOS; pattern and implants pocket implants I/O nMOS and pMOS; sidewall deposit and etch and then source/drain pattern and implant for nMOS and pMOS. The method includes the steps of forming emitter and collector contacts by implants used in source/drain regions; forming an emitter that includes implants done in core pMOS during core pMOS LDD extender and pocket implant steps and while the collector omits the core pMOS LDD extender and pocket implants; forming a base region below the emitter and collector contacts by the n-well region with said base region going laterally from emitter to collector being the n-well and including pocket implants; and forming base contact by said n-well region and by implants used in nMOS source/drain regions.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: January 17, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Amitava Chatterjee
  • Patent number: 6933201
    Abstract: Provided is a manufacturing method of a semiconductor device, which comprises exposing a surface of a semiconductor substrate on which a heterocrystalline layer is to be grown inside of a second emitter opening portion of a hetero-junction bipolar transistor, removing water by preheat treatment in a reducing gas atmosphere, subjecting the substrate to second heat treatment in a reducing gas atmosphere at a temperature which is higher than the preheating treatment but does not adversely affect the impurity concentration distribution of another element on the semiconductor substrate, thereby removing an oxide film formed on the surface on which the heterocrystalline layer is to be grown, and then selectively causing epitaxial growth of the heterocrystalline layer on the thus cleaned surface in the second emitter opening portion. According to the present invention, reliability of a semiconductor device having a hetero-junction bipolar transistor can be improved.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: August 23, 2005
    Assignees: Hitachi, Ltd., Hitachi ULSI Sytems Co., Ltd.
    Inventors: Tatsuya Tominari, Takashi Hashimoto, Tomoko Jinbo, Tsutomu Udo
  • Patent number: 6858486
    Abstract: A vertical bipolar transistor is described which utilizes ion implantation steps which are used to form an nMOS field effect device and a pMOS field effect device. The implantation steps form an n-well, a channel stop p-well region and emitter region which are vertically oriented within a semiconductor substrate. The resulting bipolar device is junction isolated from other circuits formed on the substrate by a p-well region.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: February 22, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Amitava Chatterjee
  • Patent number: 6849492
    Abstract: Wells are formed in a substrate where standard Vt and low Vt devices of both a first and second type are to be fabricated. Wells defining the locations of first type standard Vt devices are masked, and a first voltage threshold implant adjustment is performed within wells defining the second type standard Vt devices, and each of the first and second type low Vt devices. Wells that define the locations of second type standard Vt devices are masked, and a second voltage threshold implant adjustment is performed to the wells defining the first type standard Vt devices, and each of the first and second type low Vt devices. Doped polysilicon gate stacks are then formed over the wells. Performance characteristics and control of each device Vt is controlled by regulating at least one of the first and second voltage threshold implant adjustments, and the polysilicon gate stack doping.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: February 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Mark Helm, Xianfeng Zhou
  • Publication number: 20040253779
    Abstract: A method of forming a bipolar junction transistor using a CMOS process that includes performing a high voltage deep well and drive-in process in a semiconductor substrate having a predetermined substructure; performing a local oxidation of silicon (LOCOS) process; performing an Nbase and Pbase process on the resulting structure; forming logic N well and P well and annealing the logic wells; forming a poly gate and sequentially forming NMOS/PMOS LDD source/drain; and forming N+/P+ source/drain, annealing the source/drain and sequentially performing a CONT˜PAD process.
    Type: Application
    Filed: March 16, 2004
    Publication date: December 16, 2004
    Inventor: Dae-wook Hong
  • Patent number: 6830967
    Abstract: According to an exemplary method in one embodiment, a transistor gate is fabricated on a substrate. Next, an etch stop layer may be deposited on the substrate. The etch stop layer may, for example, be TEOS silicon dioxide. Thereafter, a conformal layer is deposited over the substrate and the transistor gate. The conformal layer may, for example, be silicon nitride. An opening is then etched in the conformal layer. Next, a base layer is deposited on the conformal layer and in the opening. The base layer may, for example, be silicon-germanium. According to this exemplary embodiment, an emitter may be formed on the base layer in the opening. Next, the base layer is removed from the conformal layer. The conformal layer is then etched back to form a spacer adjacent to the transistor gate. In one embodiment, a structure is fabricated according to the above described exemplary method.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: December 14, 2004
    Assignee: Newport Fab, LLC
    Inventors: Kevin Q. Yin, Amol M. Kalburge, Klaus F. Schuegraf
  • Patent number: 6767797
    Abstract: Complementary bipolar transistors are fabricated on a semiconductor wafer by forming, first and second electrodes corresponding to first and second complementary transistors, respectively. A first impurity is selectively introduced into the first and second electrodes. A third electrode corresponding to the first transistor is formed, the third electrode being self-aligned with and electrically isolated from the first electrode, and a fourth electrode is formed corresponding to the second transistor, the fourth electrode being self-aligned with and electrically isolated from the second electrode. A second impurity is selectively introduced into the third and fourth electrodes. First active regions of the first and second transistors are formed, whereby the first impurity diffuses into the first active regions. Likewise, second active regions of the first and second transistors are formed, whereby the second impurity diffuses into the second active regions.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: July 27, 2004
    Assignee: Agere Systems Inc.
