Chemically Responsive Patents (Class 438/49)
  • Patent number: 8778714
    Abstract: A gas sensitive material comprising SnO2 nanocrystals doped with In2O3 and an oxide of a platinum group metal, and a method of making the same. The platinum group metal is preferably Pd, but also may include Pt, Ru, Ir, and combinations thereof. The SnO2 nanocrystals have a specific surface of 7 or greater, preferably about 20 m2/g, and a mean particle size of between about 10 nm and about 100 nm, preferably about 40 nm. A gas detection device made from the gas sensitive material deposited on a substrate, the gas sensitive material configured as a part of a current measuring circuit in communication with a heat source.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: July 15, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Leonid Israilevich Trakhtenberg, Genrikh Nikolaevich Gerasimov, Vladimir Fedorovich Gromov, Valeriya Isaakovna Rozenberg
  • Publication number: 20140191293
    Abstract: In one implementation, a method for manufacturing a chemical detection device is described. The method includes forming a chemical sensor having a sensing surface. A dielectric material is deposited on the sensing surface. A first etch process is performed to partially etch the dielectric material to define an opening over the sensing surface and leave remaining dielectric material on the sensing surface. An etch protect material is formed on a sidewall of the opening. A second etch process is then performed to selectively etch the remaining dielectric material using the etch protect material as an etch mask, thereby exposing the sensing surface.
    Type: Application
    Filed: January 8, 2013
    Publication date: July 10, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: James BUSTILLO, Shifeng LI
  • Publication number: 20140191186
    Abstract: The present invention provides a regenerative nanosensor device for the detection of one or more analytes of interest. In certain embodiments, the device comprises a nanostructure having a reversible functionalized coating comprising a supramolecular assembly. Controllable and selective disruption of the assembly promotes desorption of at least part of the reversible functionalized coating thereby allowing for reuse of the regenerative device.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 10, 2014
    Applicant: YALE UNIVERSITY
    Inventors: Mark A. Reed, Xuexin Duan, Nitin Rajan
  • Publication number: 20140191292
    Abstract: A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 10, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christina INMAN, Alexander MASTROIANNI, Wolfgang HINZ, Shifeng LI, Scott BENSON
  • Publication number: 20140191348
    Abstract: Disclosed is an integrated circuit comprising a substrate (10); and an optical CO2 sensor comprising: first and second light sensors (12, 12?) on said substrate, said second light sensor being spatially separated from the first light sensor; and a layer portion (14) including an organic compound comprising at least one amine or amidine functional group over the first light sensor; wherein said integrated circuit further comprises a signal processor (16) coupled to the first and second light sensor for determining a difference in the respective outputs of the first and second light sensor. An electronic device comprising such a sensor and a method of manufacturing such an IC are also disclosed.
    Type: Application
    Filed: January 3, 2014
    Publication date: July 10, 2014
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Roel Daamen, Youri Victorovitch Ponomarev
  • Publication number: 20140193938
    Abstract: A chemically sensitive sensor with a lightly doped region that affects an overlap capacitance between a gate and an electrode of the chemical sensitive sensor. The lightly doped region extends beneath and adjacent to a gate region of the chemical sensitive sensor. Modifying the gain of the chemically sensitive sensor is achieved by manipulating the lightly doped region under the electrodes.
    Type: Application
    Filed: February 12, 2014
    Publication date: July 10, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventor: Keith G. FIFE
  • Publication number: 20140183667
    Abstract: A pair of electrode plates can be provided by directional deposition and patterning of a conductive material on sidewalls of a template structure on a first dielectric layer. An electrode line straddling the center portion is formed. A dielectric spacer and a conformal conductive layer are subsequently formed. Peripheral electrodes laterally spaced from the electrode line are formed by pattering the conformal conductive layer. After deposition of a second dielectric material layer that encapsulates the template structure, the template structure is removed to provide a cavity that passes through the pair of electrode plates, the electrode line, and the peripheral electrodes. A nanoscale sensor thus formed can electrically characterize a nanoscale string by passing the nanoscale string through the cavity while electrical measurements are performed employing the various electrodes.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 3, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Michael A. Guillorn, Eric A. Joseph, Satyavolu S. Papa Rao
  • Publication number: 20140175523
    Abstract: A method of fabricating a semiconductor sensor device includes providing a substrate, supporting a source region and a drain region with the substrate, forming an insulator layer above the source region and the drain region, and forming a porous metallic gate region above the insulator layer using plasma enhanced atomic layer deposition (PEALD).
