Using Oblique Beam Patents (Class 438/525)
  • Publication number: 20090159961
    Abstract: A semiconductor memory device includes a first active region, a second active region, a first element isolating region and a second element isolating region. The first active region is formed in a semiconductor substrate. The second active region is formed in the semiconductor substrate. The first element isolating region electrically separates the first active regions adjacent to each other. The second element isolating region electrically separates the second active regions adjacent to each other. An impurity concentration in a part of the second active region in contact with a side face of the second element isolating region is higher than that in the central part of the second active region, and a impurity concentration in a part of the first active region in contact with a side face of the first element isolating region is equal to that in the first active region.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 25, 2009
    Inventors: Yoshiko Kato, Mitsuhiro Noguchi
  • Patent number: 7550355
    Abstract: A boron ion stream may be used to implant ions, such as boron ions, into the sidewalls of an active area, such as an NFET active area. The boron ion stream has both vertical tilt and horizontal rotation components relative to the sidewalls and/or the silicon device, to provide a better line of sight onto the sidewalls. This may allow components of the silicon device to be moved closer together without unduly reducing the effectiveness of boron doping of NFET active area sidewalls, and provides an improved line of sight of a boron ion stream onto the sidewalls of an NFET active area prior to filling the surrounding trench with STI material.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: June 23, 2009
    Assignee: Toshiba America Electronic Components, Inc.
    Inventor: Yusuke Kohyama
  • Publication number: 20090124069
    Abstract: A method for forming a semiconductor structure. The method includes providing a semiconductor structure including a semiconductor substrate. The semiconductor substrate includes (i) a top substrate surface which defines a reference direction perpendicular to the top substrate surface and (ii) a semiconductor body region. The method further includes implanting an adjustment dose of dopants of a first doping polarity into the semiconductor body region by an adjustment implantation process. Ion bombardment of the adjustment implantation process is in the reference direction. The method further includes (i) patterning the semiconductor substrate resulting in side walls of the semiconductor body region being exposed to a surrounding ambient and then (ii) implanting a base dose of dopants of a second doping polarity into the semiconductor body region by a base implantation process. Ion bombardment of the base implantation process is in a direction which makes a non-zero angle with the reference direction.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: William F. Clark, JR., Edward Joseph Nowak
  • Patent number: 7531438
    Abstract: A method of fabricating a recess channel transistor is provided. First, a hard mask is formed on a doped-semiconductor layer and a substrate. The doped-semiconductor layer and the substrate are etched to form a trench and define a source/drain in the doped-semiconductor layer. An implantation process is performed with a tilt angle on sidewalls of the trench to form an implant area. A thermal oxidation process is performed to form an oxide layer. The oxide layer comprises a first thickness on the source/drain in the sidewalls of the trench and a second thickness on the other portion in the sidewalls of the trench.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: May 12, 2009
    Assignee: ProMOS Technologies Inc.
    Inventors: Jih-Wen Chou, Chih-Hsun Chu, Hsiu-Chuan Shu
  • Patent number: 7524743
    Abstract: A method of doping includes depositing a layer of dopant material on nonplanar and planar features of a substrate. Inert ions are generated from an inert feed gas. The inert ions are extracted towards the substrate where they physically knock the dopant material into both the planar and nonplanar features of the substrate.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: April 28, 2009
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Atul Gupta, Vikram Singh, Timothy Miller, Edmund Jacques Winder
  • Patent number: 7524725
    Abstract: A vertical transistor of a semiconductor device and a method for forming the same are disclosed. The vertical transistor comprises a silicon fin disposed on a semiconductor substrate, a source region disposed in the semiconductor substrate below a lower portion of the silicon fin, a drain region disposed in an upper portion of the silicon fin, a channel region disposed in a sidewall of the silicon fin between the source region and the drain region, a gate oxide film disposed in a surface of the semiconductor substrate and the sidewall of the silicon fin, and a pair of gate electrodes disposed on the gate oxide films.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: April 28, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Woo Young Chung
  • Publication number: 20090075462
    Abstract: The invention relates to a method of fabricating an integrated circuit, including the steps of providing at least one layer; performing a first implantation step, wherein particles are implanted into the layer under a first direction of incidence; performing a second implantation step, wherein particles are implanted into the layer under a second direction of incidence which is different from the first direction of incidence; performing a removal step, wherein the layer is partially removed depending on the local implant dose generated by the first and the second implantation step.