    Inventor: Thomas J. Krutsick
  • Patent number: 6730557
    Abstract: A semiconductor device having a bipolar transistor which is capable of high integration, and a semiconductor device in which the bipolar transistor has good characteristic properties. A process for producing said semiconductor device.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: May 4, 2004
    Assignee: Sony Corporation
    Inventor: Chihiro Arai
  • Patent number: 6706567
    Abstract: A high voltage device prevents or minimizes the lowering of a maximum operating voltage range. Bulk resistances of the drift regions are reduced by forming trenches within the drift regions and filling the trenches with conductive polysilicon layers. The polysilicon layers reduce the bulk resistances and prevents or minimizes the operation of parasitic bipolar junction transistors typically formed when the high voltage device is manufactured.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: March 16, 2004
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Lee-Yeun Hwang
  • Patent number: 6673703
    Abstract: A method of fabricating an integrated circuit including a monocrystalline silicon substrate, a layer of polycrystalline silicon on the top surface of the substrate and doped with at least two dopants with different rates of diffusion, in which method annealing is performed at a temperature and for a time such that a first dopant diffuses into a first zone and a second dopant diffuses into a second zone larger than the first zone.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: January 6, 2004
    Assignee: STMicroelectronics S.A.
    Inventors: Olivier Menut, Herve Jaouen
  • Patent number: 6670229
    Abstract: A bipolar transistor is produced by processes employed in the manufacture of CMOS nonvolatile memory devices, and is part of an integrated circuit. The integrated circuit includes a semiconductor substrate having a first type of conductivity, a PMOS transistor formed in said substrate, an NMOS transistor formed in said substrate, and the bipolar transistor.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: December 30, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventors: Loris Vendrame, Paolo Ghezzi
  • Patent number: 6667202
    Abstract: A semiconductor device which has: a bipolar transistor having a collector region of a second conductivity type formed from the surface of a semiconductor substrate of a first conductivity type, a base region of a first conductivity type formed from the surface of the collector region, and an emitter region of a second conductivity type formed from the surface of the base region; a collector extraction region that is separated by an insulating layer and is formed in the collector region except the base region; a concave portion in the collector extraction region that is formed up to a depth where the collector region has a peak concentration in impurity distribution; and a collector extraction electrode that is connected with the collector region to extract ohmic-connecting to the bottom of the concave portion.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: December 23, 2003
    Assignee: NEC Electronics Corporation
    Inventor: Hisamitsu Suzuki
  • Patent number: 6657268
    Abstract: A metal gate structure and method of forming the same introduces metal impurities into a first metal layer, made of TiN, for example. The impurities create a surface region of greater etch selectivity that prevents overetching of the TiN during the etching of an overlying tungsten gate during the formation of the metal gate structure. The prevention of the overetching of the TiN protects the gate oxide from undesirable degradation. The provision of aluminum or tantalum as the metal impurities provides adequate etch stopping capability and does not undesirably affect the work function of the TiN.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: December 2, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Paul R. Besser, Srikanteswara Dakshina-Murthy
  • Patent number: 6610565
    Abstract: A method of forming a CMOS type semiconductor device comprises forming a gate electrode pattern on a surface of a substrate in NMOS and PMOS regions, forming spacers on side walls of the gate electrode pattern in the NMOS and PMOS regions, and doping n and p-type impurities heavily to the surface of the substrate in the NMOS and PMOS regions, respectively. After doping the p and n-type impurities heavily, the spacers are removed. The method further includes doping the n and p-type impurities lightly to the surface of the substrate in the NMOS and PMOS regions on which the spacers are removed. Alternatively, the light impurity implantation can be carried out before forming the spacers. Also, the light impurity implantation can be carried out to the surface of the substrate in one of the NMOS and PMOS regions before forming the spacers and to the surface of the substrate in the other of the NMOS and PMOS regions after removing the spacers.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: August 26, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Do-Hyung Kim, Jin-Ho Kim, Byung-Jun Hwang
