Isolation By Pn Junction Only Patents (Class 438/414)
  • Patent number: 9029235
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: May 12, 2015
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Publication number: 20150115386
    Abstract: Semiconductor devices, methods of manufacturing thereof, and image sensor devices are disclosed. In some embodiments, a semiconductor device comprises a semiconductor chip comprising an array region, a periphery region, and a through-via disposed therein. The semiconductor device comprises a guard structure disposed in the semiconductor chip between the array region and the through-via or between the through-via and a portion of the periphery region.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Tzu-Hsuan Hsu, Feng-Chi Hung, Min-Feng Kao
  • Patent number: 8975637
    Abstract: A thin film diode (100A) includes a semiconductor layer (130) having first, second, and third semiconductor regions, a first insulating layer (122) formed on the semiconductor layer (130), and a second insulating layer (123) formed on the first insulating layer (122). The first semiconductor region (134A) contains an impurity of a first-conductivity type at a first concentration; the second semiconductor region (135A) contains an impurity of a second-conductivity type different from the first conductivity type at a second concentration; and the third semiconductor region (133A) contains the first-conductivity type impurity at a third concentration lower than the first concentration, or contains the second-conductivity type impurity at a third concentration lower than the second concentration. The first semiconductor region (134A) conforms to an aperture pattern in the second insulating layer (123), or the second semiconductor region (135A) conforms to an aperture pattern in the second insulating layer (123).
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 10, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Matsukizono, Tomohiro Kimura, Hiroyuki Ogawa
  • Publication number: 20140339676
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a semiconductor device includes: a substrate; a first region over the substrate, the first region comprising a first n type material; a second region over the substrate and laterally adjacent to the first region, the second region comprising a first p type material; a third region disposed within the second region and laterally separated from the first region, the third region comprising a second n type material; a fourth region disposed atop the third region, the fourth region comprising a second p type material; a fifth region disposed within the first region and laterally separated from the second region, the fifth region comprising a third p type material; and a sixth region disposed atop the fifth region, the sixth region comprising a third n type material.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 20, 2014
    Inventors: Hsi-Yu Kuo, Ko-Yi Lee
  • Patent number: 8878241
    Abstract: A semiconductor structure and manufacturing method for the same, and an ESD circuit are provided. The semiconductor structure comprises a first doped region, a second doped region, a third doped region and a resistor. The first doped region has a first type conductivity. The second doped region has a second type conductivity opposite to the first type conductivity. The third doped region has the first type conductivity. The first doped region and the third doped region are separated by the second doped region. The resistor is coupled between the second doped region and the third doped region. An anode is coupled to the first doped region. A cathode is coupled to the third doped region.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 4, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsin-Liang Chen, Wing-Chor Chan, Shyi-Yuan Wu
  • Publication number: 20140319646
    Abstract: An electronic device includes a semiconductor layer, a primary junction in the semiconductor layer, a lightly doped region surrounding the primary junction and a junction termination structure in the lightly doped region adjacent the primary junction. The junction termination structure has an upper boundary, a side boundary, and a corner between the upper boundary and the side boundary, and the lightly doped region extends in a first direction away from the primary junction and normal to a point on the upper boundary by a first distance that is smaller than a second distance by which the lightly doped region extends in a second direction away from the primary junction and normal to a point on the corner. At least one floating guard ring segment may be provided in the semiconductor layer outside the corner of the junction termination structure. Related methods are also disclosed.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Jason Henning, Qingchun Zhang, Sie-Hyung Ryu
  • Patent number: 8772869
    Abstract: A power semiconductor device includes: a first semiconductor layer; second and third semiconductor layers above and alternatively arranged along a direction parallel to an upper surface of the first semiconductor layer; and plural fourth semiconductor layers provided on some of immediately upper regions of the third semiconductor layer. An array period of the fourth semiconductor layers is larger than that of the second semiconductor layer. A thickness of part of the gate insulating film in an immediate upper region of a central portion between the fourth semiconductor layers is thicker than a thickness of part of the gate insulating film in an immediate upper region of the fourth semiconductor layers. Sheet impurity concentrations of the second and third semiconductor layers in the central portion are higher than a sheet impurity concentration of the third semiconductor layer in an immediately lower region of the fourth semiconductor layers.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 8, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono
  • Patent number: 8664049
    Abstract: The PN junction of a substrate diode in a sophisticated SOI device may be formed on the basis of an embedded in situ doped semiconductor material, thereby providing superior diode characteristics. For example, a silicon/germanium semiconductor material may be formed in a cavity in the substrate material, wherein the size and shape of the cavity may be selected so as to avoid undue interaction with metal silicide material.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: March 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Roman Boschke, Vassilios Papageorgiou, Maciej Wiatr
  • Publication number: 20140015091
    Abstract: Provided is a semiconductor device showing stable high-frequency characteristics. A semiconductor device includes the following configuration. A diffusion region into which acceptors are introduced is formed in a silicon substrate. In addition, a non-diffusion region into which the acceptors are not introduced is disposed in the silicon substrate alternately with the diffusion region. In addition, a first insulating layer is provided so as to contact with the silicon substrate. Further, an interconnect is provided on the first insulating layer.
