Plural Modulation Patents (Class 455/102)
  • Patent number: 8655301
    Abstract: Systems and methods are disclosed for an electronically adjustable signal filter system, which comprises, in some embodiments, a first filter coupled to an antenna coupling network and a second filter, a power amplifier coupled to the first filter, an antenna connected to an antenna coupling network, a pilot tone generator coupled to the first filter, and a first signal source connected to the power amplifier and first filter. In some embodiments, the power amplifier amplifies the first signal, the first filter places a notch into the first signal transmitted to the antenna coupling network, the antenna coupling network combines the first signal and a second signal received from the antenna and transmits a third signal to the second filter.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 18, 2014
    Assignee: BlackBerry Limited
    Inventors: Alain Roussel, Charles W. T. Nicholls
  • Patent number: 8654892
    Abstract: An arrangement of interleavers allocates bits from an input symbol across sub-symbols transmitted via sub-carriers of multiple orthogonal frequency division multiplex (OFDM) carriers. The input bits are allocated in a fashion to provide separation across subcarriers, and rotation of sub-symbols across the OFDM carriers provides additional robustness in the present of signal path impairments.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: February 18, 2014
    Assignee: Broadcom Corporation
    Inventors: Carlos H. Aldana, Amit G. Bagchi, Min Chuin Hoo
  • Patent number: 8654886
    Abstract: An apparatus for transmitting and receiving broadcasting-communication data, the apparatus including an original signal generator configured to receive the original data and generate baseband original signals, a first modulator configured to receive the baseband additional signals and generate original signals of a predetermined band, an additional signal generator configured to receive the additional data and generate baseband additional signals, a second modulator configured to receive the baseband additional signals and generate additional signals of a predetermined band, an average power controller configured to control an average power of the additional signals of the predetermined band, an inserter configured to insert the additional signals of the predetermined band with a controlled average power to the original signals of the predetermined band to thereby generate mixed signals of a predetermined band, and a transmitter configured to transmit the mixed signals of the predetermined band.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: February 18, 2014
    Assignee: Electronics & Telecommunications Research Institute
    Inventors: Sung-Ik Park, Hyoungsoo Lim, Heung-Mook Kim, Soo-In Lee
  • Patent number: 8644427
    Abstract: A radio frequency receiver with dual band reception and dual analog-to-digital converters (ADCs) can be configured to operate in a single channel mode or a dual channel mode to receive a single RF input channel or two RF input channels at the same or different frequency bands. In the single channel mode, the dual ADCs can be used to improve the performance of the receiver for the single input signal or the dual ADCs can be configured for reduced power consumption. In the dual channel mode, the dual ADCs operate on the individual RF input signals to realize dual band reception. In one embodiment, the receiver is configured for asymmetric dual band reception to receive a wideband input signal on a first input signal path and a narrow band input signal on a second input signal path.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: February 4, 2014
    Assignee: SiGear Europe Sarl
    Inventors: Alain-Serge Porret, Friederich Mombers, Melly Thierry
  • Patent number: 8639196
    Abstract: A circuit is provided comprising detector circuitry, calculating circuitry, and determining circuitry. The detector circuitry is figured to generate an I data signal magnitude value of a sampled I data signal and a Q data signal magnitude value of a sampled Q data signal. The calculating circuitry is configured to calculate a phase shift angle ?I between first and second equal and constant or substantially equal and constant envelope constituents of the sampled I data signal and to calculate a phase shift angle ?Q between first and second substantially equal and substantially constant envelope constituents of the sampled Q data signal. The determining circuitry is configured to determine in-phase and quadrature amplitude information of the substantially equal and substantially constant envelope constituents of the sampled I signal and to determine in-phase and quadrature amplitude information of the first and second substantially equal and substantially constant envelope constituents of the sampled Q signal.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 28, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8630265
    Abstract: A method and apparatus for reconfiguring a wireless transmit/receive unit (WTRU) are directed to receiving an active set update message indicating that a mode of operation allowing a certain modulation scheme is enabled or disabled and performing at least one of: performing a MAC reset procedure, updating a set of reference enhanced transport format combination indicators (E-TFCIs) and associated power offsets, determining actions related to E-DPCCH boosting, modifying information related to an enhanced dedicated channel (E-DCH), and modifying an index that indicates an E-DCH transport block size table. The update message includes at least one modified information element (IE).
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 14, 2014
    Assignee: Interdigital Patent Holdings, Inc.