    Type: Application
    Filed: September 14, 2007
    Publication date: March 19, 2009
    Inventors: Dirk Manger, Rolf Weis, Christoph Noelscher
  • Patent number: 7504327
    Abstract: In the invention, a low concentration impurity region is formed between a channel formation region and a source region or a drain region in a semiconductor layer and covered with a gate electrode layer in a thin film transistor The semiconductor layer is doped obliquely to the surface thereof using the gate electrode layer as a mask to form the low concentration impurity region. The semiconductor layer is formed to have an impurity region including an impurity element for imparting one conductivity which is different from conductivity of the thin film transistor, thereby being able to minutely control the properties of the thin film transistor.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: March 17, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Atsuo Isobe, Tetsuji Yamaguchi, Hiromichi Godo
  • Patent number: 7491999
    Abstract: Several embodiments of flash EEPROM split-channel cell arrays are described that position the channels of cell select transistors along sidewalls of trenches in the substrate, thereby reducing the cell area. Select transistor gates are formed as part of the word lines and extend downward into the trenches with capacitive coupling between the trench sidewall channel portion and the select gate. In one embodiment, trenches are formed between every other floating gate along a row, the two trench sidewalls providing the select transistor channels for adjacent cells, and a common source/drain diffusion is positioned at the bottom of the trench. A third gate provides either erase or steering capabilities. In another embodiment, trenches are formed between every floating gate along a row, a source/drain diffusion extending along the bottom of the trench and upwards along one side with the opposite side of the trench being the select transistor channel for a cell.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: February 17, 2009
    Assignee: Sandisk Corporation
    Inventors: Eliyahou Harari, Jack H. Yuan, George Samachisa, Henry Chien
  • Publication number: 20090029535
    Abstract: In the ion implantation method and semiconductor device manufacturing method relating to the present invention, a disc on which multiple semiconductor substrates are mounted is positioned in the manner that a first angle ?1 is made between an X-Y plane perpendicular to an ion beam and a line perpendicular to the Y-axis in a disc rotation plane. In this state, an ion beam is emitted to implant a first conductivity type impurity in the semiconductor substrates while the disc is rotated about a disc rotation axis. Then, the disc is positioned in the manner that a second angle ?2 is made between the X-Y plane and a line perpendicular to the Y-axis in the disc rotation plane. In this state, an ion beam is emitted to implant a second conductivity type impurity in the semiconductor substrates while the disc is rotated about the disc rotation axis.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 29, 2009
    Inventor: Hideki OKAI
  • Publication number: 20090026581
    Abstract: A method includes forming trenches in a semiconductor substrate by etching the semiconductor substrate; and then forming a first ion injection layer in sidewalls of the trenches at an active region of the semiconductor substrate; and then forming a second ion injection layer in a substantially horizontally extending surface of the active region located between the trenches; and then performing a threshold voltage adjusting implant on at least the active region, wherein the first ion injection layer and the second ion injection layer overlap at a portion of the active region to provide the overlapping portion with a higher doping concentration than a non-overlapping portion of the active region; and then forming a gate structure on the active region.