    Type: Application
    Filed: February 21, 2012
    Publication date: January 16, 2014
    Inventor: Noriaki Matsuno
  • Publication number: 20140001473
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a source region of the first conductivity type, and the diode circuit is connected between the isolation structure and the source region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: WEIZE CHEN, HUBERT M. BODE, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Publication number: 20140004681
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Applicant: PFC DEVICE CORP.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Publication number: 20140001477
    Abstract: Embodiments of semiconductor devices and driver circuits include a semiconductor substrate having a first conductivity type, an isolation structure (including a sinker region and a buried layer), an active device within area of the substrate contained by the isolation structure, and a diode circuit. The buried layer is positioned below the top substrate surface, and has a second conductivity type. The sinker region extends between the top substrate surface and the buried layer, and has the second conductivity type. The active device includes a drain region of the second conductivity type, and the diode circuit is connected between the isolation structure and the drain region. The diode circuit may include one or more Schottky diodes and/or PN junction diodes. In further embodiments, the diode circuit may include one or more resistive networks in series and/or parallel with the Schottky and/or PN diode(s).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: WEIZE CHEN, HUBERT M. BODE, RICHARD J. DE SOUZA, PATRICE M. PARRIS
  • Patent number: 8574945
    Abstract: An embodiment of an array of Geiger-mode avalanche photodiodes, wherein each photodiode is formed by a body of semiconductor material, having a first conductivity type, housing a first cathode region, of the second conductivity type, and facing a surface of the body, an anode region, having the first conductivity type and a higher doping level than the body, extending inside the body, and facing the surface laterally to the first cathode region and at a distance therefrom, and an insulation region extending through the body and insulating an active area from the rest of the body, the active area housing the first cathode region and the anode region. The insulation region is formed by a mirror region of metal material, a channel-stopper region having the second conductivity type, surrounding the mirror region, and a coating region, of dielectric material, arranged between the mirror region and the channel-stopper region.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 5, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Delfo Nunziato Sanfilippo, Emilio Antonio Sciacca, Piero Giorgio Fallica, Salvatore Antonio Lombardo
  • Publication number: 20130244397
    Abstract: An embodiment of a semiconductor power device provided with: a structural body made of semiconductor material with a first conductivity, having an active area housing one or more elementary electronic components and an edge area delimiting externally the active area; and charge-balance structures, constituted by regions doped with a second conductivity opposite to the first conductivity, extending through the structural body both in the active area and in the edge area in order to create a substantial charge balance. The charge-balance structures are columnar walls extending in strips parallel to one another, without any mutual intersections, in the active area and in the edge area.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: STMicroelectronics S.r.I.
    Inventors: Mario Giuseppe Saggio, Alfio Guarnera
  • Publication number: 20130237016
    Abstract: A semiconductor device and manufacturing method are disclosed which prevent breakage and chipping of a semiconductor chip and improve device characteristics. A separation layer is in a side surface of an element end portion of the chip. An eave portion is formed by a depressed portion in the element end portion. A collector layer on the rear surface of the chip extends to a side wall and bottom surface of the depressed portion, and is connected to the separation layer. A collector electrode is over the whole surface of the collector layer, and is on the side wall of the depressed portion. The thickness of an outermost electrode film is 0.05 ?m or less. The collector electrode on the rear surface of the chip is joined onto an insulating substrate via a solder layer, which covers the collector electrode on a flat portion of the rear surface of the semiconductor chip.
