Plural Wells Patents (Class 438/228)
  • Patent number: 7825768
    Abstract: A resistor circuit includes first to Mth resistor circuit units. A (2j?1)th resistor circuit unit includes a (2j?1)th first fuse element and a (2j?1)th resistor provided in series between a (2j?1)th node and a 2jth node, and a (2j?1)th second fuse element provided in parallel with the (2j?1)th first fuse element and the (2j?1)th resistor between the (2j?1)th node and the 2jth node. A 2jth resistor circuit unit includes a 2jth first fuse element and a 2jth resistor provided in series between the 2jth node and a (2j+1)th node, and a 2jth second fuse element that is provided in parallel with the 2jth first fuse element and the 2jth resistor between the 2jth node and the (2j+1)th node. The (2j?1)th first fuse element, the (2j?1)th second fuse element, the 2jth first fuse element, and the 2jth second fuse element are disposed in a fuse region. The (2j?1)th resistor is disposed in a first resistor region formed in a first direction with respect to the fuse region.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: November 2, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Kota Onishi
  • Patent number: 7816717
    Abstract: A semiconductor memory device, comprising: a semiconductor substrate; a memory cell section comprising a memory transistor provided on the semiconductor substrate, the memory transistor including a first gate electrode provided on the semiconductor substrate with a gate insulating film interposed therebetween, and a source and drain provided at both sides of the first gate electrode on the semiconductor substrate, and a ferroelectric capacitor provided above the memory transistor, the ferroelectric capacitor including a first electrode film connected to any one of a source and drain of the memory transistor, a second electrode film connected to the other one of the drain and source of the memory transistor, and a ferroelectric film provided between the first electrode film and the second electrode film, the memory cell section having the memory transistor and the ferroelectric capacitor connected in parallel to each other; and a select transistor section, comprising a select transistor provided at an end of t
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: October 19, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tohru Ozaki
  • Patent number: 7813711
    Abstract: A method of designing stacked circuits for an integrated circuit is described. In this method, a plurality of devices that are stackable may be determined. Some of those devices, i.e. a subset of stackable devices, may be formed in a deep n-well, thereby allowing that subset of stackable devices to receive an increased supply voltage. The remainder of the stackable devices may be formed in a standard n-well, thereby allowing such devices to receive a standard supply voltage. In one embodiment, the standard supply voltage may be VDD and the increased supply voltage may be 2×VDD. This method may be advantageously used in both the design of stacked circuits for and the implementation of stacked circuits in an integrated circuit.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: October 12, 2010
    Assignee: Atheros Communications, Inc.
    Inventor: Brian J. Kaczynski
  • Patent number: 7727834
    Abstract: A method for manufacturing a semiconductor device may comprise forming a conductive layer on a substrate, removing at least one portion of the conductive layer to form a plurality of separate conductive lines, forming a first stress-inducing layer of a first stress type on the conductive lines and the substrate, and removing a portion of the first stress-inducing layer such that a remaining portion of the first stress-inducing layer is disposed on a first subset of the conductive lines but not a second subset of the conductive lines and has a boundary disposed between two of the conductive lines. This method, along with other methods and various semiconductor devices, are described.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: June 1, 2010
    Assignee: Toshiba America Electronic Components, Inc.
