Including Isolation Structure Patents (Class 438/318)
  • Patent number: 11721592
    Abstract: A method of microfabrication includes providing a substrate having a first layer including a first semiconductor material. A second layer of a second semiconductor material is formed over the first layer. The second layer is directionally etched using a mask to form independent core structures of the second semiconductor material on the first semiconductor material. A third layer of a first dielectric material is formed on an exposed surface of the first layer to cover a lower portion of a respective sidewall of each core structure. A shell structure is formed on an upper portion of a respective sidewall of each core structure to form shell structures including at least one semiconductor material. The core structures are removed such that each shell structure forms a vertical semiconductor structure extending vertically from the first layer and electrically isolated from the first semiconductor material by the first dielectric material.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: August 8, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11710776
    Abstract: A bipolar transistor includes a stack of an emitter, a base, and a collector. The base is structured to have a comb shape including fingers oriented in a plane orthogonal to a stacking direction of the stack.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: July 25, 2023
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Alexis Gauthier, Edoardo Brezza, Pascal Chevalier
  • Patent number: 11488980
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a wafer with localized cavity structures and methods of manufacture. A structure includes a bulk substrate with localized semiconductor on insulator (SOI) regions and bulk device regions, the localized SOI regions includes multiple cavity structures and substrate material of the bulk substrate.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: November 1, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Siva P. Adusumilli, Anthony K. Stamper, Bruce W. Porth, John J. Ellis-Monaghan
  • Patent number: 10529721
    Abstract: A method for forming a boron-doped silicon germanium film on a base film in a surface of an object to be processed includes: forming a seed layer by adsorbing a chlorine-free boron-containing gas to a surface of the base film; and forming a boron-doped silicon germanium film on the surface of the base film to which the seed layer is adsorbed by using a silicon raw material gas, a germanium raw material gas, and a boron doping gas through a chemical vapor deposition method.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: January 7, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Mitsuhiro Okada
  • Patent number: 9947760
    Abstract: A method for manufacturing a bipolar junction transistor is provided. A layer stack is provided that comprises a semiconductor substrate having a trench isolation; an isolation layer arranged on the semiconductor substrate, wherein the first isolation layer comprises a recess forming an emitter window; lateral spacers arranged on sidewalls of the emitter window; a base layer arranged in the emitter window on the semiconductor substrate; and an emitter layer arranged on the isolation layer, the lateral spacers and the base layer. A sacrificial layer is provided on the emitter layer thereby overfilling a recess formed by the emitter layer due to the emitter window. The sacrificial layer is selectively removed up to the emitter layer while maintaining a part of the sacrificial layer filling the recess of the emitter layer. The emitter layer is selectively removed up to the isolation layer while maintaining the filled recess of the emitter layer.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: April 17, 2018
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Dmitri Alex Tschumakow, Claus Dahl
  • Patent number: 9502278
    Abstract: A substrate holder assembly for use in a controlled spalling process is provided. The substrate holder assembly includes a base structure having a surface in which a base substrate or other work piece can be placed thereupon. A framing element is located above and spaced apart from the surface of the base structure. The framing element has a window which exposes an upper surface of the base substrate and defines an area of the upper surface of the base substrate in which another material can be applied thereto. A support structure containing at least one mechanical securing element is located on the framing element. The support structure mechanically constrains the base substrate within the substrate holder assembly. Each mechanical securing element contacts at least one surface of the support structure and, optionally, one surface of the base substrate.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: November 22, 2016
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Devendra K. Sadana
  • Publication number: 20150137186
    Abstract: Disclosed is a trench formation technique wherein an opening having a first sidewall with planar contour and a second sidewall with a saw-tooth contour is etched through a semiconductor layer and into a semiconductor substrate. Then, a crystallographic wet etch process expands the portion of the opening within the semiconductor substrate to form a trench. Due to the different contours of the sidewalls and, thereby the different crystal orientations, one sidewall etches faster than the other, resulting in an asymmetric trench. Also disclosed is a bipolar semiconductor device formation method that incorporates the above-mentioned trench formation technique when forming a trench isolation region that undercuts an extrinsic base region and surrounds a collector pedestal.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: International Business Machines Corporation
    Inventors: Robert K. Leidy, Mark D. Levy, Qizhi Liu, Gary L. Milo
  • Patent number: 9029229
    Abstract: Disclosed are devices and methods of forming the devices wherein pair(s) of first openings are formed through a dielectric layer and a first semiconductor layer into a substrate and, within the substrate, the first openings of each pair are expanded laterally and merged to form a corresponding trench. Dielectric material is deposited, filling the upper portions of the first openings and creating trench isolation region(s). A second semiconductor layer is deposited and second opening(s) are formed through the second semiconductor and dielectric layers, exposing monocrystalline portion(s) of the first semiconductor layer between the each pair of first openings. A third semiconductor layer is epitaxially deposited with a polycrystalline section on the second semiconductor layer and monocrystalline section(s) on the exposed monocrystalline portion(s) of the first semiconductor layer. A crystallization anneal is performed and a device (e.g.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Peng Cheng, Vibhor Jain, Vikas Kumar Kaushal, Qizhi Liu, John J. Pekarik