    Type: Application
    Filed: April 10, 2013
    Publication date: September 12, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Kyohei FUKUDA, Eiji MOCHIZUKI, Mitsutoshi SAWANO, Takaaki SUZAWA
  • Publication number: 20130221408
    Abstract: A semiconductor device includes: an epitaxial substrate formed by stacking a plurality of kinds of semiconductors over one semiconductor substrate by epitaxial growth; a field effect transistor of a first conductivity type formed in a first region; a field effect transistor of a second conductivity type formed in a second region; and a protective element formed in a third region. The protective element includes: a first stacking structure formed by etching the epitaxial substrate by vertical etching that proceeds in a stacking thickness direction; and a second stacking structure formed by etching the epitaxial substrate by vertical etching that proceeds in a stacking thickness direction. The protective element has two PN junctions on a current path formed between an upper end of the first stacking structure and an upper end of the second stacking structure via a base part of the first stacking structure and the second stacking structure.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 29, 2013
    Applicant: Sony Corporation
    Inventor: Sony Corporation
  • Patent number: 8513087
    Abstract: Processes for forming isolation structures for semiconductor devices include forming a submerged floor isolation region and a filed trench which together enclose an isolated pocket of the substrate. One process aligns the trench to the floor isolation region. In another process a second, narrower trench is formed in the isolated pocket and filled with a dielectric material while the dielectric material is deposited so as to line the walls and floor of the first trench. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: August 20, 2013
    Assignee: Advanced Analogic Technologies, Incorporated
    Inventors: Donald R. Disney, Richard K. Williams
  • Publication number: 20130175669
    Abstract: A semiconductor device formed on a substrate includes a first diode junction formation, a second diode junction formation, and at least one through-silicon-via (TSV), in which a cathode and an anode of the first diode are cross-connected to an anode and cathode of the second diode through the at least one TSV for achieving electrical robustness in through-silicon-via based integrated circuits, including photosensitive devices and circuits for signal processing applications.
    Type: Application
    Filed: March 6, 2013
    Publication date: July 11, 2013
    Applicant: Analog Devices, Inc.
    Inventors: Lejun HU, Srivatsan Parthasarathy, Michael COLN, Javier SALCEDO
  • Patent number: 8445357
    Abstract: Provided are a method of fabricating a semiconductor integrated circuit device and a semiconductor integrated circuit device fabricated using the method. The method includes: forming a mask film, which exposes a portion of a substrate, on the substrate; forming a first buried impurity layer, which contains impurities of a first conductivity type and of a first concentration, in a surface of the exposed portion of the substrate by using the mask film; removing the mask film; forming a second buried impurity layer, which contains impurities of a second conductivity type and of a second concentration, using blank implantation; and forming an epitaxial layer on the substrate having the first and second buried impurity layers, wherein the first concentration is higher than the second concentration.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 21, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Don Kim, Eung-Kyu Lee, Sung-Ryoul Bae, Soo-Bang Kim, Dong-Eun Jang
  • Patent number: 8399340
    Abstract: A method of manufacturing a super-junction semiconductor device facilitates increasing the epitaxial growth rate without increasing the manufacturing steps greatly. In substitution for the formation of alignment mark in the surfaces of the second and subsequent non-doped epitaxial layers, patterning for forming a new alignment mark is conducted simultaneously with the resist pattering for selective ion-implantation into the second and subsequent non-doped epitaxial layers in order to form the new alignment mark at a position different from the position, at which the initial alignment mark is formed, and to form the new alignment mark in every one or more repeated epitaxial layer growth cycles.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 19, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Akihiko Ohi
  • Publication number: 20130015552
    Abstract: Embodiments of the invention include a III-nitride semiconductor layer including a first portion having a first defect density and a second portion having a second defect density. The first defect density is greater than the second defect density. An insulating material is disposed over the first portion. The insulating material is not formed on or is removed from the second portion.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 17, 2013
    Applicant: EPOWERSOFT, INC.
