Plural Stages With Different Levels Or Bias To Each Stage (e.g., Partial Automatic Gain Control) Patents (Class 455/251.1)
  • Patent number: 10673518
    Abstract: Technology for a repeater is disclosed. The repeater can include a first-direction signal path for a first-direction band. The repeater can include a second-direction signal path for a second-direction band. The repeater can include a controller configured to decrease a gain of the first-direction signal path by a first amount. The controller can increase a gain of the second-direction signal path by a second amount when the gain of the first-direction signal path is decreased by the first amount to enable a total loop gain of the first-direction signal path and the second-direction signal path to be less than a total loop crossover isolation level of the first-direction signal path and the second-direction signal path.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: June 2, 2020
    Assignee: WILSON ELECTRONICS, LLC
    Inventor: Christopher Ken Ashworth
  • Patent number: 9742359
    Abstract: Circuitry, which includes a package interface, a radio frequency (RF) amplification circuit, and a closed-loop gain linearization circuit. The package interface receives an RF signal and provides an amplified RF signal. The RF amplification circuit amplifies the RF signal in accordance with a gain of the RF amplification circuit so as to generate the amplified RF signal. In one embodiment, the closed-loop gain linearization circuit is configured to endogenously establish a target gain magnitude using the RF signal and linearize the gain of the RF amplification circuit in accordance with the target gain magnitude. By endogenously establishing the target gain magnitude using the RF signal, the closed-loop gain linearization circuit can provide linearity with greater independence from external control circuitry.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: August 22, 2017
    Assignee: Qorvo International PTE. Ltd.
    Inventors: Baker Scott, George Maxim
  • Patent number: 9209768
    Abstract: An RF receiver is described comprising a common gate common source LNA with a variable resistor in the source of the common gate transistor, a variable resistor in the source of the common source transistor, and a variable resistor in the RF input. A Smart Gain Control varies the resistance in the resistors to produce linear amplification in the LNA while maintaining input matching. Further, a broad dynamic range RSSI is described that implements a feedback control loop to maintain signal power within a sensitivity range of the power detector in the RSSI.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: December 8, 2015
    Assignee: SITUNE CORPORATION
    Inventors: Saeid Mehrmanesh, Vahid Mesgarpour Toosi
  • Patent number: 9194911
    Abstract: A digital on-die-test engine (OTE) generates stimuli signals for an analog/RF circuit, where the OTE is embedded within the circuitry. The stimuli signals are injected into the circuit, feed through the circuit, and are received back into the OTE for analysis. The OTE includes an input subsystem to receive signals from various locations throughout the circuit. The received signals are sub-sampled before being tested. The OTE includes memory-aware and memory-less algorithms for testing the signals. The OTE is capable of changing the configuration of the circuit, where needed, following the tests.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: November 24, 2015
    Assignee: iNTEL CORPORATION
    Inventors: Georgios Palaskas, Jorge Hermosillo, Marian K. Verhelst
  • Patent number: 9179343
    Abstract: An apparatus may include a memory to store a first radio signal strength indicator (RSSI) data set comprising first data entries for RSSI detected from a multiplicity of transmission sources by a first wireless device of a first device type, and to store a second RSSI data set comprising second data entries for RSSI detected from the multiplicity of transmission sources by a second wireless device of a second device type; and a cross-device radio calibration engine to receive the first RSSI data set and second RSSI data set and generate a cross-calibrated RSSI function comprising a function that reduces differences between the first RSSI data set and the second RSSI data set. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: November 3, 2015
    Assignee: INTEL CORPORATION
    Inventors: Xue Yang, Lei Yang
  • Patent number: 9148184
    Abstract: A power detection circuit according to the present invention includes a variable frequency oscillator 2 for oscillating a local oscillator frequency, a mixer 1 for receiving the local oscillator frequency and a detection signal and converting a frequency of the detection signal using the local oscillator frequency, a complex bandpass filter 3 for limiting a bandwidth of the detection signal whose frequency is converted to a predetermined bandwidth, and an energy detection circuit 4 for detecting power of the predetermined bandwidth based on an output from the complex bandpass filter 3. The local oscillator frequency is set so that the predetermined bandwidth of the detection signal whose frequency is converted is in a frequency range having low 1/f noise. According to the present invention, it is possible to provide a power detection circuit with high speed and high sensitivity.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: September 29, 2015
    Assignee: NEC Corporation
    Inventors: Hiroshi Kodama, Masaki Kitsunezuka
  • Publication number: 20150111513
    Abstract: A method of controlling an automatic gain in a receiver includes receiving an input signal through an antenna of the receiver, by an automatic gain control unit of the receiver, setting a final RF gain, and by the automatic gain control unit, setting an IF gain in a state that the final RF gain is set.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Inventors: Inho Song, Ei Ho Lee, Ki Tae Moon
  • Patent number: 8989687