  • Publication number: 20150108548
    Abstract: According to a bipolar transistor structure having a transistor top and a transistor bottom herein, a silicon substrate located at the transistor bottom has a collector region of a first conductivity type. An epitaxial base layer of a second conductivity type overlies, relative to the transistor top and bottom, a portion of the collector region. The epitaxial base layer has a bottom surface on the silicon substrate and a top surface opposite the bottom surface. A top region, relative to the transistor top and bottom, of the epitaxial base layer comprises a concentration of germanium having atomic compositions sufficient to avoid impacting transistor parameters, and sufficient to be resistant to selective chemical etching. A silicon emitter layer of the first conductivity type overlies, relative to the transistor top and bottom, a portion of the epitaxial base layer adjacent to the top surface of the epitaxial base layer.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: International Business Machines Corporation
    Inventors: James S. Dunn, Qizhi Liu, James S. Nakos
  • Patent number: 9012291
    Abstract: The present invention discloses a bipolar transistor with an embedded epitaxial external base region, which is designed to solve the problem of the TED effect with the prior art structures. The bipolar transistor with an embedded epitaxial external base region of the present invention comprises at least a collector region, a base region and an external base region on the collector region, an emitter on the base region, and sidewalls at both sides of the emitter. The external base region is grown through an in-situ doping selective epitaxy process and is embedded in the collector region. A portion of the external base region is located beneath the sidewalls. The present invention discloses a method of forming a bipolar transistor with an embedded epitaxial external base region.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 21, 2015
    Assignee: Tsinghua University
    Inventors: Yu-dong Wang, Jun Fu, Jie Cui, Yue Zhao, Zhi-hong Liu, Wei Zhang, Gao-qing Li, Zheng-li Wu, Ping Xu
  • Patent number: 9012279
    Abstract: A SiGe HBT is disclosed, which includes: a silicon substrate; shallow trench field oxides formed in the silicon substrate; a pseudo buried layer formed at bottom of each shallow trench field oxide; a collector region formed beneath the surface of the silicon substrate, the collector region being sandwiched between the shallow trench field oxides and between the pseudo buried layers; a polysilicon gate formed above each shallow trench field oxide having a thickness of greater than 150 nm; a base region on the polysilicon gates and the collector region; emitter region isolation oxides on the base region; and an emitter region on the emitter region isolation oxides and a part of the base region. The polysilicon gate is formed by gate polysilicon process of a MOSFET in a CMOS process. A method of manufacturing the SiGe HBT is also disclosed.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 21, 2015
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Donghua Liu, Wenting Duan, Wensheng Qian, Jun Hu, Jing Shi
  • Patent number: 8975146
    Abstract: Device structures, fabrication methods, and design structures for a bipolar junction transistor. A first isolation region is formed in a substrate to define a lateral boundary for an active device region and an intrinsic base layer is formed on the substrate. The intrinsic base layer has a section overlying the active device region. After the intrinsic base layer is formed, the first isolation region is partially removed adjacent to the active device region to define a trench that is coextensive with the substrate in the active device region and that is coextensive with the first isolation region. The trench is at least partially filled with a dielectric material to define a second isolation region.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Marwan H. Khater
  • Publication number: 20150056777
    Abstract: A method of making a semiconductor structure includes forming a trench through a shallow trench isolation (STI) structure and into a substrate, and forming a liner including an electrical insulator material on sidewalls of the trench. The method also includes forming a core including a high thermal conductivity material in the trench and on the liner, and forming a cap in the trench and on the core.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Mattias E. DAHLSTROM, Dinh DANG, Qizhi LIU, Ramana M. MALLADI
  • Patent number: 8952453
    Abstract: The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET is formed on an SOI wafer, comprising: a shallow trench isolation for defining an active region in the semiconductor layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; a channel region in the semiconductor layer and sandwiched by the source region and the drain region; a back gate in the semiconductor substrate; a first dummy gate stack overlapping with a boundary between the semiconductor layer and the shallow trench isolation; and a second dummy gate stack on the shallow trench isolation, wherein the MOSFET further comprises a plurality of conductive vias which are disposed between the gate stack and the first dummy gate stack and electrically connected to the source region and the drain region respectively, and between the first dummy gate stack and the second dummy gate stack and electrically connected to the back gate.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 10, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20150035012
    Abstract: Methods and apparatus for bipolar junction transistors (BJTs) are disclosed. A BJT comprises a collector made of p-type semiconductor material, a base made of n-type well on the collector; and an emitter comprising a p+ region on the base and a SiGe layer on the p+ region. The BJT can be formed by providing a semiconductor substrate comprising a collector, a base on the collector, forming a sacrificial layer on the base, patterning a first photoresist on the sacrificial layer to expose an opening surrounded by a STI within the base; implanting a p-type material through the sacrificial layer into an area of the base, forming a p+ region from the p-type implant; forming a SiGe layer on the etched p+ region to form an emitter. The process can be shared with manufacturing a polysilicon transistor up through the step of patterning a first photoresist on the sacrificial layer.