    Inventors: Paul Marinier, Benoit Pelletier, Diana Pani
  • Patent number: 8626243
    Abstract: This invention provides a mobile communication system which expanded the operation limitation of the heretofore adopted mobile communication systems and improved the spectrum efficiency greatly. A data transmission method for use in the mobile communication system of the present invention includes means for channel pluralizing by which to expand the Shannon limit and means for interference reduction by which to expand the interference limit. More specifically, a transmitting module comprises M units of modulators and L units of transmitting antennas, generates L units of signals by multiplying M units of modulated signals by a complex matrix consisting of M×L units of elements, and transmits the L units of signals from the L units of transmitting antennas.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: January 7, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yano, Satoshi Tamaki, Seishi Hanaoka, Takeshi Kato
  • Patent number: 8619908
    Abstract: A wireless ranging system for determining a range of a remote wireless device may include a wireless transmitter and a wireless receiver. The wireless ranging system may also include a ranging controller to cooperate with the wireless transmitter and receiver to generate a multi-carrier base waveform, transmit a sounder waveform to the remote wireless device including concatenated copies of the multi-carrier base waveform, and receive a return waveform from the remote wireless device in response to the sounder waveform. The ranging controller may also generate time domain samples from the return waveform, convert the time domain samples into frequency domain data, and process the frequency domain data to determine the range of the remote wireless device.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: December 31, 2013
    Assignee: Harris Corporation
    Inventors: John E. Hoffmann, Carlos G. Abascal, Christopher D. Moffatt
  • Patent number: 8611833
    Abstract: A method and apparatus for providing adaptive bearer configuration for MBMS delivery is disclosed. A first aspect of the present disclosure is a method of operating a wireless infrastructure entity (103) wherein a common radio resource (303) is allocated for receiving a response from at least one mobile station (109). A request message, similar to a request for counting, is broadcast to all mobile stations (109) within a coverage area (105). If at least one mobile station (109) responds to the request, PTM transmission mode will be used for MBMS delivery within the given coverage area (105). If more than one mobile station (109) within the coverage area (105) responds to the request, then all the responses will be over the common radio resource (303). The total number of responses to the request message may be limited by providing a probability factor within the request message.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 17, 2013
    Assignee: Motorola Mobility LLC
    Inventors: Zhijun Cai, Mansoor Ahmed, Robert M Harrison
  • Patent number: 8605807
    Abstract: A method and system for transmitting electromagnetic signals are provided. Data signals including a first data signal conveying first data, a second data signal conveying second data, and a third data signal conveying third data are provided. One or more transmitting devices transmit the first data signal and an inverse of the first data signal in two orthogonal linear polarities of an antenna maintaining their inverted phase relationship as propagated. Transmitting devices also transmit the second data signal in a linear polarity with a 45 degree rotation around a transmit axis of the first data signal. Transmitting devices also transmit the third data signal in a linear polarity orthogonally from the second data signal and consequently ±45 degrees from the first data signals. One or more receiving stations receive the transmitted first data signal, the inverse of the first data signal, the second data signal and the third data signal.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: December 10, 2013
    Inventor: Nigel Iain Stuart Macrae
  • Patent number: 8599960
    Abstract: A method, apparatus and computer program product are provided for reporting low rank feedback information for each transmission point up to a maximum rank per transmission point. In this regard, a method includes determining a transmission rank and a precoding matrix for each of at least two transmission points of a plurality of transmission points. A method also includes determining a joint transmission rank based on at least two of the plurality of transmission points. A method also includes selecting a joint transmission precoding matrix based on the determined precoding matrix for each of the at least two transmission points and the determined joint transmission rank. The method further includes causing channel state information “CSI” to be transmitted to an access point, wherein the CSI describes the selected joint transmission precoding matrix.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: December 3, 2013
    Assignee: Renesas Mobile Corporation
    Inventors: Tommi Koivisto, Mihai Enescu, Timo Roman, Karol Schober
  • Patent number: 8600313
    Abstract: A radio communication method in a radio communication system which performs radio communication between a terminal apparatus and a base station apparatus, the radio communication method including: selecting one of a first transmission method or a second transmission method on the basis of transmission power of transmission signal transmitted from the terminal apparatus, in the base station apparatus; and transmitting the transmission signal to the base station apparatus by the selected first or second transmission method, in the terminal apparatus.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 3, 2013
    Assignee: Fujitsu Limited
    Inventor: Akira Ito
  • Patent number: 8599948
