To Alter Conductivity Of Fuse Or Antifuse Element Patents (Class 438/467)
  • Patent number: 8445362
    Abstract: An apparatus and method for programming an electronically programmable semiconductor fuse applies a programming current to a fuse link as a series of multiple pulses. Application of the programming current as a series of multiple short pulses provides a level of programming current sufficiently high to ensure reliable and effective electromigration while avoiding exceeding temperature limits of the fuse link.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dan Moy, Stephen Wu, Peter Wang, Brian W. Messenger, Edwin Soler, Gabriel Chiulli
  • Patent number: 8426257
    Abstract: A method for fabricating a semiconductor device includes forming a fuse over a substrate, the fuse having a barrier layer, a metal layer, and an anti-reflective layer stacked, selectively removing the anti-reflective layer, forming an insulation layer over a whole surface of the resultant structure including the fuse, and performing repair-etching such that part of the insulation layer remains above the fuse.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 23, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyun-Sik Park, Hae-Jung Lee, Jae-Kyun Lee
  • Patent number: 8409933
    Abstract: The invention comprises methods of forming a conductive contact to a source/drain region of a field effect transistor, and methods of forming local interconnects. In one implementation, a method of forming a conductive contact to a source/drain region of a field effect transistor includes providing gate dielectric material intermediate a transistor gate and a channel region of a field effect transistor. At least some of the gate dielectric material extends to be received over at least one source/drain region of the field effect transistor. The gate dielectric material received over the one source/drain region is exposed to conditions effective to change it from being electrically insulative to being electrically conductive and in conductive contact with the one source/drain region. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 2, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu, H. Montgomery Manning
  • Publication number: 20130071998
    Abstract: An electrical fuse device is disclosed. A circuit apparatus can include the fuse device, a first circuit element and a second circuit element. The fuse includes a first contact that has a first electromigration resistance, a second contact that has a second electromigration resistance and a metal line, which is coupled to the first contact and to the second contact, that has a third electromigration resistance that is lower than the second electromigration resistance. The first circuit element is coupled to the first contact and the second circuit element coupled to the second contact. The fuse is configured to conduct a programming current from the first contact to the second contact through the metal line. Further, the programming current causes the metal line to electromigrate away from the second contact to electrically isolate the second circuit element from the first circuit element.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Baozhen Li, Yan Zun Li, Keith Kwong Hon Wong, Chih-Chao Yang
  • Patent number: 8399959
    Abstract: According to one exemplary embodiment, a programmable poly fuse includes a P type resistive poly segment forming a P-N junction with an adjacent N type resistive poly segment. The programmable poly fuse further includes a P side silicided poly line contiguous with the P type resistive poly segment and coupled to a P side terminal of the poly fuse. The programmable poly fuse further includes an N side silicided poly line contiguous with the N type resistive poly segment and coupled to an N side terminal of the poly fuse. During a normal operating mode, a voltage less than or equal to approximately 2.5 volts is applied to the N side terminal of the programmable poly fuse. A voltage higher than approximately 3.5 volts is required at the N side terminal of the poly fuse to break down the P-N junction.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 19, 2013
    Assignee: Broadcom Corporation
    Inventor: Laurentiu Vasiliu
  • Patent number: 8372730
    Abstract: An electric fuse includes: a first interconnect and a second interconnect, formed on a semiconductor substrate; a fuse link, formed on the semiconductor substrate and provided so that an end thereof is coupled to the first interconnect, the fuse link being capable of electrically cutting the second interconnect from the first interconnect; and an electric current inflow terminal and an electric current drain terminal for cutting the fuse link, formed on the semiconductor substrate and provided in one end and another end of the first interconnect, respectively.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Takehiro Ueda
  • Patent number: 8368069
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: February 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Patent number: 8367483
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: February 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Patent number: 8367484
