Including Isolation Structure Patents (Class 438/207)
  • Patent number: 7723800
    Abstract: An integrated power semiconductor device has an isolation structure having two or more isolation trenches, and one or more regions in between the isolation trenches, and a bias arrangement coupled to the regions to divide a voltage across the isolation structure between the isolation trenches. By dividing the voltage, the reverse breakdown voltage characteristics such as voltage level, reliability and stability can be improved for a given area of device, or for a given complexity of device, and avalanche breakdown at weaknesses in isolation structures can be reduced or avoided.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 25, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter Moens, Bart Desoete
  • Patent number: 7719061
    Abstract: A semiconductor device includes a semiconductor substrate having a cell region and a peripheral region. A cell array is defined within the cell region, the cell array having first, second, third, and fourth sides. A first decoder is defined within the peripheral region and provided adjacent to the first side of the cell array. A first isolation structure is formed at a first boundary region provided between the first side of the cell array and the peripheral region. A first dummy active region is formed at a second boundary region that is provided between the second side of the cell array and the peripheral region. The first isolation structure has a first portion that has a first depth and a second portion that has a second depth.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 18, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Kee Park
  • Patent number: 7718498
    Abstract: A semiconductor device suitable for a source-follower circuit, provided with a gate electrode formed on a semiconductor substrate via a gate insulation film, a first conductivity type layer formed in the semiconductor substrate under a conductive portion of the gate electrode and containing a first conductivity type impurity, first source/drain regions of the first conductivity type impurity formed in the semiconductor substrate and extended from edge portions of the gate electrode, and second source/drain regions having a first conductivity type impurity concentration lower than that in the first source/drain regions and formed adjoining the gate insulation film and the first source/drain regions in the semiconductor substrate so as to overlap portions of the conductive portion of the gate electrode.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: May 18, 2010
    Assignee: Sony Corporation
    Inventor: Kazuichiro Itonaga
  • Patent number: 7709363
    Abstract: A method for manufacturing a semiconductor device including a first conductive type impurity region formed by introducing a first conductive type impurities in a first region of a semiconductor region and heating the first region, a second conductive type impurity region formed by introducing a second conductive type impurities in a second region of the semiconductor region and heating the second region, the method including covering the second region with a mask and then introducing the first conductive type impurities in a surface of the first region, removing the mask by a process using gas including oxygen while forming an oxide film on the surface of the first region by the processing using the gas including the oxygen, and introducing the second conductive type impurities in a surface of the second region by using the oxide film as a mask.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: May 4, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kyoichi Suguro
  • Patent number: 7704818
    Abstract: A method for manufacturing a semiconductor device, including etching exposed areas of a substrate using patterned nitride and insulating layers as an etch mask to form a trench in the substrate; forming a buffer layer in the trench; forming a stress-inducing layer by implanting ions into a region of the substrate around the trench using the patterned nitride and insulating layers as an ion implant mask; forming a device isolation region by filling the trench with an trench insulating layer; and removing the patterned nitride and insulating layers.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: April 27, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Eun Jong Shin
  • Patent number: 7701038
    Abstract: A lateral bipolar junction transistor having improved current gain and a method for forming the same are provided. The transistor includes a well region of a first conductivity type formed over a substrate, at least one emitter of a second conductivity type opposite the first conductivity type in the well region wherein each of the at least one emitters are interconnected, a plurality of collectors of the second conductivity type in the well region wherein the collectors are interconnected to each other, and a plurality of base contacts of the first conductivity type in the well region wherein the base contacts are interconnected to each other. Preferably, all sides of the at least one emitters are adjacent the collectors, and none of the base contacts are adjacent the sides of the emitters. The neighboring emitter, collectors and base contacts are separated by spacings in the well region.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Mao Chen, Chih-Ping Chao, Chih-Sheng Chang
  • Patent number: 7696582
    Abstract: A semiconductor device having a bipolar transistor improved with heat dissipation. A semiconductor device having bipolar transistors formed in a plurality of device forming regions electrically isolated from each other by device isolation trenches traversing the semiconductor layer, in which a device isolation trench for each of unit bipolar transistors connected in parallel is removed and the plurality of unit bipolar transistors connected in series are entirely surrounded with one device isolation trench.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: April 13, 2010
    Assignees: Hitachi ULSI Systems Co., Ltd., Hitachi, Ltd.