    Abstract: The present invention relates to a method and arrangement for symbol mapping in wireless communication systems utilizing OFDM transmission technology in combination with advanced coding schemes. In the method according to the present invention, adapted for use in a wireless communication system utilizing OFDM transmission technology, an OFDM grid is defined by at least a first dimension and a second dimensions from the dimensions time, frequency or space. The advanced coding scheme, for example Alamouti coding, outputs symbols that are related via the coding. At least some of the symbols, defining a code related symbol group should experience identical, or at least very similar, radio channels. According to one embodiment of the present invention, symbols from the same code related symbol group is placed as close together in the OFDM grid as possible.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: December 3, 2013
    Assignee: Unwired Patent, LLC
    Inventor: Jonas Karlsson
  • Publication number: 20130316666
    Abstract: A dynamically reconfigurable universal transmitter system is disclosed herein. The electronic device includes multiple transmitter resources for generating transmission signals, an output bus; and an antenna summer coupled to the output bus. The output bus is selectively coupled to the plurality of transmitter resources and it selectively receives transmission signals from the plurality of transmission resources. The antenna summer stores transmission signals received on the output bus.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Inventors: Joel D. Medlock, Uma Jha, David M. Holmes, Andrea Y.J. Chen, Madasamy Kartheepan
  • Patent number: 8594242
    Abstract: A method for receiving modulation signals includes receiving a plurality of multiplexed modulation signals each transmitted from multiple antennas of a communication partner, wherein each modulation signal includes a pilot symbol sequence consisting of plural pilot symbols used for demodulation. Each of the pilot symbol sequences is inserted at the same temporal points in the each modulation signal. The pilot symbol sequences are orthogonal to each other with zero cross correlation among the plurality of modulation signals, each pilot symbol having a non-zero amplitude, the quantity of the plural pilot symbols in each sequence being greater than the quantity of the plurality of transmitted modulation signals.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: November 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Yutaka Murakami, Masayuki Orihashi, Akihiko Matsuoka
  • Patent number: 8594589
    Abstract: This invention provides a power amplifier (100) including a signal source control unit (110) which generates and outputs an amplitude signal serving as the amplitude modulated component of an input signal and a pulse modulated signal based on the amplitude signal, and outputs a transmission signal obtained by superposing the input signal on a carrier, a delay adjustment unit (120) which synchronizes the amplitude signal, pulse modulated signal, and transmission signal with each other, a voltage signal generation unit (130) which outputs a voltage signal corresponding to the amplitude signal synchronized with the transmission signal, a current signal generation unit (140) which outputs a current signal corresponding to the pulse modulated signal synchronized with the transmission signal, and a transmission signal amplification unit (150) which amplifies the transmission signal, and outputs a transmission signal obtained by modulating the amplitude of the amplified transmission signal based on a modulated power
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: November 26, 2013
    Assignee: NEC Corporation
    Inventors: Shingo Yamanouchi, Kazuaki Kunihiro
  • Patent number: 8588187
    Abstract: A communications system includes a first reception device and a transmission device. The transmission device includes a modulator operable to modulate a plurality of subcarriers using a signal series obtained by multiplexing a first signal series to be transmitted to the first reception device and a second signal series to be transmitted to a plurality of reception devices including the first reception device in a communications area of the transmission device and a transmitter operable to transmit the modulation signals. The first reception device includes a demodulator operable to regenerate the first signal series and the second signal series.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: November 19, 2013
    Assignee: Fujitsu Limited
    Inventor: Takaharu Nakamura
  • Patent number: 8588712
    Abstract: A modulation circuit for use in a radiofrequency transmitter includes a local oscillator circuit configured to generate one or more local oscillator signals at a desired frequency and with a duty cycle at or about twenty-five percent, and a modulator configured to generate one or more modulated signals responsive to the one or more local oscillator signals and one or more baseband information signals. In at least one embodiment, the modulation circuit includes a modulator comprising a combined mixing and transconductance circuit that includes a transistor circuit for each baseband information signal serving as a modulation input to the modulator. Each transistor circuit comprises a first transistor driven by the baseband information signal and coupling a modulator output node to a corresponding transconductance element, and a second transistor driven by one of the one or more local oscillator signals and coupling the corresponding transconductance element to a signal ground node.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 19, 2013
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Sven Mattisson, Magnus Nilsson
  • Patent number: 8576771