    Abstract: An antifuse structure and methods of forming contacts within the antifuse structure. The antifuse structure includes a substrate having an overlying metal layer, a dielectric layer formed on an upper surface of the metal layer, and a contact formed of contact material within a contact via etched through the dielectric layer into the metal layer. The contact via includes a metal material at a bottom surface of the contact via and an untreated or partially treated metal precursor on top of the metal material.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: February 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Terence L. Kane, Michael P. Tenney, Yun-Yu Wang, Keith Kwong Hon Wong
  • Patent number: 8367504
    Abstract: In a replacement gate approach, the semiconductor material of the gate electrode structures may be efficiently removed during a wet chemical etch process, while this material may be substantially preserved in electronic fuses. Consequently, well-established semiconductor-based electronic fuses may be used instead of requiring sophisticated metal-based fuse structures. The etch selectivity of the semiconductor material may be modified on the basis of ion implantation or electron bombardment.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: February 5, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jens Heinrich, Ralf Richter, Kai Frohberg
  • Patent number: 8361886
    Abstract: A method for programming an anti-fuse element in which the ratio between current values before and after writing is increased to ensure accuracy in making a judgment about how writing has been performed on the anti-fuse element. The method for programming the anti-fuse element as a transistor includes the steps of applying a prescribed gate voltage to a gate electrode to break down a gate dielectric film, and moving the silicide material of a silicide layer formed on a surface of at least one of a first impurity diffusion region and a second impurity diffusion region, into the gate dielectric film in order to couple the gate electrode with at least the one of the first impurity diffusion region and the second impurity diffusion region electrically through the silicide material.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: January 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshitaka Kubota, Takuji Onuma
  • Patent number: 8361887
    Abstract: An antifuse having a link including a region of unsilicided semiconductor material may be programmed at reduced voltage and current and with reduced generation of heat by electromigration of metal or silicide from a cathode into the region of unsilicided semiconductor material to form an alloy having reduced bulk resistance. The cathode and anode are preferably shaped to control regions from which and to which material is electrically migrated. After programming, additional electromigration of material can return the antifuse to a high resistance state. The process by which the antifuse is fabricated is completely compatible with fabrication of field effect transistors and the antifuse may be advantageously formed on isolation structures.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alberto Cestero, Byeongju Park, John M. Safran
  • Patent number: 8350264
    Abstract: An antifuse is provided having a unitary monocrystalline semiconductor body including first and second semiconductor regions each having the same first conductivity type, and a third semiconductor region between the first and second semiconductor regions which has a second conductivity type opposite from the first conductivity type. An anode and a cathode can be electrically connected with the first semiconductor region. A conductive region including a metal, a conductive compound of a metal or an alloy of a metal can contact the first semiconductor region and extend between the cathode and the anode. The antifuse can further include a contact electrically connected with the second semiconductor region.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: January 8, 2013
    Assignee: International Businesss Machines Corporation
    Inventors: Yan Zun Li, Chandrasekharan Kothandaraman, Dan Moy, Norman W. Robson, John M. Safran
  • Patent number: 8344391
    Abstract: An integrated circuit including a substrate of a semiconductor material and first metal portions of a first metallization level or of a first via level defining pixels of an image. The pixels are distributed in first pixels, for each of which the first metal portion is connected to the substrate, and in second pixels, for each of which the first metal portion is separated from the substrate by at least one insulating portion.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: January 1, 2013
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Fabrice Marinet
  • Patent number: 8343790