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Gary O'Brien, Fabian Purkl, Gary Yama, Ashwin K. Samarao
  • Publication number: 20140175522
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20140174927
    Abstract: Provided herein are methods and devices for characterizing a biomolecule parameter by a nanopore-containing membrane, and also methods for making devices that can be used in the methods and devices provided herein. The nanopore membrane is a multilayer stack of conducting layers and dielectric layers, wherein an embedded conducting layer or conducting layer gates provides well-controlled and measurable electric fields in and around the nanopore through which the biomolecule translocates. In an aspect, the conducting layer is graphene.
    Type: Application
    Filed: July 26, 2012
    Publication date: June 26, 2014
    Inventors: Rashid Bashir, Bala Murali Venkatesan
  • Publication number: 20140179047
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Application
    Filed: August 13, 2013
    Publication date: June 26, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20140167791
    Abstract: A semiconductor device includes a substrate, an insulating film provided on a surface of the substrate, and a sensing film formed of a conductive material deposited on top of the insulating film. The sensing film defines at least one conductive path between a first position and a second position on the insulating film. A first circuit connection is electrically connected to the sensing film at the first position on the insulating layer, and a second circuit connection is electrically connected to the sensing film at the second position. A control circuit is operatively connected to the first circuit connection and the second circuit connection for measuring an electrical resistance of the sensing film. The sensing film has a thickness that enables a resistivity of the sensing film to be altered predictably in a manner that is dependent on ambient moisture content.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 19, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Andrew Graham, Ashwin Samarao, Gary Yama, Gary O'Brien
  • Publication number: 20140158551
    Abstract: Sensors, processes for manufacturing the sensors, and processes of detecting a target molecule with the sensor generally includes a substrate including a channel and first and second electrodes electrically connected to the channel, wherein the channel includes a monolayer of surface functionalized graphene or surface functionalized carbon nanotubes, wherein the surface functionalized graphene or surface functionalized carbon nanotubes include an imidazolidone compound.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Shu-Jen Han
  • Publication number: 20140162390
    Abstract: Sensors, processes for manufacturing the sensors, and processes of detecting a target molecule with the sensor generally includes a substrate including a channel and first and second electrodes electrically connected to the channel, wherein the channel includes a monolayer of surface functionalized graphene or surface functionalized carbon nanotubes, wherein the surface functionalized graphene or surface functionalized carbon nanotubes include an imidazolidone compound.
    Type: Application
    Filed: August 20, 2013
    Publication date: June 12, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Shu-Jen Han
  • Publication number: 20140154785
    Abstract: A method of fabricating polymer single nanowires, comprising the steps of: spin coating a polymethylmethacrylate resist onto a silicon wafer patterned with at least one gold electrode pair; creating a nanochannel using e-beam lithography between each pair of the at least one gold electrode pairs; placing the silicon wafer into an aniline monomer polymerization solution; reacting the polymerization solution to give a coated wafer and a polyaniline film; and cleaning the coated wafer of polymethylmethacrylate resist and polyaniline film to give at least one gold electrode pair with a connecting polymer single nanowire.