    Abstract: A method of reporting received signal quality to a transmitter includes measuring a received signal quality in a receiver, and selectively performing the steps of reporting the received signal quality to the transmitter, and reporting a selected modulation and coding scheme to the transmitter.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: November 5, 2013
    Assignee: Fujitsu Limited
    Inventors: Yassin Aden Awad, Michiharu Nakamura
  • Patent number: 8577309
    Abstract: A downstream adaptive modulation system and method. The downstream adaptive modulation system comprises a wireless access termination system and one or more wireless modems. The wireless access termination system includes a plurality of queues and a parser. The parser parses data traffic onto the plurality of queues. Each queue is associated with a different coding and modulation scheme. Each of the one or more wireless modems receives data traffic from the plurality of queues based on the wireless modem's ability to demodulate and decode the signal from each of the plurality of queues. When a wireless modem experiences a change in signal strength, the present invention enables the wireless modem to adapt to data from other queues to compensate for the change in signal strength. Thus, if the signal strength improves over a period of time, the wireless modem may receive data at a higher order modulation and FEC code rate.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: November 5, 2013
    Assignee: Broadcom Corporation
    Inventors: Mark Dale, David Hartman, Anders Hebsgaard
  • Patent number: 8571119
    Abstract: A Software Defined Radio (SDR) subsystem capable of supporting a multiple communication standards and platforms for modulation, demodulation and trans-modulation of an input signal is provided. The SDR subsystem includes a Signal Conditioning Cluster (SCC) unit that includes a signal conditioning CPU adapted for sample based signal processing, a Signal Processing Cluster (SPC) unit that includes a signal processing CPU adapted for block based signal processing, and a Channel Codec Cluster (CCC) unit that performs a channel encoding or a channel decoding operation.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 29, 2013
    Assignee: Saankhya Labs Pvt. Ltd
    Inventors: Parag Naik, Anindya Saha, Hemant Mallapur, Sunil Hr, Gururaj Padaki
  • Patent number: 8571494
    Abstract: An apparatus is disclosed having a receiver configured to communicate, by a first apparatus, with a second apparatus in a first mode; determine side information by the first apparatus based on the communication during the first mode; and store the side information by the first apparatus for communication in a second mode with the second apparatus, wherein the first and second modes of communication have different date rates. A method for wireless communications is also disclosed.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: October 29, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Petru Christian Budianu, Amal Ekbal, David Jonathan Julian, Jun Shi
  • Patent number: 8559550
    Abstract: An embodiment of a method for transmitting data through at least a channel in a wireless communication system, the method comprising at least the steps of: encoding the data by performing a forward-error-correction encoding, forming a sequence of symbols from the encoded data, forming an M-by-T coding matrix from said sequence of symbols, each column of the coding matrix comprising N different symbols of the sequence of symbols and M?N zeros, N being an integer equal at least to one, T representing the number of consecutive transmission intervals, M representing the total number of transmit antennas, and using the coding matrix for transmitting the sequence of symbols during the T consecutive transmission intervals, by transmitting one different column of the coding matrix at each transmission interval through the M transmit antennas, only N transmit antennas are enabled during a given transmission interval.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: October 15, 2013
    Assignee: Sequans Communications
    Inventors: Fabien Buda, Bertrand Muquet, Serdar Sezginer
  • Patent number: 8553801
    Abstract: A device is provided for use with an input signal including a first packet of a first modulation type in series with a second packet of a second modulation type. The device includes a gain adjustment portion and a gain portion. The gain adjustment portion can output a first gain adjustment signal based on the first packet or can output a second gain adjustment signal based on the second packet. The gain portion can output a first signal corresponding to the first packet and can output a second signal corresponding to the second packet. The first signal is based on the input signal and a first gain factor. The second signal is based on the input signal and a second gain factor. The first gain factor is based on the first gain adjustment signal. The second gain factor is based on the second gain adjustment signal.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 8, 2013
    Assignee: Hughes Network Systems, LLC
    Inventors: Yogesh Sethi, Roderick Ragland, Dave Roos, Levent Ozturk, Doug Ricker, Habib Estephan
  • Patent number: 8554158
    Abstract: A polar modulation power amplifier employs both thermometer coded and binary coded amplitude modulation data. The thermometer coded amplitude modulation data selectively activates one or more equally weighted power amplifier cells. The binary coded amplitude modulation data selectively activates one or more binary weighted power amplifier cells. When less than full output power is required and the MSBs of the amplitude modulation data are zero (reducing output power at the expense of quantization noise), the power dissipated by RF signal buffers for the unused power amplifier cells corresponding to the MSBs is substantially reduced by gating off the RF signal upstream of the buffers.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: October 8, 2013
    Assignee: ST-Ericsson SA