    Abstract: A method and apparatus is disclosed to determine communications receiver parameters from multiple channels of a received communications signal and to configure and/or adjust communications receiver parameters to acquire one or more channels from among the multiple channels of the received communications signal. A communications receiver observes a multi-channel communication signal as it passes through a communication channel. The communications receiver determines one or more communications receiver parameters from the multiple channels of the received communications signal. The communications receiver configures and/or adjusts communications receiver parameters to acquire the one or more channels from among the multiple channels of the received communications signal.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: March 24, 2015
    Assignee: Broadcom Corporation
    Inventors: Ramon Alejandro Gomez, Bruce J. Currivan, Steven T. Jaffe, Loke Kun Tan, Young Shin, Hanli Zou, Lin He, Leonard Dauphinee, Thomas Joseph Kolze, Francesco Gatta
  • Patent number: 8983418
    Abstract: Techniques and devices are disclosed to provide multi-stage gain control in circuits or devices having two or more stages of signal amplification. A circuit with multi-stage gain control can include amplification stages coupled to receive an input signal and to produce an amplified output signal. Each amplification stage includes an amplifier that is adjustable in gain and a signal detector that is coupled to measure an output signal of the amplifier and to produce a detector signal indicative of a signal strength of the output signal of the amplifier. A gain control circuit is coupled to receive detector signals from the signal detectors in the amplification stages, respectively, and to control gains of the amplifiers of the amplification stages based on respective received detector signals, respectively.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: March 17, 2015
    Assignee: Broadcom Corporation
    Inventors: Amir Ibrahim, Henrik Tholstrup Jensen, Shahla Khorram, Aminghasem Safarian, Seema Anand
  • Patent number: 8965317
    Abstract: Embodiments of the present invention may provide a signal processor with a wide gain range. The signal processor may comprise at least a discrete step gain stage and a continuous variable gain amplifier (VGA) stage. The discrete step gain stage may comprise a programmable gain amplifier (PGA) (e.g., low noise amplifiers 1 and 2 (LNA1 and LNA2)). The VGA stage may provide a continuous range to compensate the LNAs gain steps. In one embodiment, the AGC controller enables an inherent hysteresis with the AGC step change if required.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Reza Alavi, Saeed Aghtar, Christoph Steinbrecher, Arathi Sundaresan
  • Patent number: 8948322
    Abstract: A system provides closed-loop gain control in a WCDMA mode and open loop control in an EDGE/GSM mode. Gain control is distributed across analog devices and a digital scaler in a wireless receiver. In the WCDMA mode, a loop filter generates an error signal that is forwarded to analog and digital control paths. The analog control path includes a first adder, a programmable hysteresis element, and a lookup table. The analog control signal is responsive to thresholds, which when used in conjunction with a previous gain value determine a new gain value. The digital control path includes a second adder, a programmable delay element, and a converter. A control word is responsive to a difference of the error signal, a calibration value, and the analog control signal. Blocker detection is provided in the WCDMA mode of operation. A controller sets system parameters using a state machine.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: February 3, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jaleh Komaili, John E. Vasa, Thomas Obkircher
  • Patent number: 8811537
    Abstract: Provided are a receiving apparatus and method for a wireless communication system using multiple antennas. A receiving method for a wireless communication system using multiple paths, the receiving method comprising: receiving signals through a predetermined number of multiple paths; sensing a carrier according to saturation state degrees of the signals, and providing saturation state information; calculating automatic gain components of the received signals by using the received signals and the saturation state information of the received signals; and performing a noise matching process to amplify noises on the predetermined multiple paths according to the automatic gain components during a predetermined period.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: August 19, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Il-Gu Lee, Jung-Bo Son, Je-Hun Lee, Eun-Young Choi, Sok-Kyu Lee
  • Patent number: 8693968
    Abstract: A very low intermediate frequency (VLIF) receiver comprising a first and second mixer circuits, characterised in that receiver comprises a means of estimating the energy in a desired signal band; a means of estimating the energy in a band of frequencies comprising the desired signal band; and a means of altering a VLIF of the receiver according to the ratio of the energy in a desired signal band and the energy in the band of frequencies comprising the desired signal band.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: April 8, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Norman Beamish, Michael Milyard, Conor O'Keeffe
  • Patent number: 8676148
    Abstract: A differential amplifier circuit includes a source follower circuit to which is input one of the differential signals and a common source circuit that is connected in series with the source follower circuit and to which is input the other of the differential signals.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yosuke Ogasawara
  • Patent number: 8660221
    Abstract: The present invention discloses apparatus and method for fast and robust automatic gain control (AGC). By using the power statistics and/or the amplitude statistics of multiple pairs of signed ADC outputs, the additional gain control can be determined and included in a statistics-aided AGC to successfully complete the AGC function for a received signal having a dynamic range up to 100 dB within a few micro-seconds.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 25, 2014
    Assignee: ISSC Technologies Corp.