    Inventors: Mitsuru Arai, Shinichiro Wada, Hideaki Nonami
  • Patent number: 7675054
    Abstract: Phase change memory devices and methods for fabricating the same are provided. A phase change memory device includes a first conductive electrode disposed in a first dielectric layer. A second dielectric layer is disposed over the first dielectric layer. A phase change material layer is disposed in the second dielectric layer and electrically connected to the first conductive electrode. A space is disposed in the second dielectric layer to at least isolate a sidewall of the phase change material layer and the second dielectric layer adjacent thereto. A second conductive electrode is disposed in the second dielectric layer and electrically connected to the phase change material layer.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: March 9, 2010
    Assignees: Industrial Technology Research Institute, Powerchip Semiconductor Corp., Nanya Technology Corporation, ProMOS Technologies Inc., Winbond Electronics Corp.
    Inventor: Li-Shu Tu
  • Patent number: 7670897
    Abstract: A non-volatile memory semiconductor device and a method for fabricating the same are disclosed. The semiconductor device includes a PN junction diode formed over a semiconductor substrate. Insulating films may be formed over the PN junction diode and patterned to have via holes. A resistive random access memory including a first metal pattern may be in contact with a first region of the PN junction diode. An oxide film pattern may be formed over the first metal pattern and a second metal pattern formed over the oxide film pattern. The first metal pattern, the oxide film pattern and the second metal pattern may be formed in the via holes.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: March 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Soo-Hong Kim
  • Publication number: 20100032768
    Abstract: A transistor of an image sensor and a method for manufacturing the same include simultaneously forming a device isolation layer at a boundary between a first conductive transistor region having a second conductive well formed therein and a second conductive transistor region having a first conductive well formed therein, and a trench dielectric layer at a junction transistor region having no conductive well formed therein, and then simultaneously forming a first gate pattern at the first conductive transistor region, a second gate pattern at the second conductive transistor region and a laminated layer at the junction transistor region, and then forming a bipolar junction in the laminated layer by sequentially implanting a first conductive dopant and a second conductive dopant into the laminated layer.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Applicant: Dongbu HiTeck Co., Ltd.
    Inventor: Hyung-Jin Park
  • Publication number: 20100022056
    Abstract: The invention provides for an alternative and less complex method of manufacturing a bipolar transistor comprising a field plate (17) in a trench (7) adjacent to a collector region (21), which field plate (17) employs a reduced surface field (Resurf) effect. The Resurf effect reshapes the electric field distribution in the collector region (21) such that for the same collector-base breakdown voltage the doping concentration of the collector region (21) can effectively be increased resulting in a reduced collector resistance and hence an increased bipolar transistor speed. The method comprises a step of forming a base window (6) in a first base layer (4) thereby exposing a top surface of the collector region (21) and a part of an isolation region (3). The trench (7) is formed by removing the exposed part of the isolation region (3), after which isolation layers (9,10) are formed on the surface of the trench (7).
    Type: Application
    Filed: August 29, 2007
    Publication date: January 28, 2010
    Applicant: NXP, B.V.
    Inventors: Johannes J. T. M. Donkers, Sebastien Nuttinck, Guillaume L. R. Boccardi, Francois Neuilly
  • Publication number: 20100001342
    Abstract: A method for manufacturing a semiconductor device is disclosed. The method includes: forming a LDMOS region, an offset drain MOS region, and a CMOS region; simultaneously forming a first well in the LDMOS region and the offset drain MOS region; simultaneously forming a second well in the first well of the LDMOS region and the CMOS region; and forming a second well in the CMOS region, wherein a depth of the first well is larger than a depth of the second well and the second well is a retrograde well formed by a high energy ion implantation method.
    Type: Application
    Filed: June 25, 2009
    Publication date: January 7, 2010
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Tomoyuki Furuhata, Hideyuki Akanuma, Hiroaki Nitta
  • Patent number: 7642154
    Abstract: A biCMOS device including a bipolar transistor and a Polysilicon/Insulator/Polysilicon (PIP) capacitor is disclosed. A biCMOS device may have a relatively low series resistance at a bipolar transistor. A bipolar transistor may have a desirable amplification rate.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Kwang Young Ko
  • Publication number: 20090302415
    Abstract: Micro-electromechanical system (MEMS) devices and methods of manufacture thereof are disclosed. In one embodiment, a MEMS device includes a semiconductive layer disposed over a substrate. A trench is disposed in the semiconductive layer, the trench with a first sidewall and an opposite second sidewall. A first insulating material layer is disposed over an upper portion of the first sidewall, and a conductive material disposed within the trench. An air gap is disposed between the conductive material and the semiconductive layer.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Inventors: Karl-Heinz Mueller, Bernhard Winkler, Robert Gruenberger
  • Publication number: 20090250753
    Abstract: Provided are a semiconductor device and a method of fabricating the semiconductor device.