    Type: Application
    Filed: September 15, 2014
    Publication date: February 5, 2015
    Inventors: Jui-Yao Lai, Yen-Ming Chen, Shyh-Wei Wang
  • Publication number: 20150035011
    Abstract: Fabrication methods, device structures, and design structures for a heterojunction bipolar transistor. A trench isolation region and a collector are formed in a semiconductor substrate. The collector is coextensive with the trench isolation region. A first semiconductor layer is formed that includes a of single crystal section disposed on the collector and on the trench isolation region. A second semiconductor layer is formed that includes a single crystal section disposed on the single crystal section of the first semiconductor layer and that has an outer edge that overlies the trench isolation region. The section of the first semiconductor layer has a second width greater than a first width of the collector. The section of the second semiconductor layer has a third width greater than the second width. A cavity extends laterally from the outer edge of section of the second semiconductor layer to the section of the first semiconductor layer.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Vibhor Jain, Vikas K. Kaushal, Marwan H. Khater
  • Patent number: 8932931
    Abstract: Aspects of the invention provide a method of forming a bipolar junction transistor. The method includes: providing a semiconductor substrate including a uniform silicon nitride layer over an emitter pedestal, and a base layer below the emitter pedestal; applying a photomask at a first end and a second end of a base region; and performing a silicon nitride etch with the photomask to simultaneously form silicon nitride spacers adjacent to the emitter pedestal and exposing the base region of the bipolar junction transistor. The silicon nitride etch may be an end-pointed etch.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: January 13, 2015
    Assignee: International Business Machines Corporation
    Inventors: Margaret A. Faucher, Paula M. Fisher, Thomas H. Gabert, Joseph P. Hasselbach, Qizhi Liu, Glenn C. MacDougall
  • Patent number: 8927379
    Abstract: A method of forming a heterojunction bipolar transistor. The method includes providing a structure comprising at least an intrinsic base region and an emitter pedestal region. A stack is formed on the intrinsic base region. The stack comprises a polysilicon layer and a top sacrificial oxide layer. A trench is formed in the structure. The trench circumscribes the intrinsic base region and the stack. An extrinsic base is formed at two regions around the stack. The extrinsic base is formed by a selective epitaxial growth process to create a bridge over the trench. The bridge connects the two regions. An opening is provided in the stack. The opening exposes a portion of the intrinsic base region. An emitter is formed in the opening.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Kevin K. Chan, David L. Harame, Qizhi Liu, John J. Pekarik
  • Patent number: 8921195
    Abstract: Methods for fabricating a device structure, as well as device structures and design structures for a bipolar junction transistor. The device structure includes a collector region in a substrate, a plurality of isolation structures extending into the substrate and comprised of an electrical insulator, and an isolation region in the substrate. The isolation structures have a length and are arranged with a pitch transverse to the length such that each adjacent pair of the isolation structures is separated by a respective section of the substrate. The isolation region is laterally separated from at least one of the isolation structures by a first portion of the collector region. The isolation region laterally separates a second portion of the collector region from the first portion of the collector region. The device structure further includes an intrinsic base on the second portion of the collector region and an emitter on the intrinsic base.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Peng Cheng, Peter B. Gray, Vibhor Jain, Robert K. Leidy, Qizhi Liu
  • Patent number: 8912574