    Inventor: Gaku Sudo
  • Patent number: 7709365
    Abstract: A method for forming a CMOS well structure including forming a plurality of first conductivity type wells over a substrate, each of the plurality of first conductivity type wells formed in a respective opening in a first mask. A cap is formed over each of the first conductivity type wells, and the first mask is removed. Sidewall spacers are formed on sidewalls of each of the first conductivity type wells. A plurality of second conductivity type wells are formed, each of the plurality of second conductivity type wells are formed between respective first conductivity type wells. A plurality of shallow trench isolations are formed between the first conductivity type wells and second conductive type wells. The plurality of first conductivity type wells are formed by a first selective epitaxial growth process, and the plurality of second conductivity type wells are formed by a second selective epitaxial growth process.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Terence B. Hook, Louis C. Hsu, Rajiv V. Joshi, Werner Rausch
  • Patent number: 7704844
    Abstract: A semiconductor structure which exhibits high device performance and improved short channel effects is provided. In particular, the present invention provides a metal oxide semiconductor field effect transistor (MOFET) that includes a low dopant concentration within an inversion layer of the structure; the inversion layer is an epitaxial semiconductor layer that is formed atop a portion of the semiconductor substrate. The inventive structure also includes a well region of a first conductivity type beneath the inversion layer, wherein the well region has a central portion and two horizontally abutting end portions. The central portion has a higher concentration of a first conductivity type dopant than the two horizontally abutting end portions. Such a well region may be referred to as a non-uniform super-steep retrograde well.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Jing Wang
  • Patent number: 7691689
    Abstract: In methods of fabricating a semiconductor device having multiple channel transistors and semiconductor devices fabricated thereby, the semiconductor device includes an isolation region disposed within a semiconductor substrate and defining a first region. A plurality of semiconductor pillars self-aligned with the first region and spaced apart from each other are disposed within the first region, and each of the semiconductor pillars has at least one recessed region therein. At least one gate structure may be disposed across the recessed regions, which crosses the semiconductor pillars and extends onto the isolation region.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: April 6, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Myeong Jang, Makoto Yoshida, Jae-Rok Kahng, Hyun-Ju Sung, Hui-Jung Kim, Chang-Hoon Jeon
  • Patent number: 7666756
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: August 14, 2004
    Date of Patent: February 23, 2010
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7605034
    Abstract: An integrated circuit memory cell includes a combined first capacitor electrode and first transistor source/drain, a second capacitor electrode, a capacitor dielectric between the first and second electrodes, and a vertical transistor above and including the first source/drain. The second source/drain may be included in a digit line inner conductor connecting a digit line to a transistor channel of the vertical transistor. The channel may include a semiconductive upward extension of the combined first electrode and first source/drain. The memory cell may be included in an array of a plurality of such memory cells wherein the second electrode is a common electrode among the plurality. The memory cell may provide a straight-line conductive path between the first electrode and a digit line, the path extending through the vertical transistor.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: October 20, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Alex Paterson
  • Patent number: 7588978
    Abstract: Embodiments relate to a method for forming a semiconductor device in which a first oxide layer may be deposited over a surface of a semiconductor substrate including high-voltage (HV) and low-voltage (LV) wells, the first oxide layer having a predetermined thickness corresponding to a high-voltage (HV) area of the well. A first photoresist pattern may be formed over a surface of the first oxide layer. An etching process may be performed using the first photoresist pattern as a mask, so that the first oxide layer is selectively etched until the semiconductor substrate is partially exposed, to form a first oxide layer pattern. A second oxide layer may be deposited over a surface of the semiconductor substrate including the first oxide layer pattern using the first photoresist pattern as a mask, the second oxide layer having a predetermined thickness corresponding to a low-voltage (LV) area of the well. The first photoresist pattern may be removed.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 15, 2009
    Assignee: Dongbu HiTek, Co., Ltd.
    Inventor: Jea-Hee Kim
  • Patent number: 7582522
    Abstract: A method and device for image sensing. The method includes forming a first well and a second well in a substrate, forming a gate oxide layer on the substrate, and depositing a first gate region and a second gate region on the gate oxide layer. The first gate region is associated with the first well, and the second gate region is associated with the second well. Additionally, the method includes forming a third well in the substrate, implanting a first plurality of ions to form a first lightly doped source region and a first lightly doped drain region in the first well, implanting a second plurality of ions to form at least a second lightly doped drain region in the second well, and implanting a third plurality of ions to form a source in the second well.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 1, 2009
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Jianping Yang, Chunyan Xin, Jieguang Huo, Yanyong Wang
  • Publication number: 20090166719
    Abstract: Embodiments relate to an LDMOS semiconductor device mask that may reduce current leakage under a gate-off condition. According to embodiments, an LDMOS semiconductor device mask may include a moat mask to define a moat region, an NDT mask to define an N drift region, a PDT mask to define a P drift region, and a gate mask to form a gate. According to embodiments, a PDT mask may be configured to expose a field region of a semiconductor device.