    Type: Application
    Filed: June 4, 2008
    Publication date: January 29, 2009
    Inventor: Jin-Ha Park
  • Patent number: 7482255
    Abstract: A method of ion implantation comprises the steps of: providing a semiconductor substrate; performing a pre-amorphisation implant in the semiconductor substrate in a direction of implant at an angle in the range of 20-60° to a normal to a surface of the semiconductor substrate, and performing an implant of a dopant in the semiconductor substrate to provide a shallow junction. In a feature of the invention, the method further comprises performing an implant of a defect trapping element in the semiconductor substrate and the pre-amorphisation implant step is performed at a first implant energy and the implant of a defect trapping element is performed at a second implant energy, the ratio of the first implant energy to the second implant energy being in the range of 10-40%.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: January 27, 2009
    Inventors: Houda Graoui, Majeed Ali Foad, Amir Al-Bayati
  • Patent number: 7479435
    Abstract: A MOS transistor and subsurface collectors can be formed by using a hard mask and precisely varying the implant angle, rotation, dose, and energy. In this case, a particular atomic species can be placed volumetrically in a required location under the hard mask. The dopant can be implanted to form sub-silicon volumes of arbitrary shapes, such as pipes, volumes, hemispheres, and interconnects.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: January 20, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Vladislav Vashchenko, Philipp Lindorfer, Andy Strachan
  • Publication number: 20090008723
    Abstract: A semiconductor component includes a semiconductor body having a first side, a second side, an edge delimiting the semiconductor body in a lateral direction, an inner region and an edge region. A first semiconductor zone of a first conduction type is arranged in the inner region and in the edge region. A second semiconductor zone of a second conduction type is arranged in the inner region and adjacent to the first semiconductor zone. A trench is arranged in the edge region and has first and second sidewalls and a bottom, and extends into the semiconductor body. A doped first sidewall zone of the second conduction type is adjacent to the first sidewall of the trench. A doped second sidewall zone of the second conduction type is adjacent to the second sidewall of the trench. A doped bottom zone of the second conduction type is adjacent to the bottom of the trench. Doping concentrations of the sidewall zones are lower than a doping concentration of the bottom zone.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Applicant: Infineon Technologies Austria AG
    Inventor: Gerhard Schmidt
  • Publication number: 20090004837
    Abstract: Provided is a method of fabricating a semiconductor device having an impurity region with an impurity concentration of a first dose in a substrate. In the method, first impurity ions of a first conductivity type are implanted into the substrate, and a rapid thermal processing (RTP) is performed on the substrate to activate the first impurity ions. Second impurity ions of the first conductivity type are implanted into the substrate having the activated first impurity ions.
    Type: Application
    Filed: December 28, 2007
    Publication date: January 1, 2009
    Inventors: KYOUNG BONG ROUH, Dong Seok Kim
  • Publication number: 20080308905
    Abstract: A semiconductor device and a method for manufacturing the device are disclosed. The device, and the method for making the device, includes the steps of forming a gate oxide film on a semiconductor substrate; forming a gate poly silicon layer on the gate oxide film; and implanting deuterium ions over the semiconductor substrate including the gate poly silicon layer.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 18, 2008
    Applicant: DONGBU HITEK CO., LTD.
    Inventor: Ji Hwan PARK
  • Publication number: 20080311732
    Abstract: A method for forming a semiconductor device includes defining a sacrificial layer (108) over a single crystalline substrate (106). The sacrificial layer (108) is implanted with a dopant species in a manner that prevents the single crystalline substrate (106) from becoming substantially amorphized. The sacrificial layer (108) is annealed so as to drive said dopant species from said sacrificial layer (108) into said single crystalline substrate (106).
    Type: Application
    Filed: December 4, 2003
    Publication date: December 18, 2008
    Applicant: International Business Machines Corporation
    Inventors: Omer Dokumaci, Paul Ronsheim
  • Patent number: 7465643
    Abstract: A method for manufacturing a semiconductor device includes subjecting a semiconductor substrate to thermal treatment at a temperature ranging from 770 to 830° C. to fix channel ions then forming a HTO film. The method thereby prevents a threshold voltage of a gate from changing due to diffusion of channel ions.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: December 16, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dae Young Kim
  • Publication number: 20080286954
    Abstract: A method of forming a pattern of a semiconductor device comprises forming a first hard mask film, a first resist film, and a second hard mask film over an underlying layer of a semiconductor substrate; forming a second resist pattern over the second hard mask film; etching the second hard mask film using the second resist pattern as an etching mask to form a second hard mask pattern; performing an ion-implanting process on the first resist film with the second hard mask pattern as an ion implanting mask to form an ion implanting layer in a portion of the first resist film, and selectively etching the first resist film with the second hard mask pattern and an ion implanting layer as an etching mask to form a first resist pattern.