    Inventors: Norbert Van Den Bos, Roeland Heijna, Hendrik Visser
  • Patent number: 8553653
    Abstract: An arrangement and method for channel mapping in a UTRA TDD HSDPA wireless communication system by applying interleaving functions in first (530) and second (540) interleaving means to a bit sequence to produce symbols for mapping to physical channels, the first and second interleaving means being arranged to map symbols from respectively systematic and parity bits in a predetermined scheme, e.g., mapping symbols in a forward direction when a channel has an even index number, and in a reverse direction when a channel has an odd index number. The symbols may comprise bit-pairs, each of a systematic bit and parity bit. Systematic bits are preferably mapped to high reliability bit positions in TDD HSDPA, achieving a performance gain of between 0.2 dB and 0.5 dB. The forwards/reverse mapping allows a degree of interleaving that improves system performance in fading channels or channels disturbed by short time period noise or interference.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 8, 2013
    Assignee: Sony Corporation
    Inventor: Martin Beale
  • Patent number: 8542759
    Abstract: A method for transmitting a signal from a transmitter over a channel to a receiver on a Power Line Network, wherein said signal is OFDM-modulated on a set of sub-carriers, is proposed, wherein an OFDM tonemap and an eigenbeamforming encoding matrix are determined based on a channel estimation for each sub-carrier, a tonemap feedback signal and an eigenbeamforming feedback signal are generated, which are descriptive of said OFDM tonemap and said eigenbeamforming encoding matrix, respectively, and transmitted to the transmitter. A corresponding receiver, a transmitter, a power line communication and a power line communication system are described as well.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 24, 2013
    Assignee: Sony Corporation
    Inventors: Lothar Stadelmeier, Dietmar Schill, Andreas Schwager, Daniel Schneider
  • Publication number: 20130244599
    Abstract: Embodiments provide a transmitter and a method for transmitting data via a combination of a first signal modulated at a first carrier frequency, and a second signal modulated at a second carrier frequency, different to the first carrier frequency. In one embodiment the transmitter includes a local oscillator and is configured to adaptively configure the local oscillator to operate at a first local oscillator frequency and an alternative local oscillator frequency, different to the first frequency, in dependence on a required signal strength of the first signal relative to a required signal strength of the second signal.
    Type: Application
    Filed: October 15, 2012
    Publication date: September 19, 2013
    Applicant: RENESAS MOBILE CORPORATION
    Inventors: Jouni Kristian KAUKOVUORI, Petri Tapani ELORANTA, Risto KAUNISTO, Aarno Tapio PÄRSSINEN, Antti Oskari IMMONEN
  • Patent number: 8532586
    Abstract: A high-speed transmitter and receiver are provided. In one embodiment, a transmitter comprises a baseband processor structured to receive data and to convert the data into a multiplicity of high and low signal values, with each high and low signal value having a first timing interval. A local oscillator generates a clock signal at a second timing interval and a digital circuit combines the high and low signal values with the clock signal to produce a transmission signal directly at a transmission frequency. A receiver is configured to receive the signal. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: September 10, 2013
    Assignee: Intellectual Ventures Holding 73 LLC
    Inventors: Ismail Lakkis, Yasaman Bahreini, John Santhoff
  • Patent number: 8532219
    Abstract: Modulated signal A is transmitted from a first antenna, and modulated signal B is transmitted from a second antenna. As modulated signal B, modulated symbols S2(i) and S2(i+1) obtained from different data are transmitted at time i and time i+1 respectively. In contrast, as modulated signal A, modulated symbols S1(i) and S1(i)? obtained by changing the signal point arrangement of the same data are transmitted at time i and time i+1 respectively. As a result the reception quality can be changed intentionally at time i and time i+1, and therefore using the demodulation result of modulated signal A of a time when the reception quality is good enables both modulated signals A and B to be demodulated with good error rate performances.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: September 10, 2013
    Assignee: Panasonic Corporation
    Inventors: Yutaka Murakami, Kiyotaka Kobayashi, Masayuki Orihashi, Akihiko Matsuoka
  • Patent number: 8532590
    Abstract: A feedback loop is used to determine phase distortion created in a signal by directly extracting the phase distortion information from a feedback signal using original frequency modulation information.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 10, 2013
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thomas Mayer, Nick Shute
  • Patent number: 8526895
    Abstract: Various embodiments provide for systems and methods for wireless communications that implement transmitter protection schemes using spatial combining. The protection scheme implemented by some embodiments provides for a number of benefits, including without limitation: hitless protection; constant power monitoring for each wireless channel being utilized; extra gain to wireless signals transmitted; beam steering, beam hopping, and beam alignment capabilities; and varying levels of transmission path protection (e.g., 1+1 protection, or 1+N protection). Additionally, the features of some embodiments may be applied to a variety of wireless communications systems including, for example, microwave wireless systems, cellular phone systems and WiFi systems.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: September 3, 2013
    Assignee: Aviat U.S., Inc.