    Type: Application
    Filed: December 28, 2008
    Publication date: July 2, 2009
    Inventor: Bong-Kil Kim
  • Patent number: 7521312
    Abstract: A method and system for providing a twin well in a semiconductor device is described. The method and system include providing at least one interference layer and providing a first mask that covers a first portion of the semiconductor device and uncovers a second portion of the semiconductor device. The first and second portions of the semiconductor device are adjacent. The method and system also include implanting a first well in the second portion of the semiconductor device after the first mask is provided. The method and system also include providing a second mask. The interference layer(s) are configured such that energy during a blanket exposure develops the second mask that uncovers the first portion and covers the second portion of the semiconductor device. The method and system also include implanting a second well in the first portion of the semiconductor device after the second mask is provided.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: April 21, 2009
    Assignee: Atmel Corporation
    Inventors: Gayle W. Miller, Jr., Bryan D. Sendelweck
  • Patent number: 7507596
    Abstract: The present invention is CMOS image sensor and its method of fabrication. This invention provides an efficient structure to improve the quantum efficiency of a CMOS image sensor with borderless contact. The image sensor comprises a N-well/P-substrate type photodiode with borderless contact and dielectric structure covering the photodiode region. The dielectric structure is located between the photodiode and the interlevel dielectric (ILD) and is used as a buffer layer for the borderless contact. The method of fabricating a high performance photodiode comprises forming a photodiode in the n-well region of a shallow trench, and embedding a dielectric material between the ILD oxide and the photodiode having a refraction index higher than the ILD oxide.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: March 24, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chen, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Patent number: 7445979
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall and which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: November 4, 2008
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7445982
    Abstract: A method of manufacturing a semiconductor integrated circuit (IC) device that integrates a TLPM (trench lateral power MOSFET) and one or more planar semiconductor devices on a semiconductor substrate. In manufacturing the semiconductor IC device according to one embodiment, a trench etching forms a trench. A p-type body region, an n-type expanded drain region, and a thick oxide film are formed. A second trench etching deepens the trench. Gate oxide films and gate electrodes of the TLPM, an NMOSFET, and a PMOSFET are formed. P-type base regions of the TLPM and an NPN bipolar transistor are formed. An n-type source and drain region of the TLPM, and n-type diffusion regions of the NMOSFET and the NPN bipolar transistor are formed. P-type diffusion regions of the PMOSFET and the NPN bipolar transistor are formed. An interlayer oxide film, a contact electrode, and constituent metal electrodes are formed.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: November 4, 2008
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Naoto Fujishima, C. Andre T. Salama
  • Patent number: 7445983
    Abstract: A method of manufacturing a semiconductor integrated circuit (IC) device that integrates a TLPM (trench lateral power MOSFET) and one or more planar semiconductor devices on a semiconductor substrate. In manufacturing the semiconductor IC device according to one embodiment, a trench etching forms a trench. A p-type body region, an n-type expanded drain region, and a thick oxide film are formed. A second trench etching deepens the trench. Gate oxide films and gate electrodes of the TLPM, an NMOSFET, and a PMOSFET are formed. P-type base regions of the TLPM and an NPN bipolar transistor are formed. An n-type source and drain region of the TLPM, and n-type diffusion regions of the NMOSFET and the NPN bipolar transistor are formed. P-type diffusion regions of the PMOSFET and the NPN bipolar transistor are formed. An interlayer oxide film, a contact electrode, and constituent metal electrodes are formed.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: November 4, 2008
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Naoto Fujishima, C. Andre T. Salama
  • Patent number: 7410855
    Abstract: A semiconductor device includes a semiconductor substrate, an nMISFET formed on the substrate, the nMISFET including a first dielectric formed on the substrate and a first metal gate electrode formed on the first dielectric and formed of one metal element selected from Ti, Zr, Hf, Ta, Sc, Y, a lanthanoide and actinide series and of one selected from boride, silicide and germanide compounds of the one metal element, and a pMISFET formed on the substrate, the pMISFET including a second dielectric formed on the substrate and a second metal gate electrode formed on the second dielectric and made of the same material as that of the first metal gate electrode, at least a portion of the second dielectric facing the second metal gate electrode being made of an insulating material different from that of at least a portion of the first dielectric facing the first metal gate electrode.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: August 12, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Reika Ichihara, Yoshinori Tsuchiya, Masato Koyama, Akira Nishiyama
  • Patent number: 7371630
    Abstract: Some embodiments of the present invention include selectively inducing back side stress opposite transistor regions to optimize transistor performance.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: May 13, 2008
    Assignee: Intel Corporation
    Inventors: Gilroy J. Vandentop, Rajashree Baskaran
  • Patent number: 7368354
    Abstract: A planar substrate device integrated with fin field effect transistors (FinFETs) and a method of manufacture comprises a silicon-on-insulator (SOI) wafer comprising a substrate; a buried insulator layer over the substrate; and a semiconductor layer over the buried insulator layer. The structure further comprises a FinFET over the buried insulator layer and a field effect transistor (FET) integrated in the substrate, wherein the FET gate is planar to the FinFET gate. The structure further comprises retrograde well regions configured in the substrate. In one embodiment, the structure further comprises a shallow trench isolation region configured in the substrate.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: May 6, 2008