    Abstract: Many inventions are disclosed. Some aspects are directed to MEMS, and/or methods for use with and/or for fabricating MEMS, that supply, store, and/or trap charge on a mechanical structure disposed in a chamber. Various structures may be disposed in the chamber and employed in supplying, storing and/or trapping charge on the mechanical structure. In some aspects, a breakable link, a thermionic electron source and/or a movable mechanical structure are employed. The breakable link may comprise a fuse. In one embodiment, the movable mechanical structure is driven to resonate. In some aspects, the electrical charge enables a transducer to convert vibrational energy to electrical energy, which may be used to power circuit(s), device(s) and/or other purpose(s). In some aspects, the electrical charge is employed in changing the resonant frequency of a mechanical structure and/or generating an electrostatic force, which may be repulsive.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 1, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Markus Lutz, Aaron Partridge, Brian H. Stark
  • Patent number: 8344428
    Abstract: Techniques for incorporating nanotechnology into electronic fuse (e-fuse) designs are provided. In one aspect, an e-fuse structure is provided. The e-fuse structure includes a first electrode; a dielectric layer on the first electrode having a plurality of nanochannels therein; an array of metal silicide nanopillars that fill the nanochannels in the dielectric layer, each nanopillar in the array serving as an e-fuse element; and a second electrode in contact with the array of metal silicide nanopillars opposite the first electrode. Methods for fabricating the e-fuse structure are also provided as are semiconductor devices incorporating the e-fuse structure.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Huiming Bu, Keith Kwong Hon Wong
  • Patent number: 8339844
    Abstract: A semiconductor device may be created using multiple metal layers and a layer including programmable vias that may be used to form various patterns of interconnections among segments of metal layers. The programmable vias may be formed of materials whose resistance is changeable between a high-resistance state and a low-resistance state.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: December 25, 2012
    Assignee: eASIC Corporation
    Inventors: Herman Schmit, Ronnie Vasishta, Adam Levinthal, Jonathan Park
  • Patent number: 8330139
    Abstract: Some embodiments include a memory device and methods of forming the same. The memory device can include an electrode coupled to a memory element. The electrode can include different materials located at different portions of the electrode. The materials can create different dielectrics contacting the memory elements at different locations. Various states of the materials in the memory device can be used to represent stored information. Other embodiments are described.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: December 11, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Durai Vishak Nirmal Ramaswamy, Kirk D. Prall
  • Patent number: 8324662
    Abstract: A semiconductor device includes an electric fuse formed on a substrate. The electric fuse includes: a first interconnect formed on one end side thereof; a second interconnect formed in a layer different from a layer in which the first interconnect is formed; a first via provided in contact with the first interconnect and the second interconnect to connect those interconnects; a third interconnect formed on another end side thereof, the third interconnect being formed in the same layer in which the first interconnect is formed, as being separated from the first interconnect; and a second via provided in contact with the third interconnect and the second interconnect to connect those interconnects, the second via being lower in resistance than the first via. The electric fuse is disconnected by a flowing-out portion to be formed of a conductive material forming the electric fuse which flows outwardly during disconnection.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshitaka Kubota, Hiromichi Takaoka, Hiroshi Tsuda
  • Patent number: 8319232
    Abstract: Microelectronic devices may be fabricated while being protected from damage by electrostatic discharge. In one embodiment, a shorting circuit is connected to elements of the microelectronic device, where the microelectronic device is part of a chip-on-glass system. In one aspect of this embodiment, a portion of the shorting circuit is in an area of a substrate where a microchip is bonded. In another embodiment, shorting links of the shorting circuit are comprised of a fusible material, where the fusible material may be disabled by an electrical current capable of fusing the shorting links.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: November 27, 2012
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventor: Chen-Jean Chou
  • Patent number: 8313987
    Abstract: An anti-fuse memory cell having a variable thickness gate dielectric. The variable thickness dielectric has a thick portion and a thin portion, where the thin portion has at least one dimension less than a minimum feature size of a process technology. The thin portion can be rectangular in shape or triangular in shape. The anti-fuse transistor can be used in a two-transistor memory cell having an access transistor with a gate dielectric substantially identical in thickness to the thick portion of the variable thickness gate dielectric of the anti-fuse transistor.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: November 20, 2012
    Assignee: Sidense Corp.