    Type: Application
    Filed: November 29, 2007
    Publication date: November 20, 2008
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Seo Min Kim, Chang Moon Lim
  • Patent number: 7442614
    Abstract: Methods of fabricating silicon on insulator devices having the body-tied-to-source are described. In an embodiment, a method of forming a transistor device comprises: providing a semiconductor topography comprising a gate conductor spaced above a semiconductor layer by a gate dielectric, dielectric sidewall spacers adjacent to sidewalls of the gate conductor, and source and drain junctions laterally spaced apart by a body region in the semiconductor layer; and implanting metallic species in a bottom region of the semiconductor layer to form a conductive implant region to electrically connect the source junction to the body region.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 28, 2008
    Assignee: International Business Machines Corporation
    Inventors: Thomas Dyer, Jack A. Mandelman, Keith Kwong Hon Wong, Chih-Chao Yang, Haining Sam Yang
  • Publication number: 20080242066
    Abstract: A method of producing ultra shallow junctions (104) for PMOS transistors, which eliminates the need for pre-amorphization implants, is disclosed. The method utilizes dopant species, such as cluster ions, e.g., octadecaborane, B18H22. In accordance with the present invention, the pre-amorphizing step may be eliminated, greatly reducing cost per processed wafer. An appropriate process sequence has been suggested to take advantage of cluster ion implantation for PMOS manufacturing. In addition, the novel use of tilted implants for the source/drain extension and for pocket implants has been described.
    Type: Application
    Filed: October 7, 2005
    Publication date: October 2, 2008
    Applicants: SEMIEQUIP INC., RENESAS TECHNOLOGY CORP.
    Inventors: Dale C. Jacobson, Yoji Kawasaki
  • Patent number: 7429519
    Abstract: A method of forming an isolation structure of a semiconductor device includes implanting dopants of a first type into a semiconductor substrate to form a doped region in the substrate. A mask layer is provided over the substrate and the doped region of the substrate. The mask layer is patterned to expose an isolation region of the substrate, the isolation region defining an active region, the isolation region and the active region being defined at least partly within the doped region. Dopants of a second type are implanted at an edge of the active region as defined by the isolation region. The isolation region of the semiconductor substrate is etched to form an isolation trench having a depth that extends below a depth of the doped region. Dopants of a third type are implanted on sidewalls of the trench in order to minimize the dopants of the second type provided on the sidewalls of the isolation trench from migrating away from the sidewalls.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 30, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Chul Young Ham, Noh Yeal Kwak
  • Publication number: 20080206971
    Abstract: The present invention provides a method for implanting charged particles in a substrate and a method for manufacturing an integrated circuit. The method for implanting charged particles in a substrate, among other steps, includes projecting a beam of charged particles (320) to a substrate (330), the beam of charged particles (320) having a given beam divergence; and forming a diverged beam of charged particles (360) by subjecting the beam of charged particles (320) to an energy field (350), thereby causing the beam of charged particles (320) to have a larger beam divergence. The method then desires implanting the diverged beam of charged particles (360) into the substrate (330).
    Type: Application
    Filed: May 5, 2008
    Publication date: August 28, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James D. Bernstein, Lance S. Robertson, Said Ghneim, Jiejie Xu, Jeffrey Loewecke
  • Patent number: 7416948
    Abstract: A field effect transistor is formed as follows. Trenches are formed in a semiconductor region of a first conductivity type. Each trench is partially filled with one or more materials. A dual-pass angled implant is carried out to implant dopants of a second conductivity type into the semiconductor region through an upper surface of the semiconductor region and through upper trench sidewalls not covered by the one or more material. A high temperature process is carried out to drive the implanted dopants deeper into the mesa region thereby forming body regions of the second conductivity type between adjacent trenches. Source regions of the first conductivity type are then formed in each body region.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: August 26, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Nathan L. Kraft, Ashok Challa, Steven P. Sapp, Hamza Yilmaz, Daniel Calafut, Dean E. Probst, Rodney S. Ridley, Thomas E. Grebs, Christopher B. Kocon, Joseph A. Yedinak, Gary M. Dolny
  • Publication number: 20080160730
    Abstract: A method of fabricating a semiconductor device includes forming a mask pattern for exposing a region of a semiconductor substrate. Dopant ions are implanted into the exposed region of the semiconductor substrate at a tilt angle of approximately 4.4° to 7°.