    Type: Application
    Filed: March 30, 2009
    Publication date: October 8, 2009
    Applicant: Fairchild Korea Semiconductor, Ltd.
    Inventors: Jong-ho Park, Chang-Ki Jeon, Hyi-Jeong Park, Hye-mi Kim
  • Publication number: 20090230481
    Abstract: Provided are a semiconductor device including a source/drain and a gate formed using a doped polysilicon process, and a method of fabricating the semiconductor device. The method comprises: forming a gate insulating layer on a part of an active region on a first conductivity type epitaxial layer; forming a conductive layer on the epitaxial layer; implanting high concentration impurities of a second conductivity type a first portion of the conductive layer on the gate insulating layer and second portions of the conductive layer on both sides of the first insulating layer; patterning the conductive layer; forming a second insulating layer on the epitaxial layer and high concentration impurity regions of the second conductivity type below the second conductive pattern; and implanting low-concentration impurities of the second conductivity type into the epitaxial layer between a gate structure and the high concentration impurity regions.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 17, 2009
    Applicant: Fairchild Korea Semiconductor, Ltd.
    Inventors: Jong-ho Park, Chang-ki Jeon, Kyijeong Park
  • Patent number: 7588973
    Abstract: In a semiconductor device having a semiconductor element having a plurality of SOI-Si layers, the height of element isolation regions from the surface of the semiconductor substrate are substantially equal to each other. Alternatively, the element isolation regions are formed at the equal height on the semiconductor substrate and then a plurality of SOI-Si layers appropriately different in thickness are formed. In this manner, it is possible to obtain element isolation regions having substantially the same height from the semiconductor substrate and desired element regions having SOI-Si layers different in height. The thickness of a single crystalline silicon film (SOI-Si layer) may be appropriately changed by another method which includes depositing an amorphous silicon film and applying a heat processing to form an epi layer, and removing an unnecessary portion.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: September 15, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yukihiro Ushiku
  • Patent number: 7582502
    Abstract: Provided are methods for manufacturing a back side illumination image sensor. In one method, an ion implantation layer is formed in an entire region of a front side of a first substrate. A device isolation region is formed in the front side of the first substrate to define a pixel region. A light sensing unit and a readout circuitry are formed in the pixel region. An interlayer insulating layer and a metal line are formed on the first substrate. A second substrate is bonded to the front side of the first substrate on which the metal line is formed. A lower side of the first substrate under the ion implantation region is removed such that the light sensing unit is available at the backside of the first substrate.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: September 1, 2009
    Assignee: Dongbu Hitek Co., Ltd.
    Inventors: Joon Hwang, Hee Sung Shim
  • Patent number: 7562327
    Abstract: In a cell comprising an N well and a P well, a distance SP04 from a center line of a contact N-type region to an N well end of the N well is set to be a distance which causes a transistor not to be affected by resist. A distance from a well boundary to the center line of the contact N-type region is equal to SP04. A design on the P well is similar to that on the N well. Thereby, modeling of the transistor in the cell can be performed, taking into consideration an influence from resist in one direction. Also, by fabricating a cell array which satisfies the above-described conditions, design accuracy can be improved.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: July 14, 2009
    Assignee: Panasonic Corporation
    Inventors: Shinsaku Sekido, Kyoji Yamashita, Katsuhiro Ootani, Yasuyuki Sahara, Daisaku Ikoma
  • Publication number: 20090159984
    Abstract: A semiconductor device and a method for manufacturing the same are provided. An n-well region can be formed on a semiconductor substrate, and a base contact region can be formed on the n-well region. An emitter contact region, a collector contact region, and a p-base region can also be formed on the n-well. The emitter and collector contact regions can include n-type ions, and the base contact region and the p-base region can include p-type ions. Thus, the semiconductor device can include an n-channel metal oxide semiconductor transistor and an NPN bipolar transistor.