    Type: Application
    Filed: May 23, 2013
    Publication date: June 5, 2014
    Inventors: Minhee Yun, David Schwartzman, Jiyong Huang
  • Patent number: 8739604
    Abstract: A gas sensor is disclosed. The gas sensor includes a gas sensing layer, at least one electrode, an adhesion layer, and a response modification layer adjacent to said gas sensing layer and said layer of adhesion. A system having an exhaust system and a gas sensor is also disclosed. A method of fabricating the gas sensor is also disclosed.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 3, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventors: Kalaga Murali Krishna, Geetha Karavoor, John Patrick Lemmon, Jun Cui, Vinayak Tilak, Mohandas Nayak, Ravikumar Hanumantha
  • Patent number: 8741679
    Abstract: The NH3 plasma treatment by remote plasma is firstly proposed to replace the covalent bonding process during surface modification procedure that for amine bond generation.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: June 3, 2014
    Assignee: Chang Gung University
    Inventors: Chao-Sung Lai, Jau-Song Yu, Yu-Sun Chang, Po-Lung Yang, Tseng-Fu Lu, Yi-Ting Lin, Wen-Yu Chuang, Ting-Chun Yu, I-Shun Wang, Jyh-Ping Chen, Chou Chien
  • Patent number: 8741680
    Abstract: A two-transistor (2T) pixel comprises a chemically-sensitive transistor (ChemFET) and a selection device which is a non-chemically sensitive transistor. A plurality of the 2T pixels may form an array, having a number of rows and a number of columns. The ChemFET can be configured in a source follower or common source readout mode. Both the ChemFET and the non-chemically sensitive transistor can be NMOS or PMOS device.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: June 3, 2014
    Assignee: Life Technologies Corporation
    Inventors: Keith G. Fife, Kim L. Johnson, Mark James Milgrew
  • Patent number: 8736002
    Abstract: The sensor assembly comprises a substrate (1), such as a flexible printed circuit board, and a sensor chip (2) flip-chip mounted to the substrate (1), with a first side (3) of the sensor chip (2) facing the substrate (1). A sensing area (4) and contact pads (5) are integrated on the first side (3) of the sensor chip (2). Underfill (18) and/or solder flux is arranged between the sensor chip (2) and the substrate (1). The sensor chip (2) extends over an edge (12) of the substrate (1), with the edge (12) of the substrate (1) extending between the contact pads (5) and the sensing area (4) over the whole sensor chip (2). A dam (16) can be provided along the edge (12) of the substrate (1) for even better separation of the underfill (18) and the sensing area (4). This de sign allows for a simple alignment of the sensor chip on the substrate (1) and prevents underfill (18) from covering the sensing area (4).
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 27, 2014
    Assignee: Sensirion AG
    Inventors: Markus Graf, Werner Hunziker, Franziska Brem, Felix Mayer
  • Patent number: 8728844
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: May 20, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Ching-Ray Chen, Yi-Hsien Chang, Fei-Lung Lai, Chun-Wen Cheng
  • Patent number: 8723534
    Abstract: A corrosion sensor includes a plurality of metal strips having different thicknesses. A first metal strip with the least thickness is first employed to provide sensitive corrosion detection. After an exposed portion of the first metal strip is consumed, a second metal strip having a second least thickness can be employed to provide continued sensitive corrosion detection employing a remaining un-corroded portion of the second metal strip. The plurality of metal strips can be sequentially employed as exposed portions of thinner metal strips become unusable through complete corrosion and un-corroded exposed portions of thicker metal strips become thin enough to provide sensitive corrosion detection.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: S. Jay Chey, Hendrik F. Hamann, Levente I. Klein, Michael A. Schappert, Prabjit Singh
  • Patent number: 8722437
    Abstract: A method of component assembly on a substrate, and an assembly of a bound component on a substrate. The method comprises the steps of forming a free-standing component having an optical characteristic; providing a pattern of a first binding species on the substrate or the free standing component; and forming a bound component on the substrate through a binding interaction via the first binding species; wherein the bound component exhibits substantially the same optical characteristic compared to the free-standing component.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: May 13, 2014
    Assignee: Mogul Solutions LLC
    Inventors: Till Böcking, John Justin Gooding, Kristopher A. Kilian, Michael Gal, Katharina Gaus, Peter John Reece, Qiao Hong
  • Patent number: 8723503
    Abstract: The present invention provides a vertical type sensor, including a substrate; a first electrode formed on the substrate; a sensing layer formed on the first electrode layer and reactive to a target substance, wherein the first electrode layer is interposed between the substrate and the sensing layer; and a second electrode layer formed on the sensing layer and having a plurality of openings, wherein the sensing layer is interposed between the first electrode layer and the second electrode layer, and the target substance contacts the sensing layer via the plurality of openings. The vertical type sensor of the present invention provides instant, sensitive and rapid detection.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: May 13, 2014