    Inventors: Ying Shen, David Schafer
  • Patent number: 8520768
    Abstract: A method of communicating signals between a transmitter and a receiver in a mobile communication system, and the transmitter and the receiver for the same are disclosed. According to one embodiment, a method of transmitting signals by a transmitter in a mobile communication system includes: mapping, by the transmitter, a sequence generated by using a Zadoff-Chu sequence having a root index to frequency domain indexes; and transmitting, by the transmitter, the mapped sequence. The root index is selected from a predetermined index set consisting of three indexes. The three indexes include a first index and a second index. A sum of the first index and the second index corresponds to a length of the Zadoff-Chu sequence.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 27, 2013
    Assignee: LG Electronics Inc.
    Inventors: Seung Hee Han, Min Seok Noh, Yeong Hyeon Kwon, Hyun Woo Lee, Dong Cheol Kim, Jin Sam Kwak
  • Patent number: 8520748
    Abstract: In a cellular system using an OFDM scheme, a transmitter multiplies subcarriers for channel estimation by codes and transmits them, the codes being such that a phase difference ? of the code multiplied with consecutive subcarriers for channel estimation is constant, and a code of every M consecutive subcarriers (M being 2 or an integer greater than 2) is mutually orthogonal with a code multiplied with same subcarriers of another transmitter.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: August 27, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yasuhiro Hamaguchi, Kimihiko Imamura, Shimpei To, Hideo Namba
  • Patent number: 8520726
    Abstract: Disclosed are an Unequal Error Protection (UEP) apparatus and method thereof for transmitting various types of uncompressed video signals in a broadband high frequency wireless system. The UEP apparatus may include a UEP transmission controller to verify a bit separation point of separating a color depth and priority for each pixel element being composed of a video data pixel when video data is inputted, and to control an error correction coding of correcting relatively many errors to be used in information with a high priority for each pixel element, a bit separator to separate the video data pixel through a control of the UEP transmission controller based on the priority for each pixel element, and a channel coding unit to use a corresponding error correction coding through the control of the UEP transmission controller based on the priority for each pixel element.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: August 27, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Sun Kim, Seung Eun Hong, Kyeongpyo Kim, Hyoung Jin Kwon, Jin Kyeong Kim, Woo Yong Lee
  • Patent number: 8520785
    Abstract: A multimode receiver has a transconductance amplifier having an input terminal and adapted to receive a voltage RF signal and to deliver a current RF signal. The amplifier has a current mixer coupled to the transconductance amplifier and adapted to receive the current RF signal, the current mixer being adapted to combine the current RF signal with a signal generated by a local oscillator, the mixer generating an intermediate frequency signal having a frequency that equals a combination of a frequency of the current RF signal and a frequency of the local oscillator. A low-pass filter is coupled to the mixer and is adapted to generate a low-pass current signal. A transimpedance amplifier is coupled to the low-pass filter and is adapted to receive the low-pass current signal, the transimpedance amplifier being adapted to generate an intermediate frequency voltage signal proportional with the low-pass current signal.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: August 27, 2013
    Assignee: NXP B.V.