    Type: Application
    Filed: June 25, 2008
    Publication date: June 25, 2009
    Inventor: Yeo Cho Yoon
  • Patent number: 7550340
    Abstract: Semiconductor devices and memory cells are formed using silicon rich barrier layers to prevent diffusion of dopants from differently doped polysilicon films to overlying conductive layers or to substrates. A polycilicide gate electrode structure may be formed using the silicon rich barrier layers. Methods of forming the semiconductor devices and memory cells are also provided.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: June 23, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Sanh Dang Tang, Chris Braun, Farrell M. Good
  • Patent number: 7550344
    Abstract: A semiconductor device includes: a lower hydrogen-barrier film; a capacitor formed on the lower hydrogen-barrier film and including a lower electrode, a capacitive insulating film, and an upper electrode; an interlayer dielectric film formed so as to cover the periphery of the capacitor; and an upper hydrogen-barrier film covering the top and lateral portions of the capacitor. An opening, which exposes the lower hydrogen-barrier film where the lower hydrogen-barrier film is located around the capacitor, and which is tapered and flares upward, is formed in the interlayer dielectric film, and the upper hydrogen-barrier film is formed along the lateral and bottom faces of the opening, and is in contact with the lower hydrogen-barrier film in the opening.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: June 23, 2009
    Assignee: Panasonic Corporation
    Inventors: Toyoji Ito, Eiji Fujii, Kazuo Umeda
  • Publication number: 20090146258
    Abstract: A structure and a process for a self-aligned vertical PNP transistor for high performance SiGe CBiCMOS process. Embodiments include SiGe CBiCMOS with high-performance SiGe NPN transistors and PNP transistors. As the PNP transistors and NPN transistors contained different types of impurity profile, they need separate lithography and doping step for each transistor. The process is easy to integrate with existing CMOS process to save manufacturing time and cost. As plug-in module, fully integration with SiGe BiCMOS processes. High doping Polysilicon Emitter can increase hole injection efficiency from emitter to base, reduce emitter resistor, and form very shallow EB junction. Self-aligned N+ base implant can reduce base resistor and parasitical EB capacitor. Very low collector resistor benefits from BP layer. PNP transistor can be Isolated from other CMOS and NPN devices by BNwell, Nwell and BN+ junction.
    Type: Application
    Filed: February 9, 2009
    Publication date: June 11, 2009
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Shaoqiang ZHANG, Purakh Raj VERMA, Sanford CHU
  • Patent number: 7534680
    Abstract: Provided are bipolar transistor, BiCMOS device and method of fabricating thereof, in which an existing sub-collector disposed beneath a collector of a SiGe HBT is removed and a collector plug disposed at a lateral side of the collector is approached to a base when fabricating a Si-based very high-speed device, whereby it is possible to fabricate the SiGe HBT and an SOI CMOS on a single substrate, reduce the size of the device and the number of masks to be used, and implement the device of high density, low power consumption, and wideband performance.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: May 19, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Yeong Kang, Seung Yun Lee, Kyoung Ik Cho
  • Patent number: 7517748
    Abstract: A semiconductor substrate includes a pair of trenches filled with a dielectric material. Dopant introduced into the mesa between the trenches is limited from diffusing laterally when the substrate is subjected to thermal processing. Therefore, semiconductor devices can be spaced more closely together on the substrate, and the packing density of the devices can be increased. Also trench constrained doped region diffuse faster and deeper than unconstrained diffusions, thereby reducing the time and temperature needed to complete a desired depth diffusion. The technique may be used for semiconductor devices such as bipolar transistors as well as isolation regions that electrically isolate the devices from each other. In one group of embodiments, a buried layer is formed at an interface between an epitaxial layer and a substrate, at a location generally below the dopant in the mesa.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: April 14, 2009
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7507626
    Abstract: Disclosed is a floating gate of a flash memory device, wherein a tunneling oxide layer is formed on a semiconductor substrate, and a floating gate is formed in the shape of a lens having a convex top surface.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Chang Hun Han
  • Patent number: 7504297
    Abstract: A technology is provided where a high performance Schottky-barrier diode and other semiconductor elements can be formed in the same chip controlling the increase in the number of steps. After a silicon oxide film is deposited over a substrate where an n-channel type MISFET is formed and the silicon oxide film over a gate electrode and n+ type semiconductor region is selectively removed, a Co film is deposited over the substrate and a CoSi2 layer is formed over the n+ type semiconductor region and the gate electrode by applying a heat treatment to the substrate.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: March 17, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Kozo Watanabe, Shoji Yoshida, Masashi Sahara, Shinichi Tanabe, Takashi Hashimoto
  • Publication number: 20090011553
    Abstract: A method for forming BiCMOS integrated circuits and structures formed according to the method. After forming doped wells and gate stacks for the CMOS devices and collector and base regions for the bipolar junction transistor, an emitter layer is formed within an emitter window. A dielectric material layer is formed over the emitter layer and remains in place during etching of the emitter layer and removal of the etch mask. The dielectric material layer further remains in place during source/drain implant doping and activation of the implanted source/drain dopants. The dielectric material layer functions as a thermal barrier, to limit out-diffusion of the emitter dopants during the activation step.