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak, Jed H. Rankin
  • Patent number: 7364972
    Abstract: A semiconductor device comprises a semiconductor substrate, a first circuit formed on the substrate, and a second circuit connected to the first circuit as an input/output portion thereof and powered by a voltage higher than that for the first circuit, the first circuit including a first and a second field-effect transistor, the first drain region of the first transistor accompanying a first load capacitance, the second drain region of the second transistor accompanying a second load capacitance smaller than the first load capacitance, and the first gate insulation film of the first transistor having an average relative dielectric constant higher than that of the second gate insulation film of the second transistor, thereby realizing a high operation speed.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: April 29, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mizuki Ono, Akira Nishiyama
  • Publication number: 20080050869
    Abstract: A dual stress liner manufacturing method and device is described. Overlapping stress liner layers of opposite effect (e.g., tensile versus compression) may be deposited over portions of the device, and the uppermost overlapping layer may be polished down in a process that uses the bottom overlapping layer as a stopper. An insulating film may be deposited on the stress liner layers before the polishing, and another insulating film may be deposited above the first insulating film after the polishing. Contacts may be formed such that the contacts need only penetrate one stress liner layer to reach a transistor well or gate structure.
    Type: Application
    Filed: July 5, 2006
    Publication date: February 28, 2008
    Applicant: TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
    Inventor: Gaku SUDO
  • Patent number: 7335546
    Abstract: A method and device for image sensing. The method includes forming a first well and a second well in a substrate, forming a gate oxide layer on the substrate, and depositing a first gate region and a second gate region on the gate oxide layer. The first gate region is associated with the first well, and the second gate region is associated with the second well. Additionally, the method includes forming a third well in the substrate, implanting a first plurality of ions to form a first lightly doped source region and a first lightly doped drain region in the first well, implanting a second plurality of ions to form at least a second lightly doped drain region in the second well, and implanting a third plurality of ions to form a source in the second well.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: February 26, 2008
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Jianping Yang, Chunyan Xin, Jieguang Huo, Yanyong Wang
  • Patent number: 7329583
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: February 12, 2008
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7323367
    Abstract: Diagonal deep well region for routing the body-bias voltage for MOSFETS in surface well regions is provided and described.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: January 29, 2008
    Assignee: Transmeta Corporation
    Inventors: Mike Pelham, James B. Burr
  • Patent number: 7309636
    Abstract: The present invention pertains to a high-voltage MOS device. The high-voltage MOS device includes a substrate, a first well, a first field oxide layer enclosing a drain region, a second field oxide enclosing a source region, and a third field oxide layer encompassing the first and second field layers with a device isolation region in between. A channel region is situated between the first and second field oxide layers. A gate oxide layer is provided on the channel region. A gate is stacked on the gate oxide layer. A device isolation diffusion layer is provided in the device isolation region.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: December 18, 2007
    Assignee: United Microelectronics Corp.
    Inventor: Chin-Lung Chen
  • Patent number: 7288451
    Abstract: A method for forming a self-aligned, dual stress liner for a CMOS device includes forming a first type stress layer over a first polarity type device and a second polarity type device, and forming a sacrificial layer over the first type nitride layer. Portions of the first type stress layer and the sacrificial layer over the second polarity type device are patterned and removed. A second type stress layer is formed over the second polarity type device, and over remaining portions of the sacrificial layer over the first polarity type device in a manner such that the second type stress layer is formed at a greater thickness over horizontal surfaces than over sidewall surfaces. Portions of the second type stress liner on sidewall surfaces are removed, and portions of the second type stress liner over the first polarity type device are removed.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Huicai Zhong, Effendi Leobandung
  • Patent number: 7279399
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: October 9, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7279378
    Abstract: An structure for electrically isolating a semiconductor device is formed by implanting dopant into a semiconductor substrate that does not include an epitaxial layer. Following the implant the structure is exposed to a very limited thermal budget so that dopant does not diffuse significantly. As a result, the dimensions of the isolation structure are limited and defined, thereby allowing a higher packing density than obtainable using conventional processes which include the growth of an epitaxial layer and diffusion of the dopants. In one group of embodiments, the isolation structure includes a deep layer and a sidewall which together form a cup-shaped structure surrounding an enclosed region in which the isolated semiconductor device may be formed. The sidewalls may be formed by a series of pulsed implants at different energies, thereby creating a stack of overlapping implanted regions.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 9, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7273776
    Abstract: The present invention is generally directed to a method of forming a p-well in an integrated circuit device. In one illustrative embodiment, the method comprises forming a first layer of epitaxial material above an active layer of a substrate, forming a first doped region in the first layer of epitaxial material, forming a second layer of epitaxial material above the first layer of epitaxial material, forming a second doped region in the second layer of epitaxial material, and performing at least one heat treating process.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: September 25, 2007
    Assignee: Legerity, Inc.