  • Patent number: 6590273
    Abstract: In the semiconductor integrated circuit device, a first P+ type buried layer formed as an anode region and an N+ type diffused region formed in a cathode region are spaced from each other in the direction of the depth. This makes it possible to provide a semiconductor integrated circuit device in which a large depletion layer forming region can be provided in an N type region at a PN junction formed by first and second epitaxial layers and when a reverse bias voltage is applied to a diode element and in which a withstand voltage can be maintained by a depletion layer thus formed to prevent breakdown of elements in the device attributable to a breakdown current.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 8, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shigeaki Okawa, Toshiyuki Ohkoda
  • Patent number: 6576535
    Abstract: A method for fabricating a high speed complementary bipolar/CMOS device is disclosed which enables the forming of a silicon epitaxial layer in a PNP transistor having carbon incorporated therein to suppress boron up-diffusion from lower heavily boron-doped buried layers into upper PNP structures. According to an embodiment of the invention, an epitaxial layer is formed on a P type silicon substrate in which a plurality of P+ buried layer regions, a plurality of N+ buried layer regions, and a P+ field layer region occupying most of the substrate surface are diffused. The substrate is loaded in a reactor with a carrier gas and pre-baked at a temperature of approximately 850° C. for a time. The temperature is then increased to approximately 1050° C. and subjected to a high temperature bake cycle. A thin carbon-doped epitaxial cap layer is deposited on the substrate, which then is subjected to a high temperature gas purge cycle at approximately 1080° C.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: June 10, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Vladimir F. Drobny, Dennis D. Liu
  • Patent number: 6569730
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 27, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6566217
    Abstract: A manufacturing process for a semiconductor device including a semiconductor memory region and a peripheral circuit region including bipolar transistors, in which a plurality of bipolar transistors with characteristics different from each other are effectively manufactured according to design requirements while minimizing the number of manufacturing steps. In manufacturing the semiconductor memory region and the bipolar transistors in the peripheral circuit region, a plurality of holes for forming the bipolar transistors are provided in the peripheral circuit region in correspondence to a plurality of steps for forming holes for interlayer insulating films in the semiconductor memory region, whereby the bipolar transistors with characteristics different from each other are formed in the holes of the peripheral region.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: May 20, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Yukio Maki
  • Patent number: 6541824
    Abstract: An ESD protection circuit that will prevent internal circuits of an integrated circuit is formed on a semiconductor substrate to prevent damage during extreme voltage levels from an ESD voltage source and is connected to an input/output pad. A plurality of drains of multiple MOS FET's is formed within the surface of the semiconductor substrate and are each connected to the input/output pad. A plurality of sources of the multiple MOS FET's is formed within the surface of the semiconductor substrate and are placed at a distance from the plurality of drains and are connected to a ground reference potential. Pairs of the plurality of sources are adjacent to each other. A plurality of isolation regions placed between each source of the pairs of sources and are allowed to float. The multiple MOS FET's have a plurality of parasitic bipolar junction transistors.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: April 1, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jian-Hsing Lee, Jiaw-Ren Shih, Shui-Hung Chen, Yi-Hsun Wu
  • Patent number: 6531368
    Abstract: A method of fabricating a semiconductor device, having a locally-formed metal oxide high-k gate insulator, involving: nitriding a substrate to form a thin silicon nitride layer; depositing a thin metal film on the thin silicon nitride layer; forming a localized metal oxide layer from the thin metal film, wherein the a thick nitride layer is deposited on the thin metal film, the thick nitride layer is patterned, the at least one exposed thin metal film portion is locally oxidized, by heating, wherein the oxidizing is performed by local laser irradiation; forming a gate stack having the localized metal oxide layer and a gate electrode, wherein the a thick gate material is deposited in the electrode cavity and on the localized metal oxide layer; the thick gate material is polished, thereby forming the gate electrode; and the thick nitride layer along with the at least one covered thin metal film portion are removed, thereby forming the gate stack; and completing fabrication of the device, and a device thereby fo