    Type: Application
    Filed: September 11, 2008
    Publication date: January 8, 2009
    Applicant: Agere Systems Inc.
    Inventors: Arun K. Nanda, Venkat Raghavan, Nace Rossi
  • Patent number: 7465622
    Abstract: A method for fabricating a vertical channel transistor device is provided. An opening is formed in a dielectric stack comprised of a pad nitride layer and a pad oxide layer. A plurality of epitaxial silicon growth and dry etching processes are carried out to form drain, vertical channel and source in the opening. Subsequently, sidewall gate dielectric and sidewall gate electrode are formed on the vertical channel. The present invention is suited for dynamic random access memory (DRAM) devices, particularly suited for very high-density trench-capacitor DRAM devices.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 16, 2008
    Assignee: Nanya Technology Corp.
    Inventor: Shian-Jyh Lin
  • Patent number: 7465636
    Abstract: Methods for forming a wire from silicon or other semiconductor material are disclosed. Also disclosed are various devices including such a semiconductor wire. According to one embodiment, a wire is spaced apart from an underlying substrate, and the wire extends between a first end and an opposing second end, each of the first and second ends being affixed to the substrate. Other embodiments are described and claimed.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: December 16, 2008
    Assignee: Intel Corporation
    Inventor: Peter L. D. Chang
  • Patent number: 7456061
    Abstract: The invention, in one aspect, provides a method of manufacturing a semiconductor device. This aspect includes forming gate electrodes in a non-bipolar transistor region of a semiconductor substrate, placing a polysilicon layer over the gate electrodes in the non-bipolar transistor region and over the semiconductor substrate within a bipolar transistor region. A protective layer is formed over the polysilicon layer. The protective layer has a weight percent of hydrogen that is less than about 9% and is selective to silicon germanium (SiGe), such that SiGe does not form on the protective layer. This aspect further includes forming emitters for bipolar transistors in the bipolar transistor region, including forming a SiGe layer under a portion of the polysilicon layer.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 25, 2008
    Assignee: Agere Systems Inc.
    Inventors: Alan S. Chen, Mark Dyson, Nace M. Rossi, Ranbir Singh, Xiaojun Yuan
  • Patent number: 7449380
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: November 11, 2008
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Publication number: 20080220572
    Abstract: Semiconductor devices and memory cells are formed using silicon rich barrier layers to prevent diffusion of dopants from differently doped polysilicon films to overlying conductive layers or to substrates. A polycilicide gate electrode structure may be formed using the silicon rich barrier layers. Methods of forming the semiconductor devices and memory cells are also provided.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 11, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh Dang Tang, Chris Braun, Farrell M. Good
  • Patent number: 7396715
    Abstract: Patterning is performed in such a manner that an end portion fabricated of a second gate insulating film partially overlaps an end portion fabricated of a first gate insulating film. Then, a surface recovery treatment is performed in the aforementioned state where the first and second gate insulating films partially overlap each other.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: July 8, 2008
    Assignee: Fujitsu Limited
    Inventor: Kazuto Ikeda
  • Patent number: 7358573
    Abstract: A triple-well CMOS structure having reduced latch-up susceptibility and a method of fabricating the structure. The method includes forming a buried P-type doped layer having low resistance under the P-wells and N-wells in which CMOS transistors are formed and forming a gap in a buried N-type doped layer formed in the P-wells, the is gap aligned under a contact to the P-well. The buried P-type doped layer and gap in the buried N-type doped layer allow a low resistance hole current path around parasitic bipolar transistors of the CMOS transistors.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Delbert R. Cecchi, Toshiharu Furukawa, Jack Allan Mandelman
  • Patent number: 7354812
    Abstract: Multiple trench depths within an integrated circuit device are formed by first forming trenches in a substrate to a first depth, but of varying widths. Formation of a dielectric layer can cause some of the trenches to fill or close off while leaving other, wider trenches open. Removal of a portion of the dielectric material can then be tailored to expose a bottom of the open trenches while leaving remaining trenches filled. Removal of exposed portions of the underlying substrate can then be used to selectively deepen the open trenches, which can subsequently be filled. Such methods can be used to form trenches of varying depths without the need for subsequent masking.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Shubneesh Batra, Howard C. Kirsch, Gurtej S. Sandhu, Xianfeng Zhou, Chih-Chen Cho
  • Patent number: 7329570