    Type: Application
    Filed: June 1, 2007
    Publication date: July 3, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventors: Min Yong LEE, Yong Soo JUNG
  • Patent number: 7393752
    Abstract: A semiconductor having an ˜5V operational range, including a drain side enhanced gate-overlapped LDD (GOLD) and a source side halo implant region and well implant. A method in accordance with an embodiment of the invention comprises forming a gate electrode overlying a substrate and a very lightly doped epitaxial layer formed on the substrate. A high energy implant region forms a well in a source side of the lightly doped epitaxial layer. A self-aligned halo implant region is formed on a source side of the device and within the high energy well implant. An implant region on a drain side of the lightly doped epitaxial layer forms the gate overlapped LDD (GOLD). A doped region within the halo implant region forms a source. A doped region within the gate overlapped LDD (GOLD) forms a drain. The structure enables the manufacture of a deep submicron (<0.3 ?m) power MOSFET using existing 0.13 ?m process flow without additional masks and processing steps.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: July 1, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Patent number: 7387942
    Abstract: Substrate isolation trench (224) are formed in a semiconductor substrate (120). Dopant (e.g. boron) is implanted into the trench sidewalls by ion implantation to suppress the current leakage along the sidewalls. During the ion implantation, the transistor gate dielectric (520) faces the ion stream, but damage to the gate dielectric is annealed in subsequent thermal steps. In some embodiments, the dopant implantation is an angled implant. The implant is performed from the opposite sides of the wafer, and thus from the opposite sides of each active area. Each active area includes a region implanted from one side and a region implanted from the opposite side. The two regions overlap to facilitate threshold voltage adjustment.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: June 17, 2008
    Assignee: ProMOS Technologies Inc.
    Inventors: Daniel Wang, Chunchieh Huang, Dong Jun Kim
  • Patent number: 7384839
    Abstract: A method of fabricating an SRAM cell with reduced leakage is disclosed. The method comprises fabricating asymmetrical transistors in the SRAM cell. The transistors are asymmetrical in a manner that reduces the drain leakage current of the transistors. The fabrication of asymmetrical pass transistors comprises forming a dielectric region on a surface of a substrate having a first conductivity type. A gate region having a length and a width is formed on the dielectric region. Source and drain extension regions having a second conductivity type are formed in the substrate on opposite sides of the gate region. A first pocket impurity region having a first concentration and the first conductivity type is formed adjacent the source. A second pocket impurity region having a second concentration and the first conductivity type may be formed adjacent the drain. If formed, the second concentration is smaller than the first concentration, reducing the gate induced drain leakage current.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: June 10, 2008
  • Publication number: 20080124902
    Abstract: Some embodiments of the invention relate to manufacturing a semiconductor device with an implantation layer on a semiconductor substrate including a method of manufacturing such an implantation layer, wherein said implantation layer is formed in an implantation step at a predetermined depth of penetration, determined from a top surface of said semiconductor substrate, using a particle beam, by increasing its path distance to a main implantation peak and correspondingly increasing the energy level of said particle beam for producing an undamaged implantation layer having a thickness that is increased significantly compared with the thickness of an implantation layer that would be produced at said predetermined depth of penetration using a particle beam with non-increased path distance and energy level.
    Type: Application
    Filed: August 30, 2006
    Publication date: May 29, 2008
    Inventors: Hans-Joachim Schulze, Holger Schulze, Andreas Kyek
  • Patent number: 7364994
    Abstract: A method of manufacturing a semiconductor device includes providing semiconductor substrate having trenches and mesas. At least one mesa has first and second sidewalls. The method includes angularly implanting a dopant of a second conductivity into the first sidewall, and angularly implanting a dopant of a second conductivity into the second sidewall. The at least one mesa is converted to a pillar by diffusing the dopants into the at least one mesa. The pillar is then converted to a column by angularly implanting a dopant of the first conductivity into a first sidewall of the pillar, and by angularly implanting the dopant of the first conductivity type into a second sidewall of the pillar. The dopants are then diffused into the pillar to provide a P-N junction of the first and second doped regions located along the depth direction of the adjoining trench. Finally, the trenches are filled with an insulating material.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: April 29, 2008
    Assignee: Third Dimension (3D) Semiconductor, Inc.