    Inventors: Wlodek Kurjanowicz, Steven Smith
  • Patent number: 8298922
    Abstract: An electrical plug connector comprises a connection module having a plurality of contact elements for establishing an electrical connection to corresponding contact elements of a socket connector, and a terminal module having a plurality of terminal elements, each for connecting a conductor of a cable. The terminal module is adapted to be detachably connected to the connection module in order to establish an electrical connection between each of the terminal elements and a contact element. The connection module comprises a housing into which the terminal module can be inserted, and a strain relief which is connected to the housing and engages over the terminal module, wherein a cable connected to the terminal module is adapted to be fixed to the connection module by means of the strain relief.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: October 30, 2012
    Assignee: Telegaertner Karl Gaertner GmbH
    Inventors: Andreas Schumann, Hartmut Gaertner
  • Patent number: 8298921
    Abstract: In some embodiments, a semiconductor device includes a fuse having a conductive portion configured to be blown when a current exceeding a rated value flows through the conductive portion, a first monitor wiring configured to monitor blowing of the conductive portion of the fuse, and a second monitor wiring configured to monitor blowing of the conductive portion of the fuse. The first monitor wiring and the second monitor wiring are connected to the conductive portion of the fuse so as to be away from a longitudinal center of the conductive portion.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Hiroyuki Arai
  • Publication number: 20120261724
    Abstract: A programmable passive device comprising a first node and a second node. A plurality of passive device elements electrically coupled to the first node. A plurality of switches are electrically coupled to at least the second node and selectively coupled to a number of the plurality of passive device elements to provide the programmable passive device with a pre-determined value.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 18, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Fen Chen, Douglas D. Coolbaugh, Baozhen Li
  • Patent number: 8278155
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: October 2, 2012
    Assignee: International Business Machines Corporation
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Patent number: 8268679
    Abstract: In sophisticated integrated circuits, an electronic fuse may be formed such that an increased sensitivity to electromigration may be accomplished by including at least one region of increased current density. This may be accomplished by forming a corresponding fuse region as a non-linear configuration, wherein at corresponding connection portions of linear segments, the desired enhanced current crowding may occur during the application of the programming voltage. Hence, increased reliability and more space-efficient layout of the electronic fuses may be accomplished.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 18, 2012
    Assignee: Globalfoundries, Inc.
    Inventors: Oliver Aubel, Jens Poppe, Andreas Kurz, Roman Boschke
  • Patent number: 8236655
    Abstract: A method of forming a programmable fuse structure includes forming at least one shallow trench isolation (STI) in a substrate, forming an e-fuse over the at least one STI and depositing an interlevel dielectric (ILD) layer over the e-fuse. Additionally, the method includes removing at least a portion of the at least one STI under the e-fuse to provide an air gap below a portion of the e-fuse and removing at least a portion of the ILD layer over the e-fuse to provide the air gap above the portion of the e-fuse.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Karl W. Barth, Jeffrey P. Gambino, Tom C. Lee, Kevin S. Petrarca
  • Patent number: 8236622
    Abstract: A semiconductor device includes an electric fuse formed on a semiconductor substrate and composed of an electric conductor. The electric fuse includes an upper layer interconnect, a via coupled to the upper interconnect and a lower layer interconnect coupled to the via, which are formed in different layers, respectively, in a condition before cutting the electric fuse, and wherein the electric fuse includes a flowing-out region formed of the electric conductor being flowed toward outside from the second interconnect and a void region formed between the first interconnect and the via or in the via, in a condition after cutting the electric fuse.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: August 7, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Takehiro Ueda
  • Patent number: 8232146
    Abstract: A fuse element is laminated on a resistor and the resistor is formed in a concave shape below a region in which cutting of the fuse element is carried out with a laser. Accordingly, there can be provided a semiconductor device which occupies a small area, causes no damage on the resistor in the cutting of the fuse element, has a small contact resistance occurred between elements, and has stable characteristics, and a method of manufacturing the same.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: July 31, 2012
    Assignee: Seiko Intruments Inc.