    Abstract: A method of making a semiconductor structure includes forming a trench through a shallow trench isolation (STI) structure and into a substrate, and forming a liner including an electrical insulator material on sidewalls of the trench. The method also includes forming a core including a high thermal conductivity material in the trench and on the liner, and forming a cap in the trench and on the core.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mattias E. Dahlstrom, Dinh Dang, Qizhi Liu, Ramana M. Malladi
  • Publication number: 20140353725
    Abstract: Disclosed are devices and methods of forming the devices wherein pair(s) of first openings are formed through a dielectric layer and a first semiconductor layer into a substrate and, within the substrate, the first openings of each pair are expanded laterally and merged to form a corresponding trench. Dielectric material is deposited, filling the upper portions of the first openings and creating trench isolation region(s). A second semiconductor layer is deposited and second opening(s) are formed through the second semiconductor and dielectric layers, exposing monocrystalline portion(s) of the first semiconductor layer between the each pair of first openings. A third semiconductor layer is epitaxially deposited with a polycrystalline section on the second semiconductor layer and monocrystalline section(s) on the exposed monocrystalline portion(s) of the first semiconductor layer. A crystallization anneal is performed and a device (e.g.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Applicant: International Business Machines Corporation
    Inventors: James W. Adkisson, Peng Cheng, Vibhor Jain, Vikas Kumar Kaushal, Qizhi Liu, John J. Pekarik
  • Patent number: 8866189
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, including: a substrate; two field oxide regions formed in the substrate; two pseudo buried layers, each being formed under a corresponding one of the field oxide regions; a collector region formed between the field oxide regions, the collector region laterally extending under a corresponding one of the field oxide regions and each side of the collector region being connected with a corresponding one of the pseudo buried layers; a matching layer formed under both the pseudo buried layers and the collector region; and two deep hole electrodes, each being formed in a corresponding one of the field oxide regions, the deep hole electrodes being connected to the corresponding ones of the pseudo buried layers for picking up the collector region. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: October 21, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventors: Jun Hu, Jing Shi, Wensheng Qian, Donghua Liu, Wenting Duan, Fan Chen, Tzuyin Chiu
  • Publication number: 20140264457
    Abstract: Disclosed is a heterojunction bipolar transistor (“HBT”) including an intrinsic base in a SiGe layer. The HBT has a raised germanium extrinsic base over the SiGe layer. A base contact is situated over and contacting the raised germanium extrinsic base. An emitter is situated over the intrinsic base, and a collector is situated under the intrinsic base. The raised germanium extrinsic base has a reduced parasitic base-collector capacitance. The raised germanium extrinsic base is situated between a first dielectric layer and a second dielectric layer. Spacers are situated adjacent the second dielectric layer. The first dielectric layer can be a nitride based dielectric, the second dielectric layer can be an oxide based dielectric, and the spacers can be a nitride based dielectric.
    Type: Application
    Filed: February 7, 2014
    Publication date: September 18, 2014
    Applicant: Newport Fab, LLC dba Jazz Semiconductor
    Inventors: Edward Preisler, David J. Howard, George Talor, Gerson R. Ortuno
  • Publication number: 20140264458
    Abstract: Disclosed is a method for fabricating a heterojunction bipolar transistor (“HBT”), and the resulting structure. The method includes forming a germanium layer over a SiGe layer, the SiGe layer including an intrinsic base. Thereafter, an emitter sacrificial post and a raised germanium extrinsic base are formed by etching away portions of the germanium layer. Then, a conformal dielectric layer is deposited over the raised germanium extrinsic base. The process continues by removing the emitter sacrificial post and forming an emitter over the intrinsic base within an emitter opening defined by the previous removal of the emitter sacrificial post. The resulting structure has a raised germanium extrinsic base with a reduced parasitic base-collector capacitance.