    Inventors: Fwu-Iuan Hshieh, Koon Chong So, Brian D. Pratt
  • Publication number: 20080096359
    Abstract: A method includes directing an ion beam at a plurality of differing incident angles with respect to a target surface of a substrate to implant ions into a plurality of portions of the substrate, wherein each one of the plurality of differing incident angles is associated with a different one of the plurality of portions, measuring angle sensitive data from each of the plurality of portions of the substrate, and determining an angle misalignment between the target surface and the ion beam incident on the target surface from the angle sensitive data. A method of determining a substrate miscut is also provided.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 24, 2008
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Atul Gupta, Joseph C. Olson
  • Patent number: 7358149
    Abstract: Substrate isolation trench (224) are formed in a semiconductor substrate (120). Dopant (e.g. boron) is implanted into the trench sidewalls by ion implantation to suppress the current leakage along the sidewalls. During the ion implantation, the transistor gate dielectric (520) faces the ion stream, but damage to the gate dielectric is annealed in subsequent thermal steps. In some embodiments, the dopant implantation is an angled implant. The implant is performed from the opposite sides of the wafer, and thus from the opposite sides of each active area. Each active area includes a region implanted from one side and a region implanted from the opposite side. The two regions overlap to facilitate threshold voltage adjustment.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: April 15, 2008
    Assignee: ProMOS Technologies, Inc.
    Inventors: Daniel Wang, Chunchieh Huang, Dong Jun Kim
  • Patent number: 7351637
    Abstract: A method of forming a channel in a semiconductor device including forming an opening in a masking layer to expose a portion of an underlying semiconductor layer through the opening is provided. The method further includes disposing a screening layer and implanting a first type of ions in the portion of the underlying semiconductor layer through the screening layer and through the opening in the masking layer. A second type of ions are implanted in the portion of the underlying semiconductor layer through the screening layer and through the opening in the masking layer at an oblique ion implantation angle wherein a lateral spread of second type ions is greater than a lateral spread of first type ions. Semiconductor devices fabricated in accordance to above said method is also provided.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: April 1, 2008
    Assignee: General Electric Company
    Inventor: Jesse Berkley Tucker
  • Patent number: 7348225
    Abstract: A method of manufacturing a fin structure comprises forming a first structure of a first material type on a wafer and forming a buried channel of a second material adjacent sidewalls of the first structure. The second material type is different than the first material type. The structure includes a first structure and a buried channel.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 25, 2008
    Assignee: International Business Machines Corporation
    Inventor: Huilong Zhu
  • Patent number: 7341902
    Abstract: Disclosed are embodiments a technique for inducing strain into the polysilicon gate of a non-planar FET (e.g., a finFET or trigate FET) in order to impart a similar strain on the FET channel region, while simultaneously protecting the source/drain regions of the semiconductor fin. Specifically, a protective cap layer is formed above the source/drain regions of the fin in order to protect those regions during a subsequent amporphization ion implantation process. The fin is further protected, during this implantation process, because the ion beam is directed towards the gate in a plane that is parallel to the fin and tilted from the vertical axis. Thus, amorphization of the fin and damage to the fin are limited. Following the implantation process and the formation of a straining layer, a recrystallization anneal is performed so that the strain of the straining layer is ‘memorized’ in the polysilicon gate.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20080020556
    Abstract: Provided is a method for fabricating a semiconductor device. In the method, a poly layer on a semiconductor substrate is etched to a predetermined depth. Ions are implanted into the poly layer at a predetermined angle. The poly layer is etched again to expose a portion of the semiconductor substrate. Therefore, stress is applied to the poly gate instead of the barrier layer, so that the barrier layer is not opened during contact etching because effects of the barrier layer thickness can be solved. Also, stress is applied to a poly gate directly contacting a channel region of the semiconductor substrate to allow tensile force caused by the stress of the poly gate to directly induce tensile force to the channel region, and thus increase mobility, so that device characteristics can be remarkably enhanced.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 24, 2008