    Inventor: Yuichiro Kitajima
  • Publication number: 20120178239
    Abstract: A programmable device includes a substrate (10); an insulator (13) on the substrate; an elongated semiconductor material (12) on the insulator, the elongated semiconductor material having first and second ends, and an upper surface S; the first end (12a) is substantially wider than the second end (12b), and a metallic material is disposed on the upper surface; the metallic material being physically migratable along the upper surface responsive to an electrical current I flowable through the semiconductor material and the metallic material.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William R. Tonti, Wayne S. Berry, John A. Fifield, William H. Guthrie, Richard S. Kontra
  • Patent number: 8193074
    Abstract: A method of making a semiconductor device includes forming a first conductivity type polysilicon layer over a substrate, forming an insulating layer over the first conductivity type polysilicon layer, where the insulating layer comprises an opening exposing the first conductivity type polysilicon layer, and forming an intrinsic polysilicon layer in the opening over the first conductivity type polysilicon layer. A nonvolatile memory device contains a first electrode, a steering element located in electrical contact with the first electrode, a storage element having a U-shape cross sectional shape located over the steering element, and a second electrode located in electrical contact with the storage element.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 5, 2012
    Assignee: SanDisk 3D LLC
    Inventor: Yoichiro Tanaka
  • Publication number: 20120129319
    Abstract: An antifuse having a link including a region of unsilicided semiconductor material may be programmed at reduced voltage and current and with reduced generation of heat by electromigration of metal or silicide from a cathode into the region of unsilicided semiconductor material to form an alloy having reduced bulk resistance. The cathode and anode are preferably shaped to control regions from which and to which material is electrically migrated. After programming, additional electromigration of material can return the antifuse to a high resistance state. The process by which the antifuse is fabricated is completely compatible with fabrication of field effect transistors and the antifuse may be advantageously formed on isolation structures.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alberto Cestero, Byeongju Park, John M. Safran
  • Patent number: 8178945
    Abstract: Structure and method for providing a programmable anti-fuse in a FET structure. A method of forming the programmable anti-fuse includes: providing a p? substrate with an n+ gate stack; implanting an n+ source region and an n+ drain region in the p? substrate; forming a resist mask over the n+ drain region, while leaving the n+ source region exposed; etching the n+ source region to form a recess in the n+ source region; and growing a p+ epitaxial silicon germanium layer in the recess in the n+ source region to form a pn junction that acts as a programmable diode or anti-fuse.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: May 15, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ping-Chuan Wang, Robert C. Wong, Haining S. Yang
  • Publication number: 20120112312
    Abstract: An integrated circuit, a method for making an integrated circuit product, and methods for customizing an integrated circuit are disclosed. Integrated circuit elements including programmable elements, such as fuses, PROMs, RRAMs, MRAMs, or the like, are formed on the frontside of a substrate. Vias are formed through the substrate from its frontside to its backside to establish conduction paths to at least some of the programmable elements from the backside. A programming stimulus is applied to at least some of the vias from the backside to program at least some of the frontside programmable elements.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: Daniel W. Perry, Shiqun Gu
  • Patent number: 8168518
    Abstract: A gate insulating film (13) is formed on a substrate (1) so as to cover a gate electrode (11), and an amorphous silicon film (semiconductor thin film) (15) is further formed. A light absorption layer (19) is formed thereon through a buffer layer (17). Energy lines Lh are applied to the light absorption layer (19) from a continuous-wave laser such as a semiconductor laser. This oxidizes only a surface side of the light absorption layer Lh and produces a beautiful crystalline silicon film (15a) obtained by crystallizing the amorphous silicon film (15) using heat generated by thermal conversion of the energy lines Lh at the light absorption layer (19) and heat of the oxidation reaction. This provides a method for crystallizing a thin film with good controllability at low costs achieved with simpler process.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 1, 2012
    Assignee: Sony Corporation
    Inventors: Nobuhiko Umezu, Koichi Tsukihara, Goh Matsunobu, Yoshio Inagaki, Koichi Tatsuki, Shin Hotta, Katsuya Shirai
  • Patent number: 8163593
    Abstract: A method is described to form a nonvolatile memory cell having a contact area between a phase-change material such as a chalcogenide and a heat source which is smaller than photolithographic limits. A conductive or semiconductor pillar is exposed at a dielectric surface and recessed by selective etch. A thin, conformal layer of a spacer material is deposited on the dielectric top surface, the pillar top surface, and the sidewalls of the recess, then removed from horizontal surfaces by anistropic etch, leaving a spacer on the sidewalls defining a reduced volume within the recess. The phase change material is deposited within the spacer, having a reduced contact area to the underlying conductive or semiconductor pillar.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: April 24, 2012