    Inventors: Isik C. Kizilyalli, David P. Bour, Richard J. Brown, Andrew P. Edwards, Hui Nie, Linda T. Romano
  • Publication number: 20120326699
    Abstract: Various exemplary embodiments relate to an isolation device including a semiconductor layer and an insulation layer. The insulation layer insulates a central portion of the semiconductor layer. A high voltage terminal connects to the insulation layer, a first low voltage terminal connects to a first non-insulated portion of the semiconductor layer, and a second low voltage terminal connects to a second non-insulated portion of the semiconductor layer. The first and second low voltage terminals are electrically connected via the semiconductor layer. A voltage applied to the high voltage terminal influences the conductance of the semiconductor layer. The high voltage terminal is galvanically isolated from the first and second low voltage terminals.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Applicant: NXP B.V
    Inventors: Maarten Jacobus SWANENBERG, Dusan GOLUBOVIC
  • Patent number: 8318580
    Abstract: An electrical component includes a semiconductor layer having a first conductivity type and a interconnect layer disposed adjacent to a frontside of the semiconductor layer. At least one bond pad is disposed in the interconnect layer and formed adjacent to the frontside of the semiconductor layer. An opening formed from the backside of the semiconductor layer and through the semiconductor layer exposes at least a portion of the bond pad. A first region having a second conductivity type extends from the backside of the semiconductor layer to the frontside of the semiconductor layer and surrounds the opening. The first region can abut a perimeter of the opening or alternatively, a second region having the first conductivity type can be disposed between the first region and a perimeter of the opening.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: November 27, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: John P. McCarten, Cristian A. Tivarus
  • Publication number: 20120241900
    Abstract: An electrostatic discharge (ESD) protected device may include a substrate, an N-type well region disposed corresponding to a first portion of the substrate and having two N+ segments disposed at a surface thereof, an a P-type well region disposed proximate to a second portion of the substrate and having a P+ segment and an N+ segment. The two N+ segments may be spaced apart from each other and each may each be associated with an anode of the device. The N+ segment may be associated with a cathode of the device. A contact may be positioned in a space between the two N+ segments and connected to the P+ segment. The contact may form a parasitic capacitance that, in connection with a parasitic resistance formed in association with the N+ segment, provides self detection for high voltage ESD protection.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Inventors: Hsin-Liang Chen, Shou-Lun Tu, Wing-Chor Chan, Shyi-Yuan Wu
  • Patent number: 8263472
    Abstract: A semiconductor includes a bulk substrate of a first polarity type, a buried insulator layer disposed on the bulk substrate, an active semiconductor layer disposed on top of the buried insulator layer including a shallow trench isolation region and a diffusion region of the first polarity type, a band region of a second polarity type disposed directly beneath the buried insulator layer and forming a conductive path, a well region of the second polarity type disposed in the bulk substrate and in contact with the band region, a deep trench filled with a conductive material of the first polarity type disposed within the well region, and an electrostatic discharge (ESD) protect diode defined by a junction between a lower portion of the deep trench and the well region.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: September 11, 2012
    Assignee: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kerry Bernstein
  • Patent number: 8236639
    Abstract: A semiconductor device manufacturing method is a method of forming a semiconductor device that includes a cell part that includes plural transistor cells in each of which a gate of a trench type is formed in a semiconductor layer, and diffused layers are formed on both sides of the gate, and a guard ring part that surrounds the cell part. The semiconductor device manufacturing method includes forming an interlayer dielectric film on a surface of the semiconductor layer in which the gate and the diffused layers are formed; reducing a thickness of the interlayer dielectric film formed in the cell part through etch back; forming a contact part having a shape of a hole or a groove in the interlayer dielectric film at a position above the diffused layer; and forming a metal film on the interlayer dialectic film.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: August 7, 2012
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Hiroaki Kikuchi, Katsunori Kondo, Shigeru Shinohara, Osamu Takahashi, Tomoaki Yamabayashi
  • Publication number: 20120175730
    Abstract: An integrated circuit and a production method is disclosed. One embodiment forms reverse-current complexes in a semiconductor well, so that the charge carriers, forming a damaging reverse current, cannot flow into the substrate.