    Abstract: An exemplary method of manufacturing a semiconductor device according to an embodiment of the present invention includes forming a P-well and an N-well for high voltage (HV) devices and a first well in a low voltage/medium voltage (LV/MV) region for a logic device, in a semiconductor substrate; simultaneously forming a second well in the LV/MV region for a logic device and a drift region for one of the HV devices using the same mask; and respectively forming gate oxide layers on the semiconductor substrate in the HV/MV/LV regions. According to the present invention, the number of photolithography processes can be reduced by replacing or combining an additional mask for forming an extended drain region of a high voltage depletion-enhancement CMOS (DECMOS) with a mask for forming a typical well of a logic device, so productivity of the total process of the device can be enhanced.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: February 12, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kyung-Ho Lee
  • Patent number: 7306959
    Abstract: This disclosure concerns methods for fabrication of integrated high speed optoelectronic devices. In one example of such a method, a device region that includes a top surface and a bottom surface is formed on a top surface of a substrate. The device region may take the form of an optical emitter, such as a VCSEL, or a detector, such as a photodiode. Next, an isolation region is formed that is configured such that the device region is surrounded by the isolation region. A superstrate is then disposed on the top surface of the device region. Finally, a micro-optical device, such as a lens, is placed on a top surface of the superstrate.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: December 11, 2007
    Assignee: Finisar Corporation
    Inventor: Yue Liu
  • Patent number: 7297584
    Abstract: In a semiconductor device having a dual stress liner for improving electron mobility, the dual stress liner includes a first liner portion formed on a PMOSFET and a second liner portion formed on an NMOSFET. The first liner portion has a first compressive stress, and the second liner portion has a second compressive stress smaller than the first compressive stress. The dual stress liner may be formed by forming a stress liner on a semiconductor substrate on which the PMOSFET and the NMOSFET are formed and selectively exposing a portion of the stress liner on the NMOSFET.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: November 20, 2007
    Assignees: Samsung Electronics Co., Ltd., Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jae-Eon Park, Ja-Hum Ku, Jun-Jung Kim, Dae-Kwon Kang, Young Way Teh
  • Patent number: 7282402
    Abstract: According to the embodiments to the present disclosure, the process of making a dual strained channel semiconductor device includes integrating strained Si and compressed SiGe with trench isolation for achieving a simultaneous NMOS and PMOS performance enhancement. As described herein, the integration of NMOS and PMOS can be implemented in several ways to achieve NMOS and PMOS channels compatible with shallow trench isolation.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: October 16, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Alexander L. Barr, Dejan Jovanovic, Bich-Yen Nguyen, Voon-Yew Thean, Shawn G. Thomas, Ted R. White
  • Patent number: 7247534
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: July 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov
  • Patent number: 7211479
    Abstract: Semiconductor devices and memory cells are formed using silicon rich barrier layers to prevent diffusion of dopants from differently doped polysilicon films to overlying conductive layers or to substrates. A polycilicide gate electrode structure may be formed using the silicon rich barrier layers. Methods of forming the semiconductor devices and memory cells are also provided.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: May 1, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Sanh Dang Tang, Chris Braun, Farrell M. Good
  • Patent number: 7202125
    Abstract: A method of making a memory array and peripheral circuits together on a single substrate forms a dielectric layer, floating gate layer, inter-layer dielectric and mask layer across all regions of the substrate. Subsequently these layers are removed from the peripheral regions and dielectrics of different thicknesses are formed in the peripheral regions according to the voltages of the circuits in these regions. A conductive layer is formed over the memory array and the peripheral circuits to form control gates in the memory array and form gate electrodes in the peripheral regions.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: April 10, 2007
    Assignee: SanDisk Corporation
    Inventors: Tuan Pham, Masaaki Higashitani
  • Patent number: 7183154