    Inventors: Ranadeep Dutta, Frank L. Thiel
  • Patent number: 7247534
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: July 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov
  • Patent number: 7226832
    Abstract: A CMOS integrated circuit includes a substrate having an NMOS region with a P-well and a PMOS region with an N-well. A shallow trench isolation (STI) region is formed between the NMOS and PMOS regions and a composite silicon layer comprising a strained SiGe layer is formed over said P well region and over said N well region. The composite silicon layer is disconnected at the STI region. Gate electrodes are then formed on the composite layer in the NMOS and PMOS regions.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: June 5, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Chun-Chieh Lin, Fu-Liang Yang, Chen Ming Hu
  • Patent number: 7226834
    Abstract: Semiconductor devices (102) and fabrication methods (10) are provided, in which a nitride film (130) is formed over NMOS transistors to impart a tensile stress in all or a portion of the NMOS transistor to improve carrier mobility. The nitride layer (130) is initially deposited over the transistors at low temperature with high hydrogen content to provide a moderate tensile stress in the semiconductor body prior to back-end processing. Subsequent back-end thermal processing reduces the film hydrogen content and causes an increase in the applied tensile stress.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: June 5, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Haowen Bu, Rajesh Khamankar, Douglas T. Grider
  • Patent number: 7211481
    Abstract: The present invention facilitates semiconductor fabrication by providing methods of fabrication that apply tensile strain to channel regions of devices while mitigating unwanted dopant diffusion, which degrades device performance. Source/drain regions are formed in active regions of a PMOS region (102). A first thermal process is performed that activates the formed source/drain regions and drives in implanted dopants (104). Subsequently, source/drain regions are formed in active regions of an NMOS region (106). Then, a capped poly layer is formed over the device (108). A second thermal process is performed (110) that causes the capped poly layer to induce strain into the channel regions of devices. Because of the first thermal process, unwanted dopant diffusion, particularly unwanted p-type dopant diffusion, during the second thermal process is mitigated.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: May 1, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Lahir Shaik Adam, Song Zhao, Mahalingam Nandakumar
  • Patent number: 7144796
    Abstract: A semiconductor element such as a DMOS-transistor is fabricated in a semiconductor substrate. Wells of opposite conductivity are formed by implanting and then thermally diffusing respective well dopants into preferably spaced-apart areas in the substrate. At least one trench and active regions are formed in the substrate. The trench may be a shallow drift zone trench of a DMOS-transistor, and/or a deep isolation trench. The thermal diffusion of the well dopants includes at least one first diffusion step during a first high temperature drive before forming the trench, and at least one second diffusion step during a second high temperature drive after forming the trench. Dividing the thermal diffusion steps before and after the trench formation achieves an advantageous balance between reducing or avoiding lateral overlapping diffusion of neighboring wells and reducing or avoiding thermally induced defects along the trench boundaries.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: December 5, 2006
    Assignee: Atmel Germany GmbH
    Inventors: Franz Dietz, Volker Dudek, Michael Graf
  • Patent number: 7145187
    Abstract: In a multiple input ESD protection structure, the inputs are isolated from the substrate by highly doped regions of opposite polarity to the input regions. Dual polarity is achieved by providing a symmetrical structure with n+ and p+ regions forming each dual polarity input. The inputs are formed in a p-well which, in turn, is formed in a n-well. Each dual polarity input is isolated by a PBL under the p-well, and a NISO underneath the n-well. An isolation ring separates and surrounds the inputs. The isolation ring comprises a p+ ring or a p+ region, n+ region, and p+ region formed into adjacent rings.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: December 5, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Peter J. Hopper, Philipp Lindorfer
  • Patent number: 7138311
    Abstract: A submicron CMOS transistor is mounted on the same substrate together with an analog CMOS transistor, a high voltage-resistance MOS transistor, a bipolar transistor, a diode, or a diffusion resistor, without degrading the characteristics of these components. When a punch-through stopper area is formed on a main surface side of a semiconductor substrate, an area in which an analog CMOS transistor, a high voltage-resistance MOS transistor, a bipolar transistor, a diode, or a diffusion resistor is formed is masked, and for example, an ion injection is then carried out. Thus, a punch-through stopper area is formed in the area in which a submicron CMOS transistor is formed, while preventing the formation of a punch-through stopper area in the area in which an analog CMOS transistor, a high voltage-resistance MOS transistor, a bipolar transistor, a diode, or a diffusion resistor is formed.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: November 21, 2006
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Akio Kitamura