    Type: Application
    Filed: March 20, 2012
    Publication date: July 12, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Matthias Stecher
  • Publication number: 20120112286
    Abstract: An ESD protection circuit with a diode string coupled to a diode-isolated, gate-grounded NMOS ESD device. A method of forming an ESD protection circuit with a diode string coupled to a diode-isolated, gate-grounded NMOS ESD device.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ponnarith Pok, Kyle Schulmeyer, Roger A. Cline, Charvaka Duvvury
  • Patent number: 8163624
    Abstract: A discrete semiconductor device has a substrate with a first conductivity type of semiconductor material. A first semiconductor layer is formed over the substrate. The first semiconductor layer having the first conductivity type of semiconductor material. A second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second conductivity type of semiconductor material. A trench is formed through the second semiconductor layer and extends into the second semiconductor layer. The trench has a rounded or polygonal shape and vertical sidewalls. The trench is lined with an insulating layer and filled with an insulating material. A boundary between the first and second semiconductor layers forms a p-n junction. The trench surrounds the p-n junction to terminate the electric field of a voltage imposed on the second semiconductor layer. The discrete semiconductor device can also be a transistor, thyristor, triac, or transient voltage suppressor.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: April 24, 2012
    Inventor: Ronald R. Bowman
  • Patent number: 8134212
    Abstract: An n-type isolation structure is disclosed which includes an n-type BISO layer in combination with a shallow n-well, in an IC. The n-type BISO layer is formed by implanting n-type dopants into a p-type IC substrate in addition to a conventional n-type buried layer (NBL), prior to growth of a p-type epitaxial layer. The n-type dopants in the BISO implanted layer diffuse upward from the p-type substrate to between one-third and two-thirds of the thickness of the p-type epitaxial layer. The shallow n-type well extends from a top surface of the p-type epitaxial layer to the n-type BISO layer, forming a continuous n-type isolation structure from the top surface of the p-type epitaxial layer to the p-type substrate. The width of the n-type BISO layer may be less than the thickness of the epitaxial layer, and may be used alone or with the NBL to isolate components in the IC.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Seetharaman Sridhar, James Robert Todd
  • Patent number: 8129814
    Abstract: An integrated circuit includes a Schottky diode having a cathode defined by an n-type semiconductor region, an anode defined by a cobalt silicide region, and a p-type region laterally annularly encircling the cobalt silicide region. The resulting p-n junction forms a depletion region under the Schottky junction that reduces leakage current through the Schottky diodes in reverse bias operation. An n+-type contact region is laterally separated by the p-type region from the first silicide region and a second cobalt silicide region is formed in the n-type contact region. The silicided regions are defined by openings in a silicon blocking dielectric layer. Dielectric material is left over the p-type region. The p-type region may be formed simultaneously with source/drain regions of a PMOS transistor.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Prakash Pendharkar, Eugen Pompiliu Mindricelu
  • Publication number: 20120049325
    Abstract: An integrated circuit having a semiconductor component arrangement and production method is disclosed. In one embodiment, an oxide layer region is provided as a protection against oxidation in the edge region on the surface region of an underlying semiconductor material region.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 1, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventor: Gerhard Schmidt
  • Patent number: 8119496
    Abstract: A thin semiconductor wafer, on which a top surface structure and a bottom surface structure that form a semiconductor chip are formed, is affixed to a supporting substrate by a double-sided adhesive tape. Then, on the thin semiconductor wafer, a trench to become a scribing line is formed by wet anisotropic etching with a crystal face exposed so as to form a side wall of the trench. On the side wall of the trench with the crystal face thus exposed, an isolation layer for holding a reverse breakdown voltage is formed by ion implantation and low temperature annealing or laser annealing so as to be extended to the top surface side while being in contact with a p collector region as a bottom surface diffused layer. Then, laser dicing is carried out to neatly dice a collector electrode, formed on the p collector region, together with the p collector region, without presenting any excessive portions and any insufficient portions under the isolation layer.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: February 21, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Kazuo Shimoyama, Manabu Takei, Haruo Nakazawa
  • Publication number: 20110269292
    Abstract: An electrical component includes a semiconductor layer having a first conductivity type and a interconnect layer disposed adjacent to a frontside of the semiconductor layer. At least one bond pad is disposed in the interconnect layer and formed adjacent to the frontside of the semiconductor layer. An opening formed from the backside of the semiconductor layer and through the semiconductor layer exposes at least a portion of the bond pad. A first region having a second conductivity type extends from the backside of the semiconductor layer to the frontside of the semiconductor layer and surrounds the opening. The first region can abut a perimeter of the opening or alternatively, a second region having the first conductivity type can be disposed between the first region and a perimeter of the opening.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Inventors: John P. McCarten, Cristian A. Tivarus