    Type: Application
    Filed: February 7, 2014
    Publication date: September 18, 2014
    Applicant: Newport Fab, LLC dba Jazz Semiconductor
    Inventors: Edward Preisler, David J. Howard, George Talor, Gerson R. Ortuno
  • Patent number: 8816401
    Abstract: Structures and methods of making a heterojunction bipolar transistor (HBT) device that include: an n-type collector region disposed within a crystalline silicon layer; a p-type intrinsic base comprising a boron-doped silicon germanium crystal that is disposed on a top surface of an underlying crystalline Si layer, which is bounded by shallow trench isolators (STIs), and that forms angled facets on interfaces of the underlying crystalline Si layer with the shallow trench isolators (STIs); a Ge-rich, crystalline silicon germanium layer that is disposed on the angled facets and not on a top surface of the p-type intrinsic base; and an n-type crystalline emitter disposed on a top surface and not on the angled lateral facets of the p-type intrinsic base.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Renata A. Camillo-Castillo, Jeffrey B. Johnson
  • Publication number: 20140231877
    Abstract: Fabrication methods, device structures, and design structures for a bipolar junction transistor. An emitter is formed in a device region defined in a substrate. An intrinsic base is formed on the emitter. A collector is formed that is separated from the emitter by the intrinsic base. The collector includes a semiconductor material having an electronic bandgap greater than an electronic bandgap of a semiconductor material of the device region.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, David L. Harame, Qizhi Liu
  • Patent number: 8759880
    Abstract: An ultra-high voltage silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), which includes: a P-type substrate; an N-type matching layer, a P-type matching layer and an N? collector region stacked on the P-type substrate from bottom up; two field oxide regions separately formed in the N? collector region; N+ pseudo buried layers, each under a corresponding one of the field oxide regions and in contact with each of the N-type matching layer, the P-type matching layer and the N? collector region; an N+ collector region between the two field oxide regions and through the N? collector region and the P-type matching layer and extending into the N-type matching layer; and deep hole electrodes, each in a corresponding one of the field oxide regions and in contact with a corresponding one of the N+ pseudo buried layers. A method of fabricating an ultra-high voltage SiGe HBT is also disclosed.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: June 24, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Jing Shi, Donghua Liu, Jun Hu, Wensheng Qian, Wenting Duan, Fan Chen
  • Publication number: 20140167116
    Abstract: The present disclosure is directed to a method that includes exposing a surface of a silicon substrate in a first region between first and second isolation trenches, etching the silicon substrate in the first region to form a recess between the first and second isolation trenches,=; and forming a base of a heterojunction bipolar transistor by selective epitaxial growth of a film comprising SiGe in the recess.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: STMicroelectronics S.A.
    Inventors: Pascal Chevalier, Didier Celi, Jean-Pierre Blanc, Alain Chantre
  • Patent number: 8754450
    Abstract: A SiGe HBT having low collector-base capacitance is disclosed, which includes: a silicon substrate, including isolation trenches, a collector region situated between the isolation trenches, and lateral trenches; a SiGe base layer formed on the silicon substrate; and an emitter region formed on the SiGe base layer. Each lateral trench is situated in the collector region on one side of an isolation trench, and is connected to the isolation trench. Moreover, a manufacturing method of a SiGe HBT having low collector-base capacitance is disclosed, which includes: performing ion implantation to predetermined regions in a silicon substrate before trench isolations are formed; forming lateral trenches by etching ion implantation regions after the trench isolations are formed; then forming a SiGe HBT device by an ordinary semiconductor process. The present invention can reduce the collector-base capacitance and therefore improve high-frequency characteristics of the device.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: June 17, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventors: Yan Miu, Changwa Yao, Hu Peng
  • Patent number: 8748204
    Abstract: Isolation of III-nitride devices may be performed with a dopant selective etch that provides a smooth profile with little crystal damage in comparison to previously used isolation techniques. The dopant selective etch may be an electro-chemical or photo-electro-chemical etch. The desired isolation area may be identified by changing the conductivity type of the semiconductor material to be etched. The etch process can remove a conductive layer to isolate a device atop the conductive layer. The etch process can be self stopping, where the process automatically terminates when the selectively doped semiconductor material is removed.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: June 10, 2014
    Assignee: International Rectifier Corporation
    Inventor: Paul Bridger
  • Publication number: 20140151750
    Abstract: Structures and methods of making a heterojunction bipolar transistor (HBT) device that include: an n-type collector region disposed within a crystalline silicon layer; a p-type intrinsic base comprising a boron-doped silicon germanium crystal that is disposed on a top surface of an underlying crystalline Si layer, which is bounded by shallow trench isolators (STIs), and that forms angled facets on interfaces of the underlying crystalline Si layer with the shallow trench isolators (STIs); a Ge-rich, crystalline silicon germanium layer that is disposed on the angled facets and not on a top surface of the p-type intrinsic base; and an n-type crystalline emitter disposed on a top surface and not on the angled lateral facets of the p-type intrinsic base.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata A. Camillo-Castillo, Jeffrey B. Johnson
  • Publication number: 20140124838