  • Patent number: 7132323
    Abstract: A method for forming a CMOS well structure including forming a plurality of first conductivity type wells over a substrate, each of the plurality of first conductivity type wells formed in a respective opening in a first mask. A cap is formed over each of the first conductivity type wells, and the first mask is removed. Sidewall spacers are formed on sidewalls of each of the first conductivity type wells. A plurality of second conductivity type wells are formed, each of the plurality of second conductivity type wells are formed between respective first conductivity type wells. A plurality of shallow trench isolations are formed between the first conductivity type wells and second conductive type wells. The plurality of first conductivity type wells are formed by a first selective epitaxial growth process, and the plurality of second conductivity type wells are formed by a second selective epitaxial growth process.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: November 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Terence B. Hook, Louis C. Hsu, Rajiv V. Joshi, Werner Rausch
  • Patent number: 7112480
    Abstract: A CMOS integrated circuit (15A-B-C) includes both relatively low-power (124, 126) and high-power (132, 134) CMOS transistors on the same chip. A 20V, relatively high-power PMOS device (134) includes a heavily doped N-well drain region (70). A 20V, relatively high-power NMOS device (132) includes heavily doped P-type buried layers (76, 78) underneath the source (94) and drain regions (96) and spanning the gap between the P-well gate (90F) and adjacent P-well isolation regions (46, 50).
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: September 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, James R. Todd, Sameer Pendharkar
  • Patent number: 7049699
    Abstract: Low RC structures for routing body-bias voltage are provided and described. These low RC structures are comprised of a deep well structure coupled to a metal structure.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: May 23, 2006
    Assignee: Transmeta Corporation
    Inventors: Robert Paul Masleid, James B. Burr, Michael Pelham
  • Patent number: 7022566
    Abstract: An RF circuit may be formed over a triple well that creates two reverse biased junctions. By adjusting the bias across the junctions, the capacitance across the junctions can be reduced, reducing the capacitive coupling from the RF circuits to the substrate, improving the self-resonance frequency of inductors and reducing the coupling of unwanted signals and noise from the underlying substrate to the active circuits and passive components such as the capacitors and inductors. As a result, radio frequency devices, such as radios, cellular telephones and transceivers such as Bluetooth transceivers, logic devices and Flash and SRAM memory devices may all be formed in the same integrated circuit die using CMOS fabrication is processes.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: April 4, 2006
    Assignee: Altera Corporation
    Inventors: Ting-Wah Wong, Chong L. Woo
  • Patent number: 7008836
    Abstract: A method to provide a triple well in an epitaxially based CMOS or B:CMOS process comprises the step of implanting the triple well prior to the epitaxial deposition.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: March 7, 2006
    Assignee: Infineon Technologies Wireless Solutions Sweden AB
    Inventors: Patrik Algotsson, Karin Andersson, Hans Norström
  • Patent number: 7005354
    Abstract: Depletion drain-extended MOS transistor devices and fabrication methods for making the same are provided, in which a compensated channel region is provided with p and n type dopants to facilitate depletion operation at Vgs=0, and an adjust region is implanted in the substrate proximate the channel side end of the thick gate dielectric structure for improved breakdown voltage rating. The compensated channel region is formed by overlapping implants for an n-well and a p-well, and the adjust region is formed using a Vt adjust implant with a mask exposing the adjust region.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: February 28, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, James R. Todd, Sameer Pendharkar, Tsutomu Kubota, Pinghai Hao
  • Patent number: 7005340
    Abstract: A method is provided for manufacturing a semiconductor device that can reduce the number of steps in manufacturing a triple-well that includes multiple ion implantation steps and heat treatment steps.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: February 28, 2006
    Assignee: Seiko Epson Corporation
    Inventor: Masahiro Hayashi
  • Patent number: 6995055
    Abstract: A method of fabricating CMOS transistors of first and second conductivity types in an SOI substrate includes the steps of etching contact holes and alignment marks through the semiconductor and insulating films and into the support substrate of an SOI substrate, forming a thermal oxide film on the semiconductor layer inside the contact holes, forming back regions of the CMOS transistors in the substrate, forming a well regions of the CMOS transistors in the semiconductor film, forming a gate oxide film, gate electrodes, source regions, drain regions, and body regions, forming an interlayer insulating film, forming contacts of the source regions, drain regions, and body regions, forming openings in the interlayer insulating film over the contact holes, and forming wiring on the interlayer insulating film.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: February 7, 2006
    Assignee: Seiko Instruments Inc.
