Utilizing Textured Surface Patents (Class 438/665)
  • Patent number: 11937417
    Abstract: A method for forming a semiconductor device includes forming a conductive contact over a semiconductor substrate, and forming a first dielectric layer covering the conductive contact. The method also includes partially removing the first dielectric layer to form an opening exposing a top surface of the conductive contact, and forming a bottom electrode covering sidewalls of the opening and the top surface of the conductive contact. The method further includes depositing a second dielectric layer over the bottom electrode using a first process, and depositing dielectric portions over the second dielectric layer and at top corners of the opening using a second process. The first process has a first step coverage, the second process has a second step coverage, and the second step coverage is smaller than the first step coverage. The method includes forming a top electrode covering the second dielectric layer and the dielectric portions.
    Type: Grant
    Filed: December 26, 2022
    Date of Patent: March 19, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11544515
    Abstract: Method and apparatus for producing RFID transponders (400) arranged on a carrying substrate, comprising:providing a first substrate (100), the first substrate having at least one antenna element (101) arranged thereon, and preferably several antenna elements arranged sequentially thereon along a longitudinal extension of the first substrate, each antenna element being formed by an electrically conductive pattern; providing a second substrate (200), the second substrate (200) having at least one RFID strap, each RFID strap comprising an IC (202) and at least one contact pad (201) coupled to the IC, and preferably several RFID straps being arranged sequentially along a longitudinal extension of the second substrate; and electrically connecting an antenna element (101) on the first substrate to the at least one contact pad on the second substrate by bringing said first and second substrates together, thereby bringing said antenna element in mechanical contact with said at least one contact pad, and heating the c
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: January 3, 2023
    Assignee: Digital Tags Finland, OY
    Inventors: Lauri Huhtasalo, Juha Maijala
  • Patent number: 11495556
    Abstract: A method for fabricating a semiconductor structure is provided. The method includes: providing a semiconductor chip comprising an active surface; forming a conductive bump over the active surface of the semiconductor chip; and coupling the conductive bump to a substrate. The conductive bump includes a plurality of bump segments including a first group of bump segments and a second group of bump segments. Each bump segment has a same segment thickness in a direction orthogonal to the active surface of the semiconductor chip, and each bump segment has a volume defined by a multiplication of the same segment thickness with an average cross-sectional area of the bump segment in a plane parallel to the active surface of the semiconductor chip. A ratio of a total volume of the first group of bump segments to a total volume of the second group of bump segments is between 0.03 and 0.8.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Pei-Haw Tsao, An-Tai Xu, Huang-Ting Hsiao, Kuo-Chin Chang
  • Patent number: 11145710
    Abstract: Methods, apparatuses, and systems related to forming a barrier material between an electrode and a dielectric material are described. An example method includes forming a dielectric material on a bottom electrode material of a storage node in a semiconductor fabrication process. The method further includes forming a barrier material on the dielectric material to reduce oxygen vacancies in the dielectric material. The method further includes forming a top electrode on the barrier material.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 12, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Sanket S. Kelkar, Christopher W. Petz, Dojun Kim, Matthew N. Rocklein, Brenda D. Kraus
  • Publication number: 20150093894
    Abstract: According to one embodiment, a semiconductor manufacturing apparatus includes a process tube, a substrate supporting unit, and a heater. A surface processing area is provided in a portion of the outer surface of the process tube facing the heater. The surface processing area is processed to reduce the heat radiation passing compared to that of other areas of the outer surface. The surface processing area is provided in a range sandwiched by a straight line connecting the upper end of the heater and the upper end of the substrate supporting unit and a straight line connecting the lower end of the heater and the lower end of the substrate supporting unit.