    Abstract: A high-speed SiGe HBT is disclosed, which includes: a substrate; STIs formed in the substrate; a collector region formed beneath the substrate surface and located between the STIs; an epitaxial dielectric layer including two portions, one being located on the collector region, the other being located on one of the STIs; a base region formed both in a region between and on surfaces of the two portions of the epitaxial dielectric layer; an emitter dielectric layer including two portions, both portions being formed on the base region; an emitter region formed both in a region between and on surfaces of the two portions of the emitter dielectric layer; a contact hole formed on a surface of each of the base region, the emitter region and the collector region. A method of manufacturing high-speed SiGe HBT is also disclosed.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventors: Donghua Liu, Wenting Duan, Wensheng Qian, Jun Hu, Jing Shi
  • Publication number: 20140084420
    Abstract: A method of forming a heterojunction bipolar transistor. The method includes providing a structure comprising at least an intrinsic base region and an emitter pedestal region. A stack is formed on the intrinsic base region. The stack comprises a polysilicon layer and a top sacrificial oxide layer. A trench is formed in the structure. The trench circumscribes the intrinsic base region and the stack. An extrinsic base is formed at two regions around the stack. The extrinsic base is formed by a selective epitaxial growth process to create a bridge over the trench. The bridge connects the two regions. An opening is provided in the stack. The opening exposes a portion of the intrinsic base region. An emitter is formed in the opening.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, Kevin K. Chan, David L. Harame, Qizhi Liu, John J. Pekarik
  • Patent number: 8637959
    Abstract: The invention discloses a vertical parasitic PNP transistor in a BiCMOS process and manufacturing method of the same, wherein an active region is isolated by STIs. The transistor includes a collector region, a base region, an emitter region, pseudo buried layers, and N-type polysilicon. The pseudo buried layers, formed at the bottom of the STIs located on both sides of the collector region, extend laterally into the active region and contact with the collector region, whose electrodes are picked up through making deep-hole contacts in the STIs. The N-type polysilicon is formed on the base region and contacts with it, whose electrodes are picked up through making metal contacts on the N-type polysilicon. The transistors can be used as output devices in high-speed and high-gain circuits, efficiently reducing the transistors area, diminishing the collector resistance, and improving the transistors performance. The method can reduce the cost without additional technological conditions.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 28, 2014
    Assignee: Shanghai Hua Hong NEC Electronics
    Inventors: Wensheng Qian, Donghua Liu, Jun Hu
  • Publication number: 20130299879
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) device that includes a substrate; a buried oxide layer near a bottom of the substrate; a collector region above and in contact with the buried oxide layer; a field oxide region on each side of the collector region; a pseudo buried layer under each field oxide region and in contact with the collector region; and a through region under and in contact with the buried oxide layer. A method for manufacturing a SiGe HBT device is also disclosed. The SiGe HBT device can isolate noise from the bottom portion of the substrate and hence can improve the intrinsic noise performance of the device at high frequencies.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 14, 2013
    Applicant: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventors: Donghua Liu, Jing Shi, Wenting Duan, Wensheng Qian, Jun Hu
  • Publication number: 20130214275
    Abstract: Disclosed are a transistor (e.g., bipolar junction transistor (BJT) or a heterojunction bipolar transistor (HBT)) and a method of forming the transistor with a narrow in-substrate collector region for reduced base-collector junction capacitance. The transistor has, within a substrate, a collector region positioned laterally adjacent to a trench isolation region. A relatively thin seed layer covers the trench isolation region and collector region. This seed layer has a monocrystalline center, which is aligned above and wider than the collector region (e.g., due to a solid phase epitaxy regrowth process), and a polycrystalline outer section. An intrinsic base layer is epitaxially deposited on the seed layer such that it similarly has a monocrystalline center section that is aligned above and wider than the collector region. An extrinsic base layer is the intrinsic base layer and has a monocrystalline extrinsic base-to-intrinsic base link-up region that is offset vertically from the collector region.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Applicant: International Business Machines Corporation
    Inventors: James W. Adkisson, David L. Harame, Qizhi Liu
  • Publication number: 20130178037
    Abstract: A method of forming a heterojunction bipolar transistor by depositing a first stack comprising an polysilicon layer and a sacrificial layer on a mono-crystalline silicon substrate surface; patterning that stack to form a trench extending to the substrate; depositing a silicon layer over the resultant structure; depositing a silicon-germanium-carbon layer over the resultant structure; selectively removing the silicon-germanium-carbon layer from the sidewalls of the trench; depositing a boron-doped silicon-germanium-carbon layer over the resultant structure; depositing a further silicon-germanium-carbon layer over the resultant structure; depositing a boron-doped further silicon layer over the resultant structure; forming dielectric spacers on the trench sidewalls; filling the trench with emitter material; exposing polysilicon regions outside the trench side walls by selectively removing the sacrificial layer; implanting boron impurities into the exposed polysilicon regions to define base implants; and exposing
    Type: Application
    Filed: July 12, 2012
    Publication date: July 11, 2013
    Applicant: NXP B.V.