    Inventors: Jeng-Hong Chen, Huei-Ming Yang, Chih-Ching Huang
  • Patent number: 8598866
    Abstract: A zero bias power detector comprising a zero bias diode and an output boost circuit is provided. The output boost circuit comprises a zero bias transistor. The zero bias diode is not biased but outputs a rectifying signal according to a wireless signal. The zero bias transistor, not biased but coupled to the zero bias diode, is used for enhancing the rectifying signal.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: December 3, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Yen Huang, Chin-Chung Nien, Jenn-Hwan Tarng, Chen-Ming Li, Li-Yuan Chang, Ya-Chung Yu
  • Patent number: 8577319
    Abstract: An automatic gain control loop disposed in a receiver is adapted to compensate for varying levels of out of band interference sources by adaptively controlling the gain distribution throughout the receive signal path. One or more intermediate received signal strength indicator (RSSI) detectors are used to determine a corresponding intermediate signal level. The output of each RSSI detector is coupled to an associated comparator that compares the intermediate RSSI value against a corresponding threshold. The take over point (TOP) for gain stages is adjusted based in part on the comparator output values. The TOP for each of a plurality of gain stages may be adjusted in discrete steps or continuously.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 5, 2013
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Madhukar Reddy, John Wetherell
  • Patent number: 8546939
    Abstract: A technology is provided so that RF modules used for cellular phones etc. can be reduced in size. Over a wiring board constituting an RF module, there are provided a first semiconductor chip in which an amplifier circuit is formed and a second semiconductor chip in which a control circuit for controlling the amplifier circuit is formed. A bonding pad over the second semiconductor chip is connected with a bonding pad over the first semiconductor chip directly by a wire without using a relay pad. In this regard, the bonding pad formed over the first semiconductor chip is not square but rectangular (oblong).
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 1, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kenji Sasaki, Tomonori Tanoue, Sakae Kikuchi, Toshifumi Makino, Takeshi Sato, Tsutomu Kobori, Yasunari Umemoto, Takashi Kitahara
  • Patent number: 8538353
    Abstract: Exemplary embodiments of the invention include a request received to change a TX output power setting or a frequency channel setting. In response, the requested TX output power setting is used to generate a TX output signal in the proper frequency channel. Handset circuitry makes OOB power measurements, the results of which are used to determine a VCC2 setting. The VCC2 setting is a setting that results in an MPS requirement just being met. The VCC2 setting is stored in association with the TX output power and frequency channel setting. The determined VCC2 setting is also used to set the VCC2 supply voltage for the power amplifier. Once set, VCC2 remains fixed until the next request. Each individual handset uses this Adaptive Average Power Tracking (AAPT) method, thereby reducing its VCC2 voltage during operation and conserving power. Because each handset uses AAPT, factory calibration to account for unit-to-unit variations in transmitter circuitry performance is avoided.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: September 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Raymond C. Wallace
  • Patent number: 8478221
    Abstract: A wireless communication receiver includes a multitude of look-up tables each storing a multitude of DC offset values associated with the gains of an amplification stage disposed in the wireless communication receiver. The entries for each look-up table are estimated during a stage of the calibration phase. During such a calibration stage, for each selected gain of an amplification stage, a search logic estimates a current DC offset number and compares it to a previous DC offset estimate that is fed back to the search logic. If the difference between the current and previous estimates is less than a predefined threshold value, the current estimate is treated as being associated with the DC offset of the selected gain of the amplification stage and is stored in the look-up table. This process is repeated for each selected gain of each amplification stage of interest until the look-up tables are populated.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 2, 2013
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Andy Lo, Tete Sedalo
  • Patent number: 8442465
    Abstract: An RF circuit is disclosed having a low-noise amplification (LNA) circuit and a bypass path that provides a bypass around the LNA circuit. In the amplification mode, the bypass path is open and the LNA circuit amplifies the receive signal in accordance within a power gain frequency response. During the amplification mode, the LNA circuit is tuned such that a power gain resonance frequency band of the power gain frequency response is within the receive frequency band. On the other hand, in the bypass mode, the bypass path is closed and the receive signal is not amplified but rather bypasses the LNA circuit. Also, during the bypass mode, the power gain frequency response of the LNA circuit is transposed to reduce or eliminate excessive insertion losses caused by the LNA circuit within the receive frequency band.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: May 14, 2013
    Assignee: RF Micro Devices, Inc.