    Type: Application
    Filed: September 8, 2014
    Publication date: April 2, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kaori Deura, Shinya Higashi, Takahiro Terada, Tsutomu Sato, Kazuhiko Nakamura
  • Patent number: 8975749
    Abstract: A method of making a semiconductor device includes forming a dielectric layer over a semiconductor substrate. The method further includes forming a copper-containing layer in the dielectric layer, wherein the copper-containing layer has a first portion and a second portion. The method further includes forming a first barrier layer between the first portion of the copper-containing layer and the dielectric layer. The method further includes forming a second barrier layer at a boundary between the second portion of the copper-containing layer and the dielectric layer wherein the second barrier layer is adjacent to an exposed portion of the dielectric layer. The first barrier layer is a dielectric layer, and the second barrier layer is a metal oxide layer, and a boundary between a sidewall of the copper-containing layer and the first barrier layer is free of the second barrier layer.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Wei Liu, Zhen-Cheng Wu, Cheng-Lin Huang, Po-Hsiang Huang, Yung-Chih Wang, Shu-Hui Su, Dian-Hau Chen, Yuh-Jier Mii
  • Patent number: 8969198
    Abstract: A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Grigory Simin, Maxim S Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 8946015
    Abstract: A method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process is disclosed, including a multi-step residue cleaning, including exposing the substrate to an aqua regia solution, followed by an exposure to a solution having hydrochloric acid and hydrogen peroxide. The SC2 solution can further react with remaining platinum residues, rendering it more soluble in an aqueous solution and thereby dissolving it from the surface of the substrate.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: February 3, 2015
    Assignees: Intermolecular, Inc., GLOBALFOUNDRIES, Inc.
    Inventors: Anh Duong, Clemens Fitz, Olov Karlsson
  • Patent number: 8927346
    Abstract: An electrically, thermally, or electrically and thermally actuated device is disclosed herein. The device includes a substrate, a first electrode established on the substrate, an active region established on the electrode, and a second electrode established on the active region. A pattern is defined in at least one of the substrate, the first electrode, the second electrode, or the active region. At least one of grain boundaries are formed within, or surface asperities are formed on, at least one of the electrodes or the active region. The pattern controls the at least one of the grain boundaries or surface asperities.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: January 6, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Theodore I Kamins
  • Patent number: 8912653
    Abstract: A semiconductor wafer has integrated circuits formed thereon and a top passivation layer applied. The passivation layer is patterned and selectively etched to expose contact pads on each semiconductor die. The wafer is exposed to ionized gas causing the upper surface of passivation layer to roughen and to slightly roughen the upper surface of the contact pads. The wafer is cut to form a plurality of semiconductor dies each with a roughened passivation layer. The plurality of semiconductor dies are placed on an adhesive layer and a reconstituted wafer formed. Redistribution layers are formed to complete the semiconductor package having electrical contacts for establishing electrical connections external to the semiconductor package, after which the wafer is singulated to separate the dice.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: December 16, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Kah Wee Gan, Yonggang Jin, Anandan Ramasamy, Yun Liu
  • Patent number: 8877636
    Abstract: Systems and methods that incorporate nanostructures into microdevices are discussed herein. These systems and methods can allow for standard microfabrication techniques to be extended to the field of nanotechnology. Sensors incorporating nanostructures can be fabricated as described herein, and can be used to reliably detect a range of gases with high response.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: November 4, 2014
    Assignee: The United States of America as Represented by the Adminstrator of National Aeronautics and Space Administration
    Inventors: Gary W Hunter, Jennifer C Xu, Laura J Evans, Michael H Kulis, Gordon M Berger, Randall L Vander Wal
  • Patent number: 8835938
    Abstract: There is provided a nitride semiconductor light-emitting element including a transparent conductor, a first conductivity-type nitride semiconductor layer, a light-emitting layer, and a second conductivity-type nitride semiconductor layer, the first conductivity-type nitride semiconductor layer, the light-emitting layer, and the second conductivity-type nitride semiconductor layer being successively stacked on the transparent conductor. There is also provided a nitride semiconductor light-emitting element including a first transparent conductor, a metal layer, a second transparent conductor, a first conductivity-type nitride semiconductor layer, a light-emitting layer, and a second conductivity-type nitride semiconductor layer, the metal layer, the second transparent conductor, the first conductivity-type nitride semiconductor layer, the light-emitting layer, and the second conductivity-type nitride semiconductor layer being successively stacked on the first transparent conductor.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: September 16, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Toshio Hata
  • Patent number: 8809140
    Abstract: A method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process is disclosed, including a multi-step residue cleaning, including exposing the substrate to an aqua regia solution, followed by an exposure to a solution having hydrochloric acid and hydrogen peroxide. The SC2 solution can further react with remaining platinum residues, rendering it more soluble in an aqueous solution and thereby dissolving it from the surface of the substrate.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: August 19, 2014
    Assignees: Intermolecular, Inc., GLOBALFOUNDRIES, Inc.