    Inventors: Philippe MEUNIER-BEILLARD, Johannes Josephus Theodorus Marinus DONKERS, Hans MERTENS, Tony VANHOUCKE
  • Publication number: 20130140604
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, including: a substrate; two field oxide regions formed in the substrate; two pseudo buried layers, each being formed under a corresponding one of the field oxide regions; a collector region formed between the field oxide regions, the collector region laterally extending under a corresponding one of the field oxide regions and each side of the collector region being connected with a corresponding one of the pseudo buried layers; a matching layer formed under both the pseudo buried layers and the collector region; and two deep hole electrodes, each being formed in a corresponding one of the field oxide regions, the deep hole electrodes being connected to the corresponding ones of the pseudo buried layers for picking up the collector region. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Application
    Filed: November 20, 2012
    Publication date: June 6, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong NEC Electronics Co., Ltd.
  • Publication number: 20130126945
    Abstract: An ultra high voltage silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, in which, a collector region is formed between two isolation structures; a pseudo buried layer is formed under each isolation structure and each side of the collector region is connected with a corresponding pseudo buried layer; a SiGe field plate is formed on each of the isolation structures; each pseudo buried layer is picked up by a first contact hole electrode and each SiGe field plate is picked up by a second contact hole electrode; and each first contact hole electrode is connected to its adjacent second contact hole electrode and the two contact hole electrodes jointly serve as an emitter. A manufacturing method of the ultra high voltage SiGe HBT is also disclosed.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 23, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd.
  • Publication number: 20130119434
    Abstract: Disclosed are embodiments of a transistor (e.g., bipolar junction transistor (BJT) or a heterojunction bipolar transistor (HBT)) and a method of forming the transistor with a collector region having a protected upper edge portion for reduced base-collector junction capacitance Cbc. In the embodiments, a collector region is positioned laterally adjacent to a trench isolation region within a substrate. Mask layer(s) cover the trench isolation region and further extend laterally onto the edge portion of the collector region. A first section of an intrinsic base layer is positioned above a center portion of the collector region and a second section of the intrinsic base layer is positioned above the mask layer(s). During processing these mask layer(s) prevent divot formation in the upper corner of the trench isolation region at the isolation region-collector region interface and further limit dopant diffusion from a subsequently formed raised extrinsic base layer into the collector region.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: International Business Machines Corporation
    Inventors: JAMES W. ADKISSON, David L. Harame, Robert K. Leidy, Qizhi Liu
  • Publication number: 20130113021
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) having a deep pseudo buried layer is disclosed. The SiGe HBT includes isolation structures formed in trenches, first pseudo buried layers and second pseudo buried layers, and a collector region. The first pseudo buried layers are formed under the respective trenches and the second pseudo buried layers are formed under the first pseudo buried layers, with each first pseudo buried layer vertically contacting with a second pseudo buried layer. The second pseudo buried layers are laterally connected to each other, and the collector region is surrounded by the trenches, the first pseudo buried layers and the second pseudo buried layers. The cross section of each of the trenches has a regular trapezoidal shape, namely, each trench's width of its top is smaller than that of its bottom. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 9, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd.
  • Publication number: 20130113022
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, which includes: two isolation structures each being formed in a trench; a set of three or more pseudo buried layers formed under each trench with every adjacent two pseudo buried layers of the set being vertically contacted with each other; and a collector region. In this design, the lowermost pseudo buried layers of the two sets are laterally in contact with each other, and the collector region is surrounded by the two isolation structures and the two sets of pseudo buried layers. As the breakdown voltage of a SiGe HBT according to the present invention is determined by the distance between an uppermost pseudo buried layer and the edge of an active region, SiGe HBTs having different breakdown voltages can be achieved. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 9, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: SHANGHAI HUA HONG NEC ELECTRONICS CO.
  • Publication number: 20130099288
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, in which a shallow trench is formed of a first shallow trench and a second shallow trench vertically joined together in the active region, the second shallow trench being located directly under the first shallow trench and having a width less than that of the first shallow trench; a pseudo buried layer is formed surrounding the bottom and side walls of the second shallow trench and is in contact with the collector region to serve as a connection layer of a collector; a deep hole contact is formed in the shallow trench and is in contact with the pseudo buried layer to pick up the collector. A SiGe HBT manufacturing method is also disclosed. The present invention is capable of improving the cut-off frequency of a SiGe HBT.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 25, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD
    Inventor: Shanghai Hua Hong Nec Electronics Co.,Ltd.