    Inventor: Xin He
  • Patent number: 8515352
    Abstract: A dynamically reconfigurable universal transmitter system is disclosed herein. The electronic device includes multiple transmitter resources for generating transmission signals, an output bus, and an antenna summer coupled to the output bus. The output bus is selectively coupled to the plurality of transmitter resources and it selectively receives transmission signals from the plurality of transmission resources. The antenna summer stores transmission signals received on the output bus.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: August 20, 2013
    Assignee: Intel Mobile Communications GmbH
    Inventors: Joel D. Medlock, Uma Jha, David M. Holmes, Andrea Y. J. Chen, Madasamy Kartheepan
  • Patent number: 8509333
    Abstract: A method for transmitting a signal from a transmitter over a channel to a receiver on a Power Line Network, wherein said signal is OFDM-modulated on a set of sub-carriers, is proposed, wherein an OFDM tonemap and an eigenbeamforming encoding matrix are determined based on a channel estimation for each sub-carrier, a tonemap feedback signal and an eigenbeamforming feedback signal are generated, which are descriptive of said OFDM tonemap and said eigenbeamforming encoding matrix, respectively, and transmitted to the transmitter. A corresponding receiver, a transmitter, a power line communication and a power line communication system are described as well.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventors: Lothar Stadelmeier, Dietmar Schill, Andreas Schwager, Daniel Schneider
  • Patent number: 8509329
    Abstract: Disclosed are a data receiving apparatus that may discriminate a type of a received data frame, and a data transmission apparatus that may apply a constellation mapping scheme to a data frame so that a data receiving apparatus may discriminate the data frame in accordance with the constellation mapping scheme applied to the data frame.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ui Kun Kwon, Tae Rim Park, Young Soo Kim, Eung Sun Kim
  • Patent number: 8498585
    Abstract: Full duplex radio wireless systems and methods and especially transceivers for full duplex radio wireless systems with reduction of self-interference are described. MIMO (=multiple input multiple output several antennas for output and input) is used within one device with multiple antennas to remove self-interference in a proactive way.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: July 30, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Patrick Vandenameele
  • Patent number: 8498569
    Abstract: A communication system is provided that allows the use of low-cost, low-power remote terminal units that communicate substantially asynchronously and independently to a base station. To minimize cost and complexity, the remote terminal units are configured similarly, including the use of substantially identical transmission schemes, such as a common Direct Sequence Spread Spectrum (DSSS) code. To minimize collisions among transmissions, the communication system is designed to use a high-gain antenna with a limited field of view, to limit the number of cotemporaneous, or overlapping transmissions that are received at the base station. To cover a wide area, the limited field of view is swept across the area of coverage. To overcome potential losses caused by collisions, the remote terminal units are configured to repeat transmissions; to minimize repeated collisions, the repeat interval and/or duration is randomized.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: July 30, 2013
    Assignee: Comtech Mobile Datacom Corporation
    Inventors: Richard D. Fleeter, John E. Hanson, Scott A. McDermott, Raymond G. Zenick, Jr.
  • Patent number: 8498589
    Abstract: A modulation system comprising a signal processing unit and a modulator. The signal processing unit may generate a low frequency modulator signal, a high frequency modulator signal, and a modulator amplitude control signal. The modulator may generate a modulated signal for transmission via a wireless network based, at least in part, on the low frequency modulator signal, the high frequency modulator signal, and the modulator amplitude control signal. The signal processing unit comprises a delay compensation unit for delaying the generation of the high frequency modulator signal and the modulator amplitude control signal based, at least in part, on signal generation and modulation path delays associated with the low frequency modulator signal to substantially align the modulator signals at the output of the modulation system.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 30, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Paul J. Husted, William W. Si, David J. Weber, Xiaoru Zhang
  • Patent number: 8494459
    Abstract: A precoding scheme in which the downlink channel is estimated and an optimal precoding matrix to be used by the multi antenna transmitter is determined accordingly. The optimal precoding matrix is selected from a codebook of matrices that includes matrices having a structure matched to that of the eigenvectors of the spatial covariance matrix, wherein the spatial covariance matrix is modeled as a Hermitian and Toeplitz matrix parameterized by a single complex-valued scalar.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: July 23, 2013
    Assignee: NEC Laboratories America, Inc.
    Inventors: Narayan Prasad, Mohammad Amir Khojastepour, Sampath Rangarajan
  • Patent number: 8488686
    Abstract: A communication channel is operated by storing a calibrated parameter value in nonvolatile memory during manufacturing, testing, or during a first operation of the device. Upon starting operation of the communication channel in the field, the calibrated parameter value is obtained from the nonvolatile memory, and used in applying an operating parameter of the communication channel. After applying the operating parameter, communication is initiated on a communication channel. The operating parameter can be adjusted to account for drift immediately after starting up, or periodically. The process of starting operation in the field includes power up events after a power management operation. In embodiments where one component includes memory, steps can be taken prior to a power management operation using the communication channel, such as transferring calibration patterns to be used in calibration procedures.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: July 16, 2013
    Assignee: Rambus Inc.