    Inventor: Jin Ha Park
  • Patent number: 7303967
    Abstract: Disclosed is a method for fabricating a transistor of a semiconductor device, the method comprising the steps of: providing a semiconductor; forming a gate electrode; performing a low-density ion implantation process with respect to the substrate, thereby forming an LDD ion implantation layer; forming an insulation spacer on a sidewall of the gate electrode; forming a diffusion barrier; performing a high-density ion implantation process with respect to the substrate, thereby forming a source/drain; performing a first thermal treatment process with respect to a resultant structure, so as to activate impurities in the source/drain, and simultaneously causing a diffusion velocity of the impurities in the source/drain to be reduced by the diffusion barrier; and forming a salicide layer.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: December 4, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Hoon Sa
  • Publication number: 20070272981
    Abstract: A complementary metal-oxide semiconductor (CMOS) image sensor includes a photodiode formed in a substrate structure, first to fourth gate electrodes formed over the substrate structure, spacers formed on both sidewalls of the first to fourth gate electrodes and filled between the third and fourth gate electrodes, a first ion implantation region formed in a portion of the substrate structure below the spacers filled between the third and fourth gate electrodes, and second ion implantation regions formed in portions of the substrate structure exposed between the spacers, the second ion implantation regions having a higher concentration than the first ion implantation region.
    Type: Application
    Filed: April 4, 2007
    Publication date: November 29, 2007
    Inventor: Man-Lyun Ha
  • Patent number: 7300848
    Abstract: A semiconductor device having a recess gate is formed by first forming a recess below the upper surface of the substrate. A spacer is formed at each sidewall of the recess. An impurity doping area is formed in a source area. A first LDD area is formed in a drain area. A gate comprising a gate insulating layer and a gate conductive layer is then formed in the recess. A second LDD area is formed on the upper surface of the semiconductor substrate. A gate spacer is formed at each sidewall of the gate. Then a source/drain area having an asymmetrical structure is formed on each side of the gate.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: November 27, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Woo Jang
  • Patent number: 7297581
    Abstract: A method of doping fins of a semiconductor device that includes a substrate includes forming multiple fin structures on the substrate, each of the fin structures including a cap formed on a fin. The method further includes performing a first tilt angle implant process to dope a first pair of the multiple fin structures with n-type impurities and performing a second tilt angle implant process to dope a second pair of the multiple fin structures with p-type impurities.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: November 20, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Wiley Eugene Hill, Bin Yu
  • Patent number: 7291535
    Abstract: A method for fabricating a semiconductor device includes the steps of: forming a semiconductor region of a first conductive type on a semiconductor wafer; forming a gate electrode on the semiconductor region; on the semiconductor region, forming a first insulating film over the whole surface including the upper surface of the gate electrode; by removing the formed first insulating film through etching from the top surface side, forming first sidewalls, covering the side surfaces of the gate electrode, from the first insulating film; and by implanting first impurity ions of a second conductive type to the semiconductor region by using an ion implantation device capable of processing a plurality of semiconductor wafers collectively, forming first impurity diffusion regions on both sides of the gate electrode in the semiconductor region.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: November 6, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiko Niwayama, Kenji Yoneda, Kazuma Takahashi
  • Publication number: 20070249123
    Abstract: A method of fabricating a recess channel transistor is provided. First, a hard mask is formed on a doped-semiconductor layer and a substrate. The doped-semiconductor layer and the substrate are etched to form a trench and define a source/drain in the doped-semiconductor layer. An implantation process is performed with a tilt angle on sidewalls of the trench to form an implant area. A thermal oxidation process is performed to form an oxide layer. The oxide layer comprises a first thickness on the source/drain in the sidewalls of the trench and a second thickness on the other portion in the sidewalls of the trench.