  • Patent number: 8043930
    Abstract: A semiconductor memory device includes first and second element isolation insulating films, first and second gate insulating films, first and second gate wiring and first and second mask layer. First and second upper surfaces of the first and second element isolation insulating films are higher than an upper surface of the substrate, first and second bottom surfaces of the first and second element isolation insulating films are lower than the upper surface of the substrate, a second height from the upper surface of the substrate to the second upper surface is larger than a first height from the upper surface of the substrate to the first upper surface. A height from the upper surface of the substrate to an upper surface of the first mask layer equals a height from the upper surface of the substrate to an upper surface of the second mask layer.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Sakagami
  • Patent number: 7943472
    Abstract: Cobalt silicide (CoSi2) Schottky diodes fabricated per the current art suffer from excess leakage currents in reverse bias. In this invention, an floating p-type region encircles each anode of a CoSi2 Schottky diode comprising of one or more CoSi2 anodes. The resulting p-n junction forms a depletion region under the Schottky junction that reduces leakage current through the Schottky diodes in reverse bias operation.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 17, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Eugen Pompiliu Mindricelu
  • Publication number: 20110057230
    Abstract: This invention generally relates to lateral insulated gate bipolar transistors (LIGBTs), for example in integrated circuits, methods of increasing switching speed of an LIGBT, a method of suppressing parasitic thyristor latch-up in a bulk silicon LIGBT, and methods of fabricating an LIGBT. In particular, a method of suppressing parasitic thyristor latch-up in a bulk silicon LIGBT comprises selecting a current gain ?v for a vertical transistor of a parasitic thyristor of the LIGBT such that in at least one predetermined mode of operation of the LIGBT ?v<1??p where ?p is a current gain of a parasitic bipolar transistor having a base-emitter junction formed by a Schottky contact between the a semiconductor surface and a metal enriched epoxy die attach.
    Type: Application
    Filed: December 29, 2009
    Publication date: March 10, 2011
    Inventors: Florin Udrea, Vasantha Pathirana, Tanya Trajkovic, Nishad Udugampola
  • Publication number: 20100321843
    Abstract: A semiconductor device includes an SCR ESD device region disposed within a semiconductor body, and a plurality of first device regions of the first conductivity type disposed on a second device region of the second conductivity type, where the second conductivity type is opposite the first conductivity type. Also included is a plurality of third device regions having a sub-region of the first conductivity type and a sub-region of the second conductivity type disposed on the second device region. The first regions and second regions are distributed such that the third regions are not directly adjacent to each other. A fourth device region of the first conductivity type adjacent to the second device region and a fifth device region of the second conductivity type disposed within the fourth device region are also included.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 23, 2010
    Inventors: Krzysztof Domanski, Cornelius Christian Russ, Kai Esmark
  • Patent number: 7855407
    Abstract: Embodiments relate to a Complementary Metal Oxide Semiconductor (CMOS) image sensor, and to a method for manufacturing the same, that improves the low-light level characteristics of the CMOS image sensor. The CMOS image sensor has a photosensor unit and a signal processing unit, and may include a semiconductor substrate having a device isolating implant area provided with a first ion implant area and a complementary second ion implant area within the first ion implant area; a device isolating layer in the signal processing unit; a photodiode in the photosensor unit; and transistors in the signal processing unit. A crystal defect zone neighboring the photodiode may be minimized using the device isolating implant area between adjacent photodiodes so that a source of dark current can be reduced and the occurrence of interface traps can be prevented, making it possible to improve the low-light level characteristics of the image sensor.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: December 21, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Hee Sung Shim
  • Publication number: 20100279483
    Abstract: A lateral passive device is disclosed including a dual annular electrode. The annular electrodes form an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced. In one embodiment, a device includes a first annular electrode surrounding a second annular electrode formed on a substrate, and the second annular electrode surrounds an insulator region. A related method is also disclosed.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Inventors: David S. Collins, Jeffrey B. Johnson, Xuefeng Liu, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
  • Publication number: 20100163972
    Abstract: An embodiment of a semiconductor power device provided with: a structural body made of semiconductor material with a first conductivity, having an active area housing one or more elementary electronic components and an edge area delimiting externally the active area; and charge-balance structures, constituted by regions doped with a second conductivity opposite to the first conductivity, extending through the structural body both in the active area and in the edge area in order to create a substantial charge balance. The charge-balance structures are columnar walls extending in strips parallel to one another, without any mutual intersections, in the active area and in the edge area.