    Assignee: SanDisk Corporation
    Inventors: Usha Raghuram, S. Brad Herner
  • Patent number: 8159041
    Abstract: A semiconductor device includes: a lower layer interconnection formed on a chip; an upper layer interconnection formed in an upper layer above the lower layer interconnection above the chip; an interconnection via formed to electrically connect the lower layer interconnection and the upper layer interconnection; a via-type electric fuse formed to electrically connect the lower layer interconnection and the upper layer interconnection. The fuse is cut through heat generation, and a sectional area of the fuse is smaller than a sectional area of the upper layer interconnection and a via diameter of the fuse is smaller than that of the interconnection via.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: April 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Saitou
  • Patent number: 8143111
    Abstract: A system and method for configuring an integrated circuit. Embodiments include a method for manufacturing an integrated circuit (IC), comprising associating configuration items of the integrated circuit with at least one fuse of at least one type of fuse, wherein a fuse comprises a bit field and a physical fuse, and configuring the integrated circuit by setting the at least one fuse to a value, comprising logically combining multiple fuse values to determine a particular configuration, wherein at least one of the fuse values is not alterable after manufacture of the IC.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 27, 2012
    Assignee: ATI Technologies, Inc.
    Inventor: Andrew S. Brown
  • Patent number: 8138524
    Abstract: A method of forming an array of floating gate memory cells, and an array formed thereby, wherein each memory cell includes a substrate of semiconductor material having a first conductivity type, source and drain regions formed in the substrate, a block of conductive material disposed over and electrically connected to the source, and a floating gate having a first portion disposed over and insulated from the source region and a second portion disposed over and insulated from the channel region. The floating gate first portion includes a sloped upper surface and a side surface that meet at an acute edge. An electrically conductive control gate is disposed over and insulated from the channel region for controlling a conductivity thereof.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: March 20, 2012
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Alexander Kotov, Amitay Levi, Hung Q. Nguyen, Pavel Klinger
  • Publication number: 20120062308
    Abstract: Power switching circuits and power management techniques are provided that can reduce static power of ICs, including digital core processors. In one embodiment, the power switching circuit includes a footer (power-gating transistor) between the core and a ground rail and at least two additional power-gating transistors parallel to the footer. The power-gating transistors are controlled by respective control signals to enable selective switching. In a specific embodiment, for each sleep mode, at most, a single one of the transistors is turned on. Multiple sleep modes are accomplished according to the relative sizing of the additional power-gating transistors. A larger of the additional transistors is used to provide a standby mode during short idling times by providing a fast wake-up time and some reduction in static power. For standby modes during longer idling periods, smaller sized transistors are turned on. For longest idling periods, all transistors are turned off.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 15, 2012
    Inventors: KRISHNENDU CHAKRABARTY, Chrysovalantis Kavousianos, Zhaobo Zhang
  • Patent number: 8133767
    Abstract: A semiconductor structure is provided that includes an interconnect structure and a fuse structure located in different areas, yet within the same interconnect level. The interconnect structure has high electromigration resistance, while the fuse structure has a lower electromigration resistance as compared with the interconnect structure. The fuse structure includes a conductive material embedded within an interconnect dielectric in which the upper surface of the conductive material has a high concentration of oxygen present therein. A dielectric capping layer is located atop the dielectric material and the conductive material. The presence of the surface oxide layer at the interface between the conductive material and the dielectric capping layer degrades the adhesion between the conductive material and the dielectric capping layer.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: March 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Lynne M. Gignac, Chao-Kun Hu
  • Publication number: 20120049321
    Abstract: The present invention relates to e-fuse devices, and more particularly to a device and method of forming an e-fuse device, the method comprising providing a first conductive layer connected to a second conductive layer, the first and second conductive layers separated by a barrier layer having a first diffusivity different than a second diffusivity of the first conductive layer. A void is created in the first conductive layer by driving an electrical current through the e-fuse device.