    Inventors: Yoshifumi Yoshida, Miwa Wake
  • Patent number: 6974742
    Abstract: The present invention relates to a method for fabricating a complementary metal oxide semiconductor (CMOS) image sensor, wherein a mini-p-well is stably formed in a pixel region being correspondent to a trend of large scale of integration. The method includes the steps of: preparing a substrate defined with a peripheral region and a pixel region; performing a first ion-implantation process by using a first photoresist having a first thickness to thereby form a normal first conductive well in the pixel region; and performing a second ion-implantation process by using a second photoresist having a second thickness to thereby form a mini-well of the first conductive type in the peripheral region, wherein the first thickness is greater than the second thickness.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: December 13, 2005
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won-Ho Lee
  • Patent number: 6927116
    Abstract: A first well of the same conductivity type as that of a semiconductor substrate and a second well of a conductivity type opposite to that of the semiconductor substrate, are formed in the semiconductor substrate. The second well isolates the semiconductor substrate and the first well from each other. Phosphorus ions for forming the bottom of the second well are implanted into the semiconductor substrate more deeply than boron ions for forming the first well. The depths to which these ions are implanted can be varied by acceleration energy of the ions. If the ions are so implanted, the total sum of impurities constituting the second well can be decreased within the surface area of the first well.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: August 9, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Norihisa Arai
  • Patent number: 6911694
    Abstract: An LDMOS transistor and a bipolar transistor with LDMOS structures are disclosed for suitable use in high withstand voltage device applications, among others. The LDMOS transistor includes a drain well region 21 formed in P-type substrate 1, and also formed therein spatially separated one another are a channel well region 23 and a medium concentration drain region 24 having an impurity concentration larger than that of drain well region 21, which are simultaneously formed having a large diffusion depth through thermal processing. A source 11s is formed in channel well region 23, while a drain 11d is formed in drain region 24 having an impurity concentration larger than that of drain region 24. In addition, a gate electrode 11g is formed over the well region, overlying the partially overlapped portions with well region 23 and drain region 24 and being separated from drain 11d.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: June 28, 2005
    Assignee: Ricoh Company, Ltd.
    Inventors: Takaaki Negoro, Keiji Fujimoto
  • Patent number: 6908859
    Abstract: A transistor is formed in a semiconductor substrate. A deep n-well region is used in conjunction with a shallow n-well region. A lightly doped drain extension region is disposed between a drain region and a gate conductor. The use of the regions and against the backdrop of region provides for a very high breakdown voltage as compared to a relatively low channel resistance for the device.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: June 21, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Taylor R. Efland, William Nehrer
  • Patent number: RE41181
    Abstract: A method of manufacturing a low power dissipation semiconductor power device is provided which is easy to perform and suitable for mass production. When a first and second conductivity-type regions are formed on a semiconductor substrate which is selectively irradiated by impurity ions, an excellent super junction is formed by controlling the ion acceleration energy and the width of each irradiated region so that the first and second conductivity-type regions may have a uniform impurity distribution and a uniform width along the direction of irradiation. Another method of manufacturing a low power dissipation semiconductor power device having an excellent super junction is provided which selectively irradiates a collimated neutron beam onto a P+ silicon ingot and forms an N+ region that has a uniform impurity distribution and a uniform width along the direction of irradiation in the P+ silicon ingot.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: March 30, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toru Takeda, Tetsujiro Tsunoda