    Type: Application
    Filed: December 17, 2009
    Publication date: July 1, 2010
    Applicant: STMICROELECTRONICS S.R.I
    Inventors: Mario Giuseppe SAGGIO, Alfio GUARNERA
  • Publication number: 20100155876
    Abstract: A Schottky diode includes a Schottky barrier and a plurality of dopant regions disposed near the Schottky barrier as floating islands to function as PN junctions for preventing a leakage current generated from a reverse voltage. At least a trench opened in a semiconductor substrate with a Schottky barrier material disposed therein constitutes the Schottky barrier. The Schottky barrier material may also be disposed on sidewalls of the trench for constituting the Schottky barrier. The trench may be filled with the Schottky barrier material composed of Ti/TiN or a tungsten metal disposed therein for constituting the Schottky barrier. The trench is opened in a N-type semiconductor substrate and the dopant regions includes P-doped regions disposed under the trench constitute the floating islands. The P-doped floating islands may be formed as vertical arrays under the bottom of the trench.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 24, 2010
    Inventors: Ji Pan, Anup Bhalla
  • Patent number: 7741192
    Abstract: A thin semiconductor wafer, on which a top surface structure and a bottom surface structure that form a semiconductor chip are formed, is affixed to a supporting substrate by a double-sided adhesive tape. Then, on the thin semiconductor wafer, a trench to become a scribing line is formed by wet anisotropic etching with a crystal face exposed so as to form a side wall of the trench. On the side wall of the trench with the crystal face thus exposed, an isolation layer for holding a reverse breakdown voltage is formed by ion implantation and low temperature annealing or laser annealing so as to be extended to the top surface side while being in contact with a p collector region as a bottom surface diffused layer. Then, laser dicing is carried out to neatly dice a collector electrode, formed on the p collector region, together with the p collector region, without presenting any excessive portions and any insufficient portions under the isolation layer.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: June 22, 2010
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventors: Kazuo Shimoyama, Manabu Takei, Haruo Nakazawa
  • Patent number: 7674683
    Abstract: A technique for making a bulk isolated PN diode is disclosed. In one embodiment, a method may include providing a substrate having a doped region and disposing a dielectric material over the doped region. The method may also include forming first and second holes in the dielectric material exposing the doped region, and forming respective first and second polysilicon plugs within the first and second holes over the doped region. In one embodiment, the first and second polysilicon plugs are doped opposite one another such that a PN junction is formed between the first or second polysilicon plug and the doped region of the substrate, and has a cross-sectional area generally defined by the first or second hole adjacent the PN junction. Various devices, systems, and other methods are also disclosed.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: March 9, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Kurt D. Beigel
  • Publication number: 20100032769
    Abstract: An n-type isolation structure is disclosed which includes an n-type BISO layer in combination with a shallow n-well, in an IC. The n-type BISO layer is formed by implanting n-type dopants into a p-type IC substrate in addition to a conventional n-type buried layer (NBL), prior to growth of a p-type epitaxial layer. The n-type dopants in the BISO implanted layer diffuse upward from the p-type substrate to between one-third and two-thirds of the thickness of the p-type epitaxial layer. The shallow n-type well extends from a top surface of the p-type epitaxial layer to the n-type BISO layer, forming a continuous n-type isolation structure from the top surface of the p-type epitaxial layer to the p-type substrate. The width of the n-type BISO layer may be less than the thickness of the epitaxial layer, and may be used alone or with the NBL to isolate components in the IC.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 11, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Pinghai Hao, Seetharaman Sridhard, James Robert Todd
  • Publication number: 20090298255
    Abstract: A semiconductor device including a SRAM section and a logic circuit section includes: a first n-type MIS transistor including a first n-type gate electrode formed with a first gate insulating film interposed on a first element formation region of a semiconductor substrate in the SRAM section; and a second n-type MIS transistor including a second n-type gate electrode formed with a second gate insulating film interposed on a second element formation region of the semiconductor substrate in the logic circuit section. A first impurity concentration of a first n-type impurity in the first n-type gate electrode is lower than a second impurity concentration of a second n-type impurity in the second n-type gate electrode.