    Type: Application
    Filed: November 4, 2011
    Publication date: March 1, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael J. Abou-Khalil, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam, William Tonti
  • Patent number: 8115275
    Abstract: An antifuse having a link including a region of unsilicided semiconductor material may be programmed at reduced voltage and current and with reduced generation of heat by electromigration of metal or silicide from a cathode into the region of unsilicided semiconductor material to form an alloy having reduced bulk resistance. The cathode and anode are preferably shaped to control regions from which and to which material is electrically migrated. After programming, additional electromigration of material can return the antifuse to a high resistance state. The process by which the antifuse is fabricated is completely compatible with fabrication of field effect transistors and the antifuse may be advantageously formed on isolation structures.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: February 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alberto Cestero, Byeongju Park, John M. Safran
  • Patent number: 8105886
    Abstract: A fuse link is formed between first and second terminals. The first and second terminals and fuse link have a polysilicon layer and a layer formed on the polysilicon layer and containing a metal element. At least a portion of the fuse link is an amorphous silicon layer.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: January 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuaki Otsuka, Takahiko Sasaki, Shuso Fujii
  • Patent number: 8101505
    Abstract: The present invention relates to e-fuse devices, and more particularly to a device and method of forming an e-fuse device, the method comprising providing a first conductive layer connected to a second conductive layer, the first and second conductive layers separated by a barrier layer having a first diffusivity different than a second diffusivity of the first conductive layer. A void is created in the first conductive layer by driving an electrical current through the e-fuse device.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: January 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam, William Tonti
  • Publication number: 20120012976
    Abstract: The disclosure relates generally to fuse structures, methods of forming and programming the same, and more particularly to fuse structures having crack stop voids. The fuse structure includes a semiconductor substrate having a dielectric layer thereon and a crack stop void. The dielectric layer includes at least one fuse therein and the crack stop void is adjacent to two opposite sides of the fuse, and extends lower than a bottom surface and above a top surface of the fuse. The disclosure also relates to a design structure of the aforementioned.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey P. Gambino, Tom C. Lee, Kevin G. Petrunich, David C. Thomas
  • Publication number: 20120012977
    Abstract: An antifuse is provided having a unitary monocrystalline semiconductor body including first and second semiconductor regions each having the same first conductivity type, and a third semiconductor region between the first and second semiconductor regions which has a second conductivity type opposite from the first conductivity type. An anode and a cathode can be electrically connected with the first semiconductor region. A conductive region including a metal, a conductive compound of a metal or an alloy of a metal can contact the first semiconductor region and extend between the cathode and the anode. The antifuse can further include a contact electrically connected with the second semiconductor region.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yan Zun Li, Chandrasekharan Kothandaraman, Dan Moy, Norman W. Robson, John M. Safran
  • Patent number: 8080861
    Abstract: A semiconductor device includes an electric fuse and first and second large area wirings for applying a voltage to the electric fuse. The electric fuse includes a fuse unit which includes an upper-layer fuse wiring, a lower-layer fuse wiring, and a via connecting the upper-layer fuse wiring and the lower-layer fuse wiring, an upper-layer lead-out wiring which connects the upper-layer fuse wiring and the first large area wiring and has a bent pattern, and a lower-layer lead-out wiring which connects the lower-layer fuse wiring and the second large area wiring and has a bent pattern.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 20, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Tsuda, Yoshitaka Kubota, Hiromichi Takaoka
  • Patent number: 8076760
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20110254121
    Abstract: Voltage programmable anti-fuse structures and methods are provided that include at least one conductive material island atop a dielectric surface that is located between two adjacent conductive features. In one embodiment, the anti-fuse structure includes a dielectric material having at least two adjacent conductive features embedded therein. At least one conductive material island is located on an upper surface of the dielectric material that is located between the at least two adjacent conductive features. A dielectric capping layer is located on exposed surfaces of the dielectric material, the at least one conductive material island and the at least two adjacent conductive features. When the anti-fuse structure is in a programmed state, a dielectric breakdown path is present in the dielectric material that is located beneath the at least one conductive material island which conducts electrical current to electrically couple the two adjacent conductive features.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Louis L. Hsu, William R. Tonti, Chih-Chao Yang