    Inventors: Anh Duong, Clemens Fitz, Olov Karlsson
  • Patent number: 8790953
    Abstract: The surface of silicon is textured to create black silicon on a nano-micro scale by electrochemical reduction of a silica layer on silicon in molten salts. The silica layer can be a coating, or a layer caused by the oxidation of the silicon.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: July 29, 2014
    Inventors: Derek John Fray, Eimutis Juzeliunas
  • Patent number: 8765592
    Abstract: A method for contacting MOS devices. First openings in a photosensitive material are formed over a substrate having a top dielectric in a first die area and a second opening over a gate stack in a second die area having the top dielectric, a hard mask, and a gate electrode. The top dielectric layer is etched to form a semiconductor contact while etching at least a portion the hard mask layer thickness over a gate contact area exposed by the second opening. An inter-layer dielectric (ILD) is deposited. A photosensitive material is patterned to generate a third opening in the photosensitive material over the semiconductor contact and a fourth opening inside the gate contact area. The ILD is etched through to reopen the semiconductor contact while etching through the ILD and residual hard mask if present to provide a gate contact to the gate electrode.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Fei Xie, Wen Cheng Tien, Ya Ping Chen, Li Bin Man, Kuo Jung Chen, Yu Liu, Tian Yi Zhang, Sisi Xie
  • Patent number: 8691616
    Abstract: A method for manufacturing a thin film solar cell includes depositing a front electrode on a substrate in a chamber, etching the front electrode formed on the substrate to form an uneven portion on the surface of the front electrode, forming a photoelectric conversion unit on the front electrode, and forming a back electrode on the photoelectric conversion unit. The depositing of the front electrode includes depositing the front electrode while reducing a process pressure of the chamber from a first pressure to a second pressure lower than the first pressure. The etching of the front electrode form the uneven portion of the front electrode so that a top portion of the uneven portion includes a portion formed at the second pressure.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: April 8, 2014
    Assignee: LG Electronics Inc.
    Inventors: Soohyun Kim, Hyun Lee, Jinwon Chung, Sehwon Ahn
  • Patent number: 8653664
    Abstract: A copper interconnect includes a copper layer formed in a dielectric layer, having a first portion and a second portion. A first barrier layer is formed between the first portion of the copper layer and the dielectric layer. A second barrier layer is formed at the boundary between the second portion of the copper layer and the dielectric layer. The first barrier layer is a dielectric layer, and the second barrier layer is a metal oxide layer.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Nai-Wei Liu, Zhen-Cheng Wu, Cheng-Lin Huang, Po-Hsiang Huang, Yung-Chih Wang, Shu-Hui Su, Dian-Hau Chen, Yuh-Jier Mii
  • Publication number: 20140034125
    Abstract: A method for creating electrically conducting or semiconducting patterns on a textured surface including plural reliefs of amplitude greater than or equal to 100 nanometers, including: preparing a substrate during which at least the textured surface of the substrate is made electrically conducting; coating during which at least one layer of an imprintable material is laid on the textured surface, made electrically conducting, of the substrate; pressing a mold including valleys or protrusions to transfer the valleys or the protrusions of the mold into the imprintable material to form patterns therein; removing the mold while leaving the imprint of the patterns in the imprintable material; exposing the textured surface, made electrically conducting, of the substrate, at a bottom of the patterns; and electrically depositing an electrically conducting or semiconducting material into the patterns to form conducting or semiconducting patterns.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 6, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Carole Pernel, Nicolas Chaix, Stefan Landis
  • Publication number: 20140021609
    Abstract: A wiring substrate includes: a substrate; an insulator formed in the substrate and having a through hole; an electrode formed in the substrate and provided within the through hole; and a conductor bonded to the electrode and provided within the through hole, wherein the through hole has a shape that is widened toward a direction away from the substrate, and the conductor is configured to cover the entire top surface of the electrode and has a shape that is widened toward the direction away from the substrate.