  • Publication number: 20130095631
    Abstract: Embodiments of the present invention provide a bipolar transistor with low resistance base contact and method of manufacturing the same. The bipolar transistor includes an emitter, a collector, and an intrinsic base between the emitter and the collector. The intrinsic base extends laterally to an extrinsic base. The extrinsic base further includes a first semiconductor material with a first bandgap and a second semiconductor material with a second bandgap that is smaller than the first bandgap.
    Type: Application
    Filed: December 11, 2012
    Publication date: April 18, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International Business Machines Corporation
  • Patent number: 8420495
    Abstract: This invention disclosed a manufacturing approach of collector and buried layer of a bipolar transistor. One aspect of the invention is that a pseudo buried layer, i.e, collector buried layer, is manufactured by ion implantation and thermal anneal. This pseudo buried layer has a small area, which makes deep trench isolation to divide pseudo buried layer unnecessary in subsequent process. Another aspect is, the doped area, i.e, collector, is formed by ion implantation instead of high cost epitaxy process. This invention simplified the manufacturing process, as a consequence, saved manufacturing cost.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 16, 2013
    Assignee: Shanghai Hua Hong Nec Electronics Company, Limited
    Inventors: Tzuyin Chiu, TungYuan Chu, YungChieh Fan, Wensheng Qian, Fan Chen, Jiong Xu, Haifang Zhang
  • Publication number: 20130075730
    Abstract: A vertical PNP device in a silicon-germanium (SiGe) BiCMOS process is disclosed. The device is formed in a deep N-well and includes a collector region, a base region and an emitter region. The collector region has a two-dimensional L-shaped structure composed of a lightly doped first P-type ion implantation region and a heavily doped second P-type ion implantation region. The collector region is picked up by P-type pseudo buried layers formed at bottom of the shallow trench field oxide regions. A manufacturing method of vertical PNP device in a SiGe BiCMOS process is also disclosed. The method is compatible with the manufacturing processes of a SiGe heterojunction bipolar transistor in the SiGe BiCMOS process.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 28, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Wensheng Qian
  • Publication number: 20120181579
    Abstract: A vertical parasitic PNP device in a SiGe HBT process is disclosed which comprises a collector region, a base region, an emitter region, P-type pseudo buried layers and N-type polysilicons. The pseudo buried layers are formed at bottom of shallow trench field oxide regions around the collector region and contact with the collector region; deep hole contacts are formed on top of the pseudo buried layers to pick up collector electrodes. The N-type polysilicons are formed on top of the base region and are used to pick up base electrodes. The emitter region comprises a P-type SiGe epitaxial layer and a P-type polysilicon both of which are formed on top of the base region. A manufacturing method of a vertical parasitic PNP device in a SiGe HBT process is also disclosed.
    Type: Application
    Filed: December 19, 2011
    Publication date: July 19, 2012
    Inventors: Fan Chen, Xiongbin Chen
  • Patent number: 8222114
    Abstract: This invention disclosed a novel manufacturing approach of collector and buried layer of a bipolar transistor. One aspect of the invention is that an oxide-nitride-oxide (ONO) sandwich structure is employed instead of oxide-nitride dual layer structure before trench etching. Another aspect is, through the formation of silicon oxide spacer in trench sidewall and silicon oxide remaining in trench bottom in the deposition and etch back process, the new structure hard mask can effectively protect active region from impurity implanted in ion implantation process.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: July 17, 2012
    Assignee: Shanghai Hua Hong NEC Electronics Company, Limited
    Inventors: Tzuyin Chiu, TungYuan Chu, YungChieh Fan, Wensheng Qian, Fan Chen, Jiong Xu, Haifang Zhang
  • Publication number: 20120146098
    Abstract: A method of making a semiconductor structure includes forming a trench through a shallow trench isolation (STI) structure and into a substrate, and forming a liner including an electrical insulator material on sidewalls of the trench. The method also includes forming a core including a high thermal conductivity material in the trench and on the liner, and forming a cap in the trench and on the core.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mattias E. DAHLSTROM, Dinh DANG, Qizhi LIU, Ramana M. MALLADI
  • Publication number: 20120112244
    Abstract: Vertical heterojunction bipolar transistors with reduced base-collector junction capacitance, as well as fabrication methods for vertical heterojunction bipolar transistors and design structures for BiCMOS integrated circuits. The vertical heterojunction bipolar transistor includes a barrier layer between the intrinsic base and the extrinsic base that blocks or reduces diffusion of a dopant from the extrinsic base to the intrinsic base. The barrier layer has at least one opening that permits direct contact between the intrinsic base and a portion of the extrinsic base disposed in the opening.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Qizhi Liu