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: March 11, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Bin Yu
  • Patent number: 6475850
    Abstract: A BiCMOS integrated circuit is fabricated using a minimum number of wafer processing steps and yet offers the IC circuit designer five (5) different transistor types. These types include P-channel and N-channel MOS transistors and three different bipolar transistors whose emitters are all formed by a different process and all are characterized by different current gains and different breakdown voltages. A differential silicon dioxide/silicon nitride masking technique is used in the IC fabrication process wherein both P-type buried layers (PBL) and N-type buried layers (NBL) are formed in a silicon substrate using a single mask set and further wherein P-type wells and N-type wells are formed above these buried layers in an epitaxial layer, also using a single SiO2/Si3N4 differential mask set. Two of the bipolar transistor emitters are formed by out diffusion from first and second levels of polysilicon, whereas the emitter of the third bipolar transistor is formed by ion implantation doping.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: November 5, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Michael Violette, Martin Ceredig Roberts
  • Patent number: 6472288
    Abstract: Bipolar transistors of different designs, particularly designs optimized for different high frequency applications are formed on the same substrate by separate base layer formation processes for epitaxial growth including different material concentration profiles of germanium, boron and/or carbon. Epitaxial growth of individual growth layers by low temperature processes is facilitated by avoiding etching of the silicon substrate including respective collector regions through use of an etch stop that can be etched selectively to silicon. Annealing processes can be performed between growth of respective base layers and/or performed collectively after all transistors are substantially completed.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: October 29, 2002
    Assignee: International Business Machines Corporation
    Inventors: Gregory G. Freeman, K. T. Schonenberg, Kenneth J. Stein, Seshadri Subbanna
  • Publication number: 20020151153
    Abstract: A method for fabricating a high speed complementary bipolar/CMOS device is disclosed which enables the forming of a silicon epitaxial layer in a PNP transistor having carbon incorporated therein to suppress boron up-diffusion from lower heavily boron-doped buried layers into upper PNP structures. According to an embodiment of the invention, an epitaxial layer is formed on a P type silicon substrate in which a plurality of P+ buried layer regions, a plurality of N+ buried layer regions, and a P+ field layer region occupying most of the substrate surface are diffused. The substrate is loaded in a reactor with a carrier gas and pre-baked at a temperature of approximately 850° C. for a time. The temperature is then increased to approximately 1050° C. and subjected to a high temperature bake cycle. A thin carbon-doped epitaxial cap layer is deposited on the substrate, which then is subjected to a high temperature gas purge cycle at approximately 1080° C.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vladimir F. Drobny, Dennis D. Liu
  • Patent number: 6465822
    Abstract: A method of reducing the capacitance of a conductive layer and a semiconductor obtained thereby. In the method, a well region is formed below the isolation, adjacent to it, an in a floating form. The well region has a dopant type different than the dopant type of the substrate. A depletion region can be formed at the interface between the floating well and the substrate. By connecting the capacitance of the depletion region and the parasitic capacitance generated between the conductive layer and the floating well in series, the total parasitic capacitance of the conductive layer can be reduced so as to increase the operational speed of the device.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: October 15, 2002
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiao-Ming Lin
  • Patent number: 6444512
    Abstract: A process for forming a first transistor of a first conductivity type and a second transistor of a second conductivity type in a semiconductor substrate is disclosed. The substrate has a first well of the first conductivity type and a second well of the second conductivity type. A gate dielectric is formed over the wells. A first metal layer is then formed over the gate dielectric. A portion of the first metal layer located over the second well is then removed. A second metal layer different from said first metal is then formed over the wells and a gate mask is formed over the second metal. The metal layers are then patterned to leave a first gate over the first well and a second gate over the second well. Source/drains are then formed in the first and second wells to form the first and second transistor.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: September 3, 2002
    Assignee: Motorola, Inc.