    Type: Application
    Filed: June 18, 2013
    Publication date: January 23, 2014
    Inventors: Taiga Fukumori, Daisuke Mizutani, Mamoru Kurashina
  • Patent number: 8536054
    Abstract: Provided herein are methods of polishing and texturing surfaces thin-film photovoltaic cell substrates. The methods involve laser irradiation of a surface having a high frequency roughness in an area of 5-200 microns to form a shallow and rapidly expanding melt pool, followed by rapid cooling of the material surface. The minimization of surface tension causes the surface to re-solidify in a locally smooth surface. the high frequency roughness drops over the surface with a lower frequency bump or texture pattern remaining from the re-solidification.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 17, 2013
    Assignee: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Patent number: 8501623
    Abstract: A semiconductor device includes an electrode having a metal silicide layer and a metal alloy layer, and a data storage element formed on the electrode. The metal silicide layer has a concave surface to correspond to a convex surface of the metal alloy layer such that the concave surface of the metal silicide layer and the convex surface of the metal alloy layer form a curved boundary.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: August 6, 2013
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Gyuhwan Oh, Young-Lim Park, Soonoh Park, Dongho Ahn, Jinil Lee
  • Patent number: 8466003
    Abstract: Embodiments of the current invention describe methods of forming different types of crystalline silicon based solar cells that can be combinatorially varied and evaluated. Examples of these different types of solar cells include front and back contact silicon based solar cells, all-back contact solar cells and selective emitter solar cells. These methodologies all incorporate the formation of site-isolated regions using a combinatorial processing tool and the use of these site-isolated regions to form the solar cell area. Therefore, multiple solar cells may be rapidly formed on a single crystalline silicon substrate for use in combinatorial methodologies. Any of the individual processes of the methods described may be varied combinatorially to test varied process conditions or materials.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: June 18, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Jian Li, James Craig Hunter, Nikhil Kalyankar, Nitin Kumar, Minh Anh Anh Nguyen
  • Publication number: 20130029848
    Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes foaming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
  • Publication number: 20120319277
    Abstract: Disclosed is a thin film transistor panel, comprising a substrate, an insulation layer and transparent conducting material. The insulation layer comprises projections at the back side not facing the substrate. A space between two adjacent projections is 1 ?m-10 ?m; the transparent conducting material is formed on the top surface and the lateral surface of the projections of the insulation layer. Otherwise, the transparent conducting material is formed on the top surface and the plane surface around the bottom of the projections or formed on the top surface, the lateral surface and the plane surface around the bottom of the projections. The present invention also discloses a manufacturing method of the thin film transistor panel.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 20, 2012
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY, CO., LTD.