    Assignee: National Chiao Tung University
    Inventors: Hsiao-Wen Zan, Hsin-Fei Meng, Ming-Zhi Dai, Yu-Chiang Chao
  • Publication number: 20140117468
    Abstract: An integrated circuit package for sensing fluid properties includes: a substrate made of semiconductor material; a fluid property measurement circuit formed on the substrate; and a sensor circuit coupled to the fluid property measurement circuit within a same integrated circuit package. The sensor circuit is configured to generate a field that interacts with the fluid. The fluid property measurement circuit is configured to determine a change in a property of the sensor circuit as results from the field interacting with the fluid and is further configured to determine a property of the fluid based on the change in the property of the sensor circuit.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: PATRICE M. PARRIS, MD M. HOQUE
  • Publication number: 20140117238
    Abstract: Disclosed herein are methods and mid-IR detection apparatus to measure analytes in gas or liquid phase. Solid state cooling of a crystalline lattice is effectively achieved with the controlled flow of charge carriers that absorb thermal energy from the semiconductor material which senses mid-IR photons. Reduction in temperature improves signal-to-noise ratios thus improving molecular sensitivity. In one embodiment the apparatus is used to detect a biomarker.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 1, 2014
    Applicant: The Board of Regents of the University of Oklahoma
    Inventor: Patrick J. McCann
  • Publication number: 20140120640
    Abstract: A method of dispersing semiconductor chips from a wafer of semiconductor chips onto a substrate while preserving the neighboring relationship of each chip to each adjacent chip is disclosed. The method includes dispersing the wafer into sequential columns of semiconductor chips with a first pitch between columns while preserving the neighboring relationship and sequentially dispersing the columns of semiconductor chips into rows of individual chips with a second pitch between rows onto a substrate while preserving the neighboring relationship.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Inventors: Chan- Long Shieh, Gang Yu
  • Patent number: 8710597
    Abstract: A method and structure for adding mass with stress isolation to MEMS. The structure has a thickness of silicon material coupled to at least one flexible element. The thickness of silicon material can be configured to move in one or more spatial directions about the flexible element(s) according to a specific embodiment. The apparatus also includes a plurality of recessed regions formed in respective spatial regions of the thickness of silicon material. Additionally, the apparatus includes a glue material within each of the recessed regions and a plug material formed overlying each of the recessed regions.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: April 29, 2014
    Assignee: mCube Inc.
    Inventor: Daniel N. Koury, Jr.
  • Patent number: 8709909
    Abstract: A method for manufacturing a substrate for a display device comprises forming a first pattern within an active region of the substrate and at the same time forming a first overlay pattern at corner regions of the active region; and forming a second pattern within the active region of the substrate and at the same time forming a second overlay pattern at corner regions of the active region, wherein the first overlay pattern includes gradations arranged in a predetermined direction, and the second overlay pattern includes gradations arranged in the predetermined direction to face the gradations of the first overlay pattern.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: April 29, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Youn-Oh Kim, Jong-Chun Lim, Jae-Hyun You
  • Patent number: 8703523
    Abstract: In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: April 22, 2014
    Assignees: Lawrence Livermore National Security, LLC., Karlsruher Institut fur Technologie (KIT)
    Inventors: Juergen Biener, Theodore F. Baumann, Subho Dasgupta, Horst Hahn
  • Patent number: 8704278
    Abstract: A structure for a metal-oxide-semiconductor field-effect transistor (MOSFET) sensor is provided. The structure includes a MOSFET, a sensing membrane, and a reference electrode. The reference electrode and the sensing membrane are formed on the first surface of the MOSFET and are arranged in such a way that the reference electrode and the sensing membrane are uniformly and electrically coupled to each other. Thus, the electric field between the sensing membrane and the reference electrode is uniformly distributed therebetween to stabilize the working signal of the MOSFET sensor.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 22, 2014
    Assignee: Seoul National University Industry Foundation
    Inventors: Ying-Zong Juang, Hann-Huei Tsai, Hsin-Hao Liao, Chen-Fu Lin
  • Publication number: 20140102172
    Abstract: An integrated circuit and a method of making the same. The integrated circuit includes a semiconductor substrate. The integrated circuit also includes a relative humidity sensor on the substrate. The relative humidity sensor includes a first sensor electrode, a second sensor electrode, and a humidity sensitive layer covering the first and second electrodes. The integrated circuit further includes a thermal conductivity based gas sensor on the substrate. The thermal conductivity based gas sensor has an electrically resistive sensor element located above the humidity sensitive layer.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 17, 2014
    Applicant: NXP B.V.