    Type: Application
    Filed: July 24, 2006
    Publication date: October 25, 2007
    Inventors: Jih-Wen Chou, Chih-Hsun Chu, Hsiu-Chuan Shu
  • Patent number: 7285465
    Abstract: A semiconductor device and its manufacturing method are provided in which the trade-off relation between channel resistance and JFET resistance, an obstacle to device miniaturization, is improved and the same mask is used to form a source region and a base region by ion implantation. In a vertical MOSFET that uses SiC, a source region and a base region are formed by ion implantation using the same tapered mask to give the base region a tapered shape. The taper angle of the tapered mask is set to 30° to 60° when the material of the tapered mask has the same range as SiC in ion implantation, and to 20° to 45° when the material of the tapered mask is SiO2.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: October 23, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoichiro Tarui, Ken-ichi Ohtsuka, Masayuki Imaizumi, Hiroshi Sugimoto, Tetsuya Takami
  • Patent number: 7282426
    Abstract: A method for forming a semiconductor device including forming a semiconductor substrate; forming a gate electrode over the semiconductor substrate having a first side and a second side, and forming a gate dielectric under the gate electrode. The gate dielectric has a first area under the gate electrode and adjacent the first side of the gate electrode, a second area under the gate electrode and adjacent the second side of the gate electrode, and a third area under the gate electrode that is between the first area and the second area, wherein the first area is thinner than the second area, and the third area is thinner than the first area and is thinner than the second area.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 16, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Venkat R. Kolagunta, David C. Sing
  • Patent number: 7268065
    Abstract: A method of manufacturing a microelectronic device including forming an opening in a dielectric layer located over a substrate, forming a semi-conductive layer substantially conforming to the opening, and forming a conductive layer substantially conforming to the semi-conductive layer. At least a portion of the semi-conductive layer is doped by implanting through the conductive layer. The semi-conductive layer and the conductive layer may then be annealed.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: September 11, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Tung Lin, Chih-Wei Chang, Chii-Ming Wu, Mei-Yun Wang, Chiang-Ming Chuang, Shau-Lin Shue
  • Patent number: 7253062
    Abstract: A semiconductor device (1) has a source (2) a gate (3) and a drain (4), a single deep-pocket ion implant (8) in a source-drain depletion region, and a single shallow-pocket ion implant (9) in the source-drain depletion region.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: August 7, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yin-Pin Wang, Chin-Sheng Chang
  • Patent number: 7226846
    Abstract: A silicon oxide film (12) and a silicon nitride film (13) are sequentially formed over a silicon substrate (11) having a plane orientation (100). A trench (14) is formed with the patterned silicon nitride (13) as a mask. Argon is ion-implanted from the direction normal to a plane orientation (111) of the interior of the trench (14), followed by formation of an oxide film.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: June 5, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Masahiro Takahashi
  • Patent number: 7226841
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, on which a semiconductor layer having a trench extending in the depth direction toward the semiconductor substrate is formed. A first region of the first conductivity type is formed in the depth direction along one side of the trench in the semiconductor layer and contacts the semiconductor substrate. A second region of the first conductivity type is formed in a surface area of the semiconductor layer and close to the trench and contacts the first region. A third region of the second conductivity type is formed in the surface area of the semiconductor layer. A fourth region of the first conductivity type is formed in a surface area of the third region. A gate insulation film and a gate electrode are provided on the surface of the third region between the second region and the fourth region.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: June 5, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Izumisawa, Shigeo Kouzuki, Shinichi Hodama
  • Patent number: 7208397
    Abstract: By providing an asymmetric design of a halo region and extension regions of a field effect transistor, the transistor performance may significantly be enhanced for a given basic transistor architecture. In particular, a large overlap area may be created at the source side with a steep concentration gradient of the PN junction due to the provision of the halo region, whereas the drain overlap may be significantly reduced or may even completely be avoided, wherein a moderately reduced concentration gradient may further enhance the transistor performance.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: April 24, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Feudel, Manfred Horstmann, Markus Lenski
  • Patent number: 7195967
    Abstract: In a channel region between the source/drain diffusion layers, impurities of the same conductivity type as the well are doped in an area apart from the diffusion regions. By using as a mask the gate formed in advance, tilted ion implantation in opposite directions is performed to form the diffusion layers and heavily impurity doped region of the same conductivity type as the well in a self-alignment manner relative to the gate.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: March 27, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yoshitaka Sasago, Takashi Kobayashi