    Inventors: Chiu-yi Chung, Cheng-ming He
  • Patent number: 8318601
    Abstract: The present invention discloses a display device and a manufacturing method thereof by which a manufacturing process can be simplified. Further, the present invention discloses technique for manufacturing a pattern such as a wiring into a desired shape with good controllability. A method for forming a pattern for constituting the display device according to the present invention comprises the steps of forming a first region and a second region; discharging a composition containing a pattern formation material to a region across the second region and the first region; and flowing a part of the composition discharged to the first region into the second region; wherein wettability with respect to the composition of the first region is lower than that of the second composition.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: November 27, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Gen Fujii
  • Patent number: 8274151
    Abstract: An object including at least one graphic element, including at least one layer including at least one metal and etched according to a pattern of the graphic element, a first face of the layer being positioned opposite a face of at least one at least partly transparent substrate, a second face, opposite to the first face, of the layer being covered with at least one passivation layer fixed to at least one face of at least one support by wafer bonding and forming with the support a monolithic structure, and the layer including at least at the second face, at least one area including the metal and at least one semiconductor.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: September 25, 2012
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Alain Rey, Chrystel Deguet, Laurent Vandroux
  • Publication number: 20120161130
    Abstract: A minute electrode, a photoelectric conversion device including the minute electrode, and manufacturing methods thereof are provided. A plurality of parallel groove portions and a region sandwiched between the groove portions are formed in a substrate, and a conductive resin is supplied to the groove portions and the region and is fixed, whereby the groove portions are filled with the conductive resin and the region is covered with the conductive resin. The supplied conductive resin is not expanded outward, and the electrode with a designed width can be formed. Part of the electrode is formed over the region sandwiched between the groove portions, thus, the area of a cross section in the short axis direction can be large, and a low resistance in the long axis direction can be obtained.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 28, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yuji ODA, Takashi Hirose, Koichiro Tanaka, Sho Kato, Emi Koezuka
  • Patent number: 8169084
    Abstract: It is described a bond pad structure and a method for producing the same, the bond pad structure (1), comprising: a substrate (3) having a surface (17) to be electrically contacted; a first isolator layer (5) contacting the surface (17) of the substrate in a first region (a); a first metal layer (9) contacting the surface (17) of the substrate (3) in a second region (b) adjacent the first region (a) and partly overlapping the first isolator layer (5); a second isolator layer (11) at least partly overlapping the first isolator layer (5) and the first metal layer (9); a second metal layer (13) at least partly overlapping the second isolator layer (11) in the second region (b); wherein a maximum thickness (U) of the second metal layer (13) perpendicular to the surface (17) of the substrate (3) is smaller than a maximum thickness (t0) of the first isolator layer (5) perpendicular to the surface (17) of the substrate (3).
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: May 1, 2012
    Assignee: NXP B.V.
    Inventors: Bengt Philippsen, Hans-Joerg Klammer
  • Patent number: 8119438
    Abstract: A method of manufacturing a solar cell having a texture on a surface of a silicon substrate includes first forming a porous layer on the surface of the silicon substrate by dipping the silicon substrate into a mixed aqueous solution of oxidizing reagent containing metal ions and hydrofluoric acid. Second, a texture is formed by etching the surface of the silicon substrate after the porous layer is formed, by dipping the silicon substrate into a mixed acid mainly containing hydrofluoric acid and nitric acid.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: February 21, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoichiro Nishimoto
  • Patent number: 8080474
    Abstract: The present invention provides a method for making an electrode. Firstly, a conducting substrate is provided. Secondly, a plurality of nano-sized structures is formed on the conducting substrate by a nano-imprinting method. Thirdly, a coating is formed on the nano-sized structures. The nano-sized structures are configured for increasing specific surface area of the electrode.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: December 20, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Patent number: 8048800
    Abstract: A method of fabricating a two-terminal semiconductor component using a trench technique is disclosed that includes forming a trench by etching an etching pattern formed on a substrate on which an active layer having impurities added is grown, forming a front metal layer on a front upper surface of the substrate by using an evaporation method or a sputtering method after removing the etching pattern, forming a metal plated layer on the front surface of the substrate on which the front metal layer is formed, polishing a lower surface of the substrate by using at least one of a mechanical polishing method and a chemical polishing method until the front metal layer is exposed, forming a rear metal layer on the polished substrate, and removing each component by using at least one of a dry etching method and a wet etching method.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: November 1, 2011