    Inventors: Sucharita Madhukar, Bich-Yen Nguyen
  • Patent number: 6440787
    Abstract: A manufacturing method of a semiconductor device which can form high-performance bipolar transistors and high-performance MOS transistors on the same substrate while minimizing increases in the number of manufacturing steps and the number of masks. A base lead-out electrode 105a of an NPN bipolar transistor and the gate 105b of a PMOS transistor can be formed at the same time by using the same material (a polysilicon film 105), and an emitter lead-out electrode 122a of the NPN bipolar transistor and the gate 122b of an NMOS transistor are formed at the same time by using the same material (a polysilicon film 122). Therefore, a surface channel PMOS transistor can be obtained while an increase in the number of manufacturing steps is prevented. As a result, the leak current of the PMOS transistor can be reduced and the threshold voltage Vth can be controlled easily.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: August 27, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Yasuki Yoshihisa
  • Patent number: 6396100
    Abstract: An efficient method for fabricating dual well type structures uses the same number of masks used in single well type structure fabrication. In a preferred embodiment, the current invention allows low voltage and high voltage n-channel transistors and low voltage and high voltage p-channel transistors to be formed in a single substrate. One mask is used for forming a diffusion well, a second mask for both forming a retrograde well and doping the well to achieve an intermediate threshold voltage in that well, and a third mask for both differentiating the gate oxides for the low voltage devices and doping the threshold voltages to achieve the final threshold voltages.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: May 28, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Mark A. Helm
  • Patent number: 6383855
    Abstract: A bipolar complementary metal oxide semiconductor device has a c-well fabricated using profile engineering (a multi-energy implant using accurate dosages and energies determined by advance simulation) to provide a higher c-well implant dose while creating a narrow region with relatively low concentration in the collector depletion range to avoid low base-collector breakdown. This achieves a much lower collector series resistance to pull-up a frequency response, a collector sheet resistance which can be as low as 150 &OHgr;/sq., and fT may be increased to 20 GHz or higher.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: May 7, 2002
    Assignee: Institute of Microelectronics
    Inventors: Minghui Gao, Haijun Zhao, Abhijit Bandyopadhyay, Pang Dow Foo
  • Patent number: 6365447
    Abstract: A method of making high voltage complementary bipolar and BiCMOS devices on a common substrate. The bipolar devices are vertical NPN and PNP transistors having the same structure. The fabrication process utilizes trench isolation and thus is scalable. The process uses two epitaxial silicon layers to form the high voltage NPN collector, with the PNP collector formed from a p-well diffused into the two epitaxial layers. The collector contact resistance is minimized by the use of sinker up/down structures formed at the interface of the two epitaxial layers. The process minimizes the thermal budget and therefore the up diffusion of the NPN and PNP buried layers. This maximizes the breakdown voltage at the collector-emitter junction for a given epitaxial thickness. The epitaxial layers may be doped as required depending upon the specifications for the high voltage NPN device.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: April 2, 2002
    Assignee: National Semiconductor Corporation
    Inventors: Francois Hèbert, Datong Chen, Reda Razouk
  • Patent number: 6362031
    Abstract: A TFT of the present invention includes an insulating substrate, a first conductive film layer which is to be a gate electrode provided on the insulating substrate, a first insulating film layer which is to be a gate insulating film layer provided on the first conductive film layer, a non-doped semiconductor layer formed on the first insulating film layer, and a second conductive film layer which is to be a source electrode formed on a source region of the semiconductor layer and a drain electrode formed on a drain region of the semiconductor, wherein a junction is formed by implanting an n-type impurity in the source region of the semiconductor layer and the drain region of the semiconductor.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: March 26, 2002
    Assignee: Advanced Display Inc.
    Inventors: Takehisa Yamaguchi, Akio Nakayama
  • Patent number: 6352887
    Abstract: A method for fabricating a BiCMOS integrated circuit. The method includes the steps of forming in a single implantation step a base region 211 of a bipolar transistor and a p-well 212 of an n-channel MOS transistor; and forming in a single implantation step a collector contact well 213 of a bipolar transistor and an n-well 208 of a p-channel MOS transistor.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: March 5, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Louis N. Hutter, Peter Ying, Marco Corsi, Imran Khan
  • Patent number: 6333237
    Abstract: A method for manufacturing a semiconductor device separately forms two collector regions, two base extension regions, two base regions, and two collector extension regions on a first bipolar transistor forming region and a second bipolar transistor forming region that are formed on a semiconductor substrate, and includes a step of forming an emitter region on the first bipolar transistor region and forming, in the same process step, a base contact layer for an emitter electrode in the second bipolar transistor region as well, after which an emitter electrode is formed on the base contact layer.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: December 25, 2001
    Assignee: NEC Corporation
    Inventor: Hiroshi Yoshida
  • Patent number: 6323075
    Abstract: Disclosed is a method of fabricating a semiconductor device in which at least an LDD type insulated-gate field effect transistor and a bipolar transistor are formed on a common base substrate. An insulating layer for forming side walls of an LDD type insulated-gate field effect transistor is formed by a stack of first and second insulating films. An opening is formed in the lower first insulating film at a position in a bipolar transistor forming area, and a single crystal semiconductor layer is formed on a base substrate through the opening. With this configuration, the fabrication steps can be simplified and the reliability of the semiconductor device can be enhanced.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: November 27, 2001
    Assignee: Sony Corporation
    Inventors: Hiroaki Ammo, Hiroyuki Miwa