    Type: Application
    Filed: August 11, 2009
    Publication date: December 3, 2009
    Applicant: Panasonic Corporation
    Inventors: Tokuhiko TAMAKI, Naoki Kotani, Shinji Takeoka
  • Patent number: 7615845
    Abstract: An apparatus that reduces parasitic capacitance in a MEMS device includes a dielectric layer on the surface of a silicon-on-insulator (SOI) substrate, a conductor embedded in the substrate and disposed between the dielectric layer and a buried oxide layer, and surface conductors on the dielectric layer and coupled to ends of the embedded conductor. A boundary region surrounds the embedded conductor and separates an inner region and an outer region of substrate, providing a p-n junction between the boundary region and the outer region of SOI substrate which is reverse biased to electrically isolate the inner region from the outer region of SOI substrate. An amplifier has an input connected to one end of the embedded conductor and an output connected to the inner region of the substrate. The amplifier senses a voltage at the input and produces a voltage that approximates the voltage at the output.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 10, 2009
    Assignee: Infineon Technologies SensoNor AS
    Inventor: Bjørn Blixhavn
  • Publication number: 20090026511
    Abstract: A barrier implanted region of a first conductivity type formed in lieu of an isolation region of a pixel sensor cell that provides physical and electrical isolation of photosensitive elements of adjacent pixel sensor cells of a CMOS imager. The barrier implanted region comprises a first region having a first width and a second region having a second width greater than the first width, the second region being located below the first region. The first region is laterally spaced from doped regions of a second conductivity type of adjacent photodiodes of pixel sensor cells of a CMOS imager.
    Type: Application
    Filed: August 22, 2008
    Publication date: January 29, 2009
    Inventors: Frederick Brady, Inna Patrick
  • Publication number: 20080273363
    Abstract: Some embodiments include vertical stacks of memory units, with individual memory units each having a memory element, a wordline, a bitline and at least one diode. The memory units may correspond to cross-point memory, and the diodes may correspond to band-gap engineered diodes containing two or more dielectric layers sandwiched between metal layers. Tunneling properties of the dielectric materials and carrier injection properties of the metals may be tailored to engineer desired properties into the diodes. The diodes may be placed between the bitlines and the memory elements, or may be placed between the wordlines and memory elements. Some embodiments include methods of forming cross-point memory arrays. The memory arrays may contain vertical stacks of memory unit cells, with individual unit cells containing cross-point memory and at least one diode.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Inventor: Chandra Mouli
  • Publication number: 20080265277
    Abstract: A semiconductor device with a field ring in an edge pattern of a semiconductor body with a central cell area and with field plate discharge pattern. The edge pattern exhibits at least one horizontal field plate which is arranged with one end over the field ring and with its other end on insulating layers towards the edge of the semiconductor body. A first ring-shaped area of a type of conduction doped complementary to a drift section material exhibits a field ring effect. A second highly doped ring-shaped area which contacts the one end of the horizontal field plate and forms a pn junction with the first ring-shaped area and which is arranged within the first area exhibits a locally limited punch-through effect or a resistive contact to the drift section material.
    Type: Application
    Filed: April 30, 2008
    Publication date: October 30, 2008
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Elmar Falck, Hans-Joachim Schulze