    Assignee: Dongguk University Industry—Academic Corporation Foundation
    Inventors: Jin-Koo Rhee, Seong-Dae Lee, Mi-Ra Kim, Dae-Hong Min, Wan-Joo Kim
  • Patent number: 8044517
    Abstract: An electronic component comprises a plurality of layers at least two of which comprise predominantly organic functional materials with improved through-plating through certain of the layers. The through-plating is formed in one embodiment by a disruption element on a first lower layer which results in a void in the subsequently applied layers, which void is filled with a material which may be conductive to form the through plating. In a second embodiment, the through plating is formed on the first lower layer prior to the subsequent application of the other layers, in the form of a free-standing truncated frusto-conical raised portion, and forms a disruption or non-welting element for the subsequently applied other layers, formed on the first lower layer and which are engaged with and surround the through plating after their application.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: October 25, 2011
    Assignee: PolyIC GmbH & Co. KG
    Inventors: Wolfgang Clemens, Adolf Bernds, Alexander Friedrich Knobloch
  • Patent number: 8026588
    Abstract: A method and structure are provided to enable wire bond connections over active and/or passive devices and/or low-k dielectrics, formed on an Integrated Circuit die. A semiconductor substrate having active and/or passive devices is provided, with interconnect metallization formed over the active and/or passive devices. A passivation layer formed over the interconnect metallization is provided, wherein openings are formed in the passivation layer to an upper metal layer of the interconnect metallization. Compliant metal bond pads are formed over the passivation layer, wherein the compliant metal bond pads are connected through the openings to the upper metal layer, and wherein the compliant metal bond pads are formed substantially over the active and/or passive devices. The compliant metal bond pads may be formed of a composite metal structure.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: September 27, 2011
    Assignee: Megica Corporation
    Inventors: Jin-Yuan Lee, Ying-Chih Chen, Mou-Shiung Lin
  • Patent number: 8003533
    Abstract: A disclosed laminated structure includes a wettability-variable layer containing a wettability-variable material whose surface energy changes when energy is applied thereto and including at least a high-surface-energy area having high surface energy and a low-surface-energy area having low surface energy; and a conductive layer formed on the high-surface-energy area. The high-surface-energy area includes a first area and a second area extending from the first area and having a width smaller than that of the first area.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: August 23, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Atsushi Onodera, Hidenori Tomono, Koei Suzuki, Takanori Tano, Takumi Yamaga
  • Patent number: 7973332
    Abstract: An LED lamp includes a board, a metal wiring provided on the board, an LED mounted on the metal wiring, and a metal heat dissipation film mainly made of a metal different from a metal for forming the metal wiring. The metal heat dissipation film partially overlaps the metal wiring. The metal heat dissipation film has an irregular surface. The metal heat dissipation film is mainly made of a metal that is softer than the metal wiring. The metal heat dissipation film intervenes between the board and the metal wiring, and part of the metal heat dissipation film that is in contact with the metal wiring has an irregular surface.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 5, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Hiroyuki Fukui
  • Patent number: 7951710
    Abstract: The present invention discloses a display device and a manufacturing method thereof by which a manufacturing process can be simplified. Further, the present invention discloses technique for manufacturing a pattern such as a wiring into a desired shape with good controllability. A method for forming a pattern for constituting the display device according to the present invention comprises the steps of forming a first region and a second region; discharging a composition containing a pattern formation material to a region across the second region and the first region; and flowing a part of the composition discharged to the first region into the second region; wherein wettability with respect to the composition of the first region is lower than that of the second composition.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: May 31, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Gen Fujii
  • Patent number: 7939373
    Abstract: An adhesive film is formed on an electrode film, and a coating film is formed thereon. Nickel, chrome, molybdenum, tungsten, aluminum or an alloy of them is used as a constituent material of the adhesive film. Gold, silver, platinum or an alloy of them is used as a constituent material of the coating film.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: May 10, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Ryosuke Usui, Hideki Mizuhara, Takeshi Nakamura
  • Patent number: 7935565