    Abstract: Nonvolatile memory cells having a split gate structure and methods of fabricating the same are provided. The nonvolatile memory cells include active regions defined at a predetermined region of a semiconductor substrate. A portion of each of the active regions is etched to form a cell trench region. Insulated floating gates are disposed on a pair of sidewalls parallel with the direction that crosses the active region. A source region is disposed at a bottom surface of the cell trench region. A gap region between the floating gates is filled with a common source line electrically connected to the source region. The common source line is extended along the direction that crosses the active regions. The active regions, which are adjacent to the floating gates, are covered with word lines parallel with the common source line. Drain regions are disposed in the active regions adjacent to the word lines. The drain regions are electrically connected to bit lines that cross over the word lines.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: February 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Woo Kim, Dong-Jun Kim, Min-Soo Cho, Dai-Geun Kim
  • Patent number: 7172914
    Abstract: A method of forming a semiconductor structure includes forming an isolation region in a semiconductor substrate. A first oxide layer is on the substrate, a first sacrificial layer is on the first oxide layer, and a first nitride layer is on the first sacrificial layer. The first oxide layer may be a screen oxide layer, and the method provides consistency in the thickness of the screen oxide layer.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: February 6, 2007
    Assignee: Cypress Semiconductor Corporation
    Inventor: Sundar Narayanan
  • Patent number: 7105397
    Abstract: According to the present invention, there is a provided a semiconductor device fabrication method having, forming a mask material in a surface portion of a semiconductor substrate, and forming a step having a projection by using the mask material; forming a dielectric film on the semiconductor substrate so as to fill the step and planarize an entire surface; annealing the dielectric film; etching back the dielectric film such that a surface of the dielectric film is positioned between upper and lower surfaces of the mask material; and removing the mask material to expose a surface of the projection of the semiconductor substrate.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: September 12, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Hieda, Masahiro Kiyotoshi
  • Patent number: 7098095
    Abstract: The vertical diffusion of dopants from the gate into the channel region, and the lateral diffusion of dopants from the source and drain regions into the channel region resulting from thermal cycling during the fabrication of a MOS transistor is minimized by forming the source and drain regions in a layer of silicon germanium carbon.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: August 29, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Abdalla Aly Naem, Visvamohan Yegnashankaran
  • Patent number: 7075149
    Abstract: A semiconductor device comprises: a semiconductor layer of a first conductivity type; a first semiconductor pillar layer of the first conductivity type; a second semiconductor pillar layer of a second conductivity type; a third semiconductor pillar layer of the first conductivity type; a forth semiconductor pillar layer of the second conductivity type; a fifth semiconductor pillar layer of the first conductivity type provided on the major surface of the semiconductor layer; a first semiconductor base layer of the second conductivity type provided on the second semiconductor pillar layer; a second semiconductor base layer of the second conductivity type provided on the forth semiconductor pillar layer; first semiconductor region of the first conductivity type selectively provided on a surface of the first semiconductor base layer; second semiconductor region of the first conductivity type selectively provided on a surface of the second semiconductor base layer; gate insulating film provided on the first semico
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: July 11, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shingo Sato, Atsuko Yamashita, Hideki Okumura, Kenichi Tokano
  • Patent number: 7071049
    Abstract: Semiconductor devices and memory cells are formed using silicon rich barrier layers to prevent diffusion of dopants from differently doped polysilicon films to overlying conductive layers or to substrates. A polycilicide gate electrode structure may be formed using the silicon rich barrier layers. Methods of forming the semiconductor devices and memory cells are also provided.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: July 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Sanh Dang Tang, Chris Braun, Farrell M. Good
  • Patent number: 7037768
    Abstract: An integrated circuit device structure can be formed by forming an implant mask having a window therein on a structure including upper and lower Si layers and an intermediate SiGex layer therebetween. Ions are implanted through the upper Si layer and into a portion of the intermediate SiGex layer exposed through the window in the implant mask and blocking implantation of ions into portions of the intermediate SiGex layer outside the window. The portions of the intermediate SiGex layer outside the window are etched and the portion of the intermediate SiGex layer exposed through the window having ions implanted therein is not substantially etched to form a patterned intermediate SiGex layer.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: May 2, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-jung Yun, Sung-young Lee, Chang-sub Lee, Sung-min Kim, Dong-gun Park