    Inventors: Roel Daamen, Aurelie Humbert, Pascal Bancken
  • Publication number: 20140106494
    Abstract: A dual gate extremely thin semiconductor-on-insulator transistor with asymmetric gate dielectrics is provided. This structure can improve the sensor detection limit and also relieve the drift effects. Detection is performed at a constant current mode while the species will be detected at a gate electrode with a thin equivalent oxide thickness (EOT) and the gate bias will be applied to the second gate electrode with thicker EOT to maintain current flow through the transistor. As a result, a small change in the charge on the first electrode with the thin EOT will be translated into a larger voltage on the gate electrode with the thick EOT to sustain the current flow through the transistor. This allows a reduction of the sensor dimension and therefore an increase in the array size. The dual gate structure further includes cavities, i.e., microwell arrays, for chemical sensing.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8697469
    Abstract: The present invention discloses a protein transistor device, wherein an antibody molecule (antibody-antigen) is bonded to at least two gold nanoparticles in a high reproducible self-assembly way to form molecular junctions, and wherein the two gold nanoparticles are respectively joined to a drain and a source. The protein transistor device can be controlled to regulate current via applying a bias to the gate. The conformational change of the protein molecule will cause the variation of the charge transport characteristics of the protein transistor device. The protein transistor device can be further controlled by different optical fields via conjugating a quantum dot to the molecular junctions. Therefore, the present invention has diversified applications.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: April 15, 2014
    Assignee: National Chiao Tung University
    Inventors: Gue-Wha Huang, Meng-Yen Hung, Yu-Shiun Chen
  • Patent number: 8698210
    Abstract: Provided is a sensor having a high sensitivity and a high degree of freedom of layout by reducing constrictions of the channel shape, the reaction field area, and the position. Provided is also a method for manufacturing the sensor. The sensor (10) includes: a source electrode (15), a drain electrode, (14), and a gate electrode (13) arranged on silicon oxide film (12a, 12b); a channel (16) arranged on the silicon oxide films (12a, 12b) and electrically connected to the source electrode (15) and the drain electrode (14); and a reaction field (20) arranged on the silicon oxide films (12a, 12b). The reaction field (20) is formed at a position on the silicon oxide film (12a), the position being different from a position for the channel (16). With this configuration, it is possible to independently select the shape of the channel (16) and the area of the reaction field (20). This enables the sensor (10) to have a high measurement sensitivity and a high degree of freedom of layout.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 15, 2014
    Assignee: Mitsumi Electric, Co., Ltd.
    Inventors: Tomoaki Yamabayashi, Osamu Takahashi, Katsunori Kondo, Hiroaki Kikuchi
  • Patent number: 8698319
    Abstract: An electronic component includes a printed conductor structure on a substrate, as well as a film which contacts the printed conductor structure. The film has a smaller layer thickness than the printed conductor. The printed conductor structure has a region which is covered by the film for the purpose of contacting.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 15, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Richard Fix, Frederik Schrey, Oliver Wolst, Ingo Daumiller, Alexander Martin, Martin Le-Huu, Mike Kunze
  • Patent number: 8691609
    Abstract: Gas sensor materials and methods are disclosed for preparing and using the same to produce gas sensor structures. Also disclosed are gas sensor structures and systems that employ these disclosed materials. A gas sense-enhancing metal such as platinum may be added to a gas sensitive metal oxide material in a manner that more highly disperses the added platinum than conventional methods so as to more effectively utilize the platinum at a lower concentration, thus achieving a more cost effective solution. An ink vehicle may also be used for deposition of a gas sensitive material (e.g. on the surface of integrated circuit) that is formulated to allow “burn-out” of ink vehicle components at relatively low temperatures as compared to conventional ink vehicles.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 8, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Peter Smith, Jane Blake, Leon Cavanagh, Raymond Speer
  • Publication number: 20140093992
    Abstract: It is an object to provide a gas sensor which is formed by a simple manufacturing process. Another object is to provide a gas sensor whose manufacturing cost is reduced. A transistor which includes an oxide semiconductor layer in contact with a gas and which serves as a detector element of a gas sensor, and a transistor which includes an oxide semiconductor layer in contact with a film having a gas barrier property and which forms a detection circuit are formed over one substrate by the same process, whereby a gas sensor using these transistors may be formed.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 3, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Koichiro KAMATA
  • Publication number: 20140084390