    Abstract: A method for forming an electronic device having a multilayer structure, comprising: embossing a surface of a substrate so as to depress first and second regions of the substrate relative to at least a third region of the substrate; depositing conductive or semiconductive material from solution onto the first and second regions of the substrate so as to form a first electrode on the first region and a second electrode on the second region, wherein the electrodes are electrically insulated from each other by the third region.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: May 3, 2011
    Assignee: Plastic Logic Limited
    Inventors: Thomas Meredith Brown, Henning Sirringhaus, John Devin Mackenzie
  • Publication number: 20110018133
    Abstract: A via connecting the front surface of a semiconductor substrate to its rear surface, this via having a rough lateral surface.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 27, 2011
    Inventors: HAMED CHAABOUNI, Lionel Cadix
  • Publication number: 20110018132
    Abstract: An object including at least one graphic element, including at least one layer including at least one metal and etched according to a pattern of the graphic element, a first face of the layer being positioned opposite a face of at least one at least partly transparent substrate, a second face, opposite to the first face, of the layer being covered with at least one passivation layer fixed to at least one face of at least one support by wafer bonding and forming with the support a monolithic structure, and the layer including at least at the second face, at least one area including the metal and at least one semiconductor.
    Type: Application
    Filed: January 23, 2009
    Publication date: January 27, 2011
    Applicant: COMMISS. A L'ENERGIE ATOM. ET AUX ENERG. ALTERNA.
    Inventors: Alain Rey, Chrystel Deguet, Laurent Vandroux
  • Patent number: 7842593
    Abstract: A method for fabricating a semiconductor device includes forming a recess gate over a semiconductor substrate. A gate spacer is formed on a sidewall of the recess gate. The semiconductor substrate in a landing plug contact region is soft-etched to form a recess having a rounded profile. A sidewall spacer is formed over the gate spacer and a sidewall of the recess. An insulating film is formed over the semiconductor substrate. The insulating film is selectively etched to form a landing plug contact hole. A conductive layer in the landing plug contact hole is filled to form a landing plug.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 30, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Chang Youn Hwang, Hyun Ahn
  • Patent number: 7820472
    Abstract: A method for forming front contacts on a silicon solar cell which includes texture etching the front surface of the solar cell, forming an antireflective layer over the face, diffusing a doping material into the face to form a heavily doped region in valleys formed during the texture-etching of the face, depositing an electrically conductive material on the heavily doped regions in the valleys and annealing the solar cell.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: October 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Peter Borden, John Dukovic, Li Xu
  • Patent number: 7812450
    Abstract: The present invention relates to an electrode 100 with high capacitance. The electrode includes a conducting substrate 10 with a number of nano-sized structures 13 thereon and a coating 15. The nano-sized structures are concave-shaped and are of a size in the range from 2 nanometers to 50 nanometers. The nano-sized structures are configured for increasing specific surface area of the electrode. The present invention also provides a method for making the above-described electrode. The method includes steps of providing a conducting substrate, forming a number of nano-sized structures on the conducting substrate, and forming a coating on the nano-sized structures.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 12, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Patent number: 7807548
    Abstract: The invention provides a method for forming a semiconductor component with a rough buried interface. The method includes providing a first semiconductor substrate having a first surface of roughness R1. The method further includes thermally oxidizing the first surface of the first semiconductor substrate to form an oxide layer defining an external oxide surface on the first semiconductor substrate and a buried oxide-semiconductor interface below the oxide surface, so that the buried oxide surface has a roughness R2 that is less than R1. The method also includes assembling the oxide surface of the first semiconductor substrate with a second substrate. The invention also provides a component formed according to the method of the invention.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 5, 2010
    Assignee: S.O.I.TEC Silicon on Insulator Technologies
    Inventors: Bernard Aspar, Chrystelle Lagahe Blanchard, Nicolas Sousbie
  • Publication number: 20100244280
    Abstract: A board on which a wiring having an electrode pad is formed is prepared. A resist film is formed on the board in order to cover the wiring and then the resist film is left on the electrode pad through patterning. An inorganic insulating film is formed on the board in order to cover the wiring and then the resist film is removed, thereby removing the inorganic insulating film provided on the resist film to leave the inorganic insulating film between the wirings. A solder resist layer is formed on the board in order to cover the wiring and then the electrode pad is exposed.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 30, 2010
    Applicant: Shinko Electric Industries Co., Ltd.