    Inventors: Philip Yeung, Richard E Perego, Scott C Best
  • Patent number: 8488520
    Abstract: A base station, for use in a wireless communication system, includes a report receiving unit operable to receive from a user equipment of the system a report of a downlink received signal quality produced by the user equipment. The report receiving unit includes a unit operable to receive a report of a measuring received signal quality or a report of a selected modulation and coding scheme to the transmitter.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: July 16, 2013
    Assignee: Fujitsu Limited
    Inventors: Yassin Aden Awad, Michiharu Nakamura
  • Patent number: 8489037
    Abstract: A power amplifying apparatus has a bandwidth limitation process circuit to which an envelope signal included in a transmission signal is inputted, and which performs a bandwidth limitation process on the envelope signal, a variable power supply circuit for generating a power amplifier supply voltage based on a voltage control signal generated by the bandwidth limitation process circuit, and a power amplifier which is fed an input signal, and which is driven in accordance with the supply voltage from the variable power supply circuit.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: July 16, 2013
    Assignee: Fujitsu Limited
    Inventors: Nobukazu Fudaba, Hiroyoshi Ishikawa, Hajime Hamada, Yuichi Utsunomiya, Kazuo Nagatani
  • Patent number: 8489046
    Abstract: A multi-mode communications transmitter includes a signal decomposer that converts rectangular-coordinate in-channel and quadrature channel signals into polar-coordinate amplitude and angle component signals and form therefrom first and second modulation signals. The signal decomposition process performed by the signal decomposer combines envelope-reduction and restoration (ERR) with filtering to reduce the bandwidths of the first and second modulation signals compared to the bandwidths of the unmodified amplitude and angle component signals. The reduction in signal bandwidths eases the design requirements of the electrical components needed to process and generate the signals applied to the power supply and radio frequency (RF) input ports of the multi-mode communications transmitter's power amplifier (PA).
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Paul Cheng-Po Liang, Koji Takinami
  • Patent number: 8488539
    Abstract: A method of generating preamble sequence is disclosed. A channel used by a wireless device may be divided into four sub-channels, and the method includes forming a preamble sequence of a first sub-channel, making three replicas of the preamble sequence of the first sub-channel, each replica with a phase rotation of a first angle, a second angle, and a third angle respectively, for forming each preamble sequence of a second sub-channel, a third sub-channel, and a fourth sub-channel, and arranging the preamble sequences of the first, the second, the third, and the fourth sub-channels to form a preamble sequence of the channel.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 16, 2013
    Assignee: Ralink Technology Corp.
    Inventors: Yen-Chin Liao, Cheng-Hsuan Wu, Yung-Szu Tu
  • Patent number: 8483630
    Abstract: System for generating a pulsed signal of the ultra wideband type, comprising a device for direct digital frequency synthesis (DDS) comprising a phase accumulator (ACCP) able to deliver at a first frequency (Fclk) phases coded on i bits and spaced apart by a phase increment (?p) differing by a power of two and situated in the vicinity of 2i-1, processing means (MT) able to receive said phases and arranged so as to deliver an amplitude-modulated output signal (SG) whose envelope exhibits a succession of regions respectively delimited by zones of zero amplitude (ZA, ZB), each amplitude-modulated signal part situated in one of said regions forming a pulse of the ultra wideband type (IMP) whose central frequency is equal to said first frequency and whose width depends on the value of the phase increment, and control means (MC) able to regulate the operation of the digital synthesis device so as to selectively deliver one or more pulses of the ultra wideband type.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: July 9, 2013
    Assignees: STMicroelectronics SA, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Andrea Cathelin, Stéphane Thuries, Sylvain Godet, Eric Tournier, Jacques Graffeuil
  • Patent number: RE44666
    Abstract: Apparatus, and an associated method, for providing transmit diversity to an open-loop MIMO communication scheme, such as a point to multipoint broadcast service in a cellular system. Multiple data streams of the broadcast data are broadcast by way of transmit diversity antennas of a sending station. The data symbols of the separate data streams are phase-shifted to be offset in phase from one another. The data streams, once the data symbols thereof are selectably phase-shifted by a phase shifter, are applied by an applier to sending nodes of the respective cells.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: December 24, 2013
    Assignee: BlackBerry Limited
    Inventor: Zhijun Cai