    Abstract: In a method for manufacturing a chemical sensor with multiple sensor cells, a substrate is provided and an expansion inhibitor is applied to the substrate for preventing a sensitive material to be applied to an area on the substrate for building a sensitive film of a sensor cell to expand from said area. The sensitive material is provided and the sensitive film is built by contactless dispensing the sensitive material to said area.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Felix MAYER, Markus Graf, Lukas Burgi
  • Patent number: 8679885
    Abstract: Non-planar semiconductor FET based sensors are provided that have an enhanced sensing area to volume ratio which results in faster response times than existing planar FET based sensors. The FET based sensors of the present disclosure include a V-shaped gate dielectric portion located in a V-shaped opening formed in a semiconductor substrate. In some embodiments, the FET based sensors of the present disclosure also include a self-aligned source region and a self-aligned drain region located in the semiconductor substrate and on opposing sides of the V-shaped opening. In other embodiments, the FET based sensors include a self-aligned source region and a self-aligned drain region located in the semiconductor substrate and on opposing sides of a gate dielectric material portion that is present on an uppermost surface of the semiconductor substrate.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Raghavasimhan Sreenivasan, Sufi Zafar
  • Patent number: 8680530
    Abstract: An array substrate for a display device includes: a substrate; first and second gate electrodes of impurity-doped polycrystalline silicon on the substrate; a gate insulating layer on the first and second gate electrodes; first and second active layers of intrinsic polycrystalline silicon on the gate insulating layer, the first and second active layers corresponding to the first and second active layers, respectively; an interlayer insulating layer on the first and second active layers and including first to fourth active contact holes, the first and second active contact holes exposing side portions of the first active layer, the third and fourth active contact holes exposing side portions of the second active layer; first and second ohmic contact layers of impurity-doped amorphous silicon on the interlayer insulating layer, the first ohmic contact layer contacting the first active layer through the first and second active contact holes, the second ohmic contact layer contacting the second active layer throug
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: March 25, 2014
    Assignee: LG Display Co., Ltd.
    Inventor: Hee-Dong Choi
  • Publication number: 20140077314
    Abstract: An integrated circuit and a method of making the same. The integrated circuit includes a capacitive gas sensor on a semiconductor substrate. The gas sensor includes first and second capacitor electrodes on the substrate. The gas sensor also includes a gas sensitive material having a dielectric constant that is sensitive to a gas to be detected. The gas sensitive material at least partially surrounds the capacitor electrodes and extends between the capacitor electrodes and the substrate.
    Type: Application
    Filed: July 15, 2013
    Publication date: March 20, 2014
    Inventors: Aurelie Humbert, Dirk Gravestejin
  • Publication number: 20140077315
    Abstract: An electronic sensor apparatus for detecting chemical or biological species includes a semiconductor chip, a sensor device, and a substrate. The chip is produced from a semiconductor substrate and is configured for one or more functions such as: amplifying and/or evaluating an electrical voltage, amplifying and/or evaluating an electric current, amplifying and/or evaluating an electrical charge, and amplifying and/or reading out capacitance changes. The sensor device has an active surface configured to detect chemical or biological species and generate an electrical signal based on a species-characteristic interaction with the active surface. The electrical signal can be an electrical voltage, an electric current, an electrical charge and/or a capacitance change. The substrate is produced from a melt-moldable material and has a surface including first and second regions. The chip is at least partly embedded in the first region, and the sensor device is at least partly embedded in the second region.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 20, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Georg Bischopink, Franz Laermer, Christian Dorrer, Thomas Brettschneider
  • Publication number: 20140070170
    Abstract: A field effect transistor (20) for chemical sensing, comprising an electrically conducting and chemically sensitive channel (2) extending between drain (5) and source (6) electrodes. A gate electrode (7) is separated from the channel (2) by a gap (10) through which a chemical to be sensed can reach the channel (2) which comprises a continuous monocrystalline graphene layer (2a) arranged on an electrically insulating graphene layer substrate (1). The graphene layer (2a) extends between and is electrically connected to the source electrode (5) and the drain electrode (6). The substrate supports the graphene layer, allowing it to stay 2-dimensional and continuous, and enables it to be provided on a well defined surface, and be produced and added to the transistor as a separate part. This is beneficial for reproducibility and reduces the risk of damage to the graphene layer during production and after. Low detection limits with low variability between individual transistors are also enabled.