    Inventors: Noriyoshi Shimizu, Akio Rokugawa
  • Patent number: 7777241
    Abstract: A semiconductor sensor, solar cell or emitter or a precursor therefore having a substrate and textured semiconductor layer deposited onto the substrate. The layer can be textured as grown on the substrate or textured by replicating a textured substrate surface. The substrate or first layer is then a template for growing and texturing other semiconductor layers from the device. The textured layers are replicated to the surface from the substrate to enhance light extraction or light absorption. Multiple quantum wells, comprising several barrier and quantum well layers, are deposited as alternating textured layers. The texturing in the region of the quantum well layers greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. This is the case in nitride semiconductors grown along the polar [0001] or [000-1] directions.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: August 17, 2010
    Assignee: The Trustees of Boston University
    Inventors: Theodore D. Moustakas, Jasper S. Cabalu
  • Publication number: 20100151678
    Abstract: A method of relieving stress in a semiconductor wafer and providing a wafer backside surface finish capable of hiding cosmetic imperfections. Embodiments of the invention include creating a wafer backside surface which can be used for all dies on the semiconductor wafer intended for different product applications and be deposited with backside metallization (BSM) material. The method provides a rough texture on the wafer backside followed by isotropic etching of the wafer backside to recover the wafer strength as well as to preserve the rough texture of the wafer backside. After wafer backside metallization, the rough texture of the wafer backside hides cosmetic imperfections introduced by subsequent processes.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 17, 2010
    Inventors: Mark Dydyk, Arturo Urquiza, Charles Singleton, Tim McIntosh
  • Patent number: 7732902
    Abstract: A semiconductor package includes a substrate having a first surface portion in a cavity. The first surface portion includes an artificially formed grass structure. The package includes a getter film formed over the grass structure.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: June 8, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James C. McKinnell, Chien-Hua Chen, Kenneth Diest, Kenneth M. Kramer, Daniel A. Kearl
  • Patent number: 7727888
    Abstract: An interconnect structure and a method for forming the same are described. Specifically, under the present invention, a gouge is created within a via formed in the interconnect structure before any trenches are formed. This prevents the above-mentioned trench damage from occurring. That is, the bottom surface of the trenches will have a roughness of less than approximately 20 nm, and preferably less than approximately 10 nm. In addition to the via, gouge and trench(es), the interconnect structure of the present invention includes at least two levels of metal wiring. Further, in a typical embodiment, the interconnect structure utilizes any dielectrics having a dielectric constant no greater than approximately 5.0.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Louis C. Hsu, Rajiv V. Joshi
  • Patent number: 7700454
    Abstract: A method of fabricating a uniformly wrinkled capacitor lower electrode without the need to perform a high-temperature heat treatment and a method of fabricating a capacitor including the uniformly wrinkled capacitor lower electrode are provided. A first conductive layer is formed. Then, a second conductive layer including about 20% to about 50% of impurities is formed on the first conductive layer. Next, at least some of the impurities are exhausted from the second conductive layer by heat treating the second conductive layer. A surface of the second conductive layer is wrinkled due to the exhaustion of the impurities from the second conductive layer. A dielectric layer and an upper capacitor electrode may then be formed.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wan-don Kim, Jae-hyun Joo, Seok-jun Won, Jung-hee Chung, Jin-yong Kim, Suk-jin Chung