    Type: Application
    Filed: May 5, 2011
    Publication date: March 13, 2014
    Applicant: SENSIC AB
    Inventors: Mike Andersson, Lars Hultman, Anita Lloyd Spetz, Ruth Pearce, Rositsa Yakimova
  • Publication number: 20140073039
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a plurality of micro wells having a sensing gate bottom and a number of stacked well portions. A bottom surface area of a well portion is different from a top surface area of a well portion directly below. The micro wells are formed by multiple etching operations through different materials, including a sacrificial plug, to expose the sensing gate without plasma induced damage.
    Type: Application
    Filed: September 8, 2012
    Publication date: March 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Shih-Wei Lin, Yi-Shao Liu
  • Patent number: 8669131
    Abstract: Gas sensor materials and methods are disclosed for preparing and using the same to produce gas sensor structures. Also disclosed are gas sensor structures and systems that employ these disclosed materials. A gas sense-enhancing metal such as platinum may be added to a gas sensitive metal oxide material in a manner that more highly disperses the added platinum than conventional methods so as to more effectively utilize the platinum at a lower concentration, thus achieving a more cost effective solution. An ink vehicle may also be used for deposition of a gas sensitive material (e.g. on the surface of integrated circuit) that is formulated to allow “burn-out” of ink vehicle components at relatively low temperatures as compared to conventional ink vehicles.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 11, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Peter Smith, Jane Blake, Leon Cavanagh, Raymond Speer
  • Patent number: 8669124
    Abstract: A detector device and method of its fabrication are disclosed. Illustratively, an additional via is present through an insulator layer over a gate channel region which is on top of the channel region. The additional via is filled with conductor material. The conductor material is removed to form a chamber leading to one side of the gate channel region. Furthermore, a nanopore is etched from the chamber through the channel region.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 11, 2014
    Assignee: NXP, B.V.
    Inventor: Matthias Merz
  • Publication number: 20140061729
    Abstract: A CMOS or bipolar based Ion Sensitive Field Effect Transistor (ISFET) comprising an ion sensitive recess for holding a liquid wherein the recess is formed at least partly on top of a gate of the transistor. There is also provided a method of manufacturing an I on Sensitive Field Effect Transistor (ISFET) utilizing CMOS processing steps, the method comprising forming an ion sensitive recess for holding a liquid at least partly on top of a gate of the transistor.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: X-FAB Semiconductor Foundries AG
    Inventors: Sang Sool KOO, Ling Gang FANG
  • Publication number: 20140061728
    Abstract: A FET sensor with a gate biasing electrode is disclosed in one embodiment. In another embodiment, a process for forming a finFET sensor with a polysilicon gate biasing electrode is disclosed. In a further embodiment, a process for forming a finFET sensor with a single crystal gate biasing electrode is disclosed.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Applicant: Diagtronix Inc.
    Inventor: Krutarth Trivedi
  • Publication number: 20140061823
    Abstract: A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Shian-Yeu Kam, Tien-Choy Loh, Ying Yu, Fery Riswan, Frederic Sala
  • Publication number: 20140054651
    Abstract: Provided are semiconductor field effect sensors including a high-k thin film gate dielectric. The semiconductor field effect sensors described herein exhibit high detection sensitivity and enhanced reliability when placed in contact with liquids. Also disclosed are semiconductor field effect sensors having optimized fluid gate electrode voltages and/or back gate electrode voltages for improved detection sensitivity.
    Type: Application
    Filed: November 18, 2011
    Publication date: February 27, 2014
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Rashid Bashir, Bobby Reddy, Brian Ross Dorvel