    Inventor: William Kent Leverich
  • Patent number: 8428535
    Abstract: A controller in a receiver monitors RSSI and AGC gain levels to determine signal conditions and adjust filter performance accordingly to optimize power consumption while providing acceptable signal quality. When RSSI level is high and AGC gain is low, a strong signal-of-interest is present. In this case, adaptive filter bias currents may be reduced raise the noise floor and degrade intermodulation to reduce power consumption because the strong signal-of-interest can tolerate the higher noise and distortion. When the RSSI level is low and AGC gain is high, a weak signal is present a low noise mode may be effected by increasing bias current to filters used to lower the noise floor, but intermodulation effects may still be tolerated so those filters may be cut back. Other cases are supported. RSSI and AGC gain level thresholds may be dynamically altered based on relative RSSI and AGC levels.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: April 23, 2013
    Assignee: Marvell International Ltd.
    Inventors: David Cousinard, Patrick Clement, Cao-Thong Tu
  • Patent number: 8428536
    Abstract: A receiver (100) includes a first element (110) with a signal input, a control input, a signal output, and gain steps of a first magnitude, a signal processing circuit (120-168) with a signal input coupled to the first element, and a signal output, a second element (180) that has a signal input coupled to signal processing circuit, a control input, a signal output, and gain steps of a second magnitude smaller than the first magnitude, and a controller (180) that has a control output coupled to the first element (110), a control output coupled to the second element (180), and that adjusts receiver (100) gain by changing the first element (110) gain by a first magnitude, changing the second element (180) gain by substantially an inverse first magnitude, and subsequently changing the gain of the second element (180) by steps of the second magnitude to achieve a desired gain.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: April 23, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Ramin Khoini-Poorfard, Alessandro Piovaccari, David S. Trager
  • Patent number: 8406719
    Abstract: A receiver is provided and includes a first amplifier configured to amplify, based on a first gain, a radio frequency signal to generate a first amplified signal. The radio frequency signal is received by the receiver on a first channel. A second amplifier generates, based on the first amplified signal and a second gain, a second amplified signal. An output circuit generates a baseband signal based on the second amplified signal. A first detection circuit compares the baseband signal to (i) a first threshold in response to the first gain being at a first level, and (ii) a second threshold in response to the first gain being at a second level. The first detection circuit generates a first detection signal in response to the comparison. A controller, in response to the first detection signal, (i) adjusts the second gain, or (ii) changes the receiver from the first channel.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: March 26, 2013
    Assignee: Marvell International Ltd
    Inventors: Sek Kin Neng, Yungping Hsu, Tsunglun Yu, Ming Ta Lin, Naveen-Kumar Arani
  • Patent number: 8385860
    Abstract: According to one embodiment, a power detector includes a reference voltage generator, a square signal generator, a detection circuit, and an output circuit. The reference voltage generator is configured to receive a bias voltage and generate a reference voltage. The square signal generator is configured to receive a voltage having a high frequency input voltage superimposed on the bias voltage and output a signal including the reference voltage, a voltage of a square of the high frequency input voltage, and a high-frequency signal. The detection circuit has a first lowpass filter, a first operational amplifier configured to amplify error between an output voltage of the first lowpass filter and the reference voltage and output the error as a control voltage, and a feedback transistor configured to feed a feedback current according to the control voltage back to an output terminal of the square signal generator.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Teraguchi, Masahiro Hasegawa, Noriyoshi Odaki, Shigehiro Hosoi, Takahiro Nakagawa
  • Patent number: 8306162
    Abstract: A method for use in a digital communications receiver for controlling an input signal level (200) into an analog-to-digital converter (ADC) initially receives a sample sequence (201) where a threshold crossing rate is measured as a percentage samples of an input signal that exceed the threshold (203). The error between the measured threshold crossing rate and a desired reference threshold crossing rate is calculated (205) and an error signal is then utilized in a feedback loop to control the receiver gain such that the error is reduced (207).
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: November 6, 2012
    Assignee: Motorola Solutions, Inc.
    Inventors: Robert J. Corke, Daniel G. Prysby
  • Publication number: 20120244826
    Abstract: A wireless communication receiver includes a multitude of look-up tables each storing a multitude of DC offset values associated with the gains of an amplification stage disposed in the wireless communication receiver. The entries for each look-up table are estimated during a stage of the calibration phase. During such a calibration stage, for each selected gain of an amplification stage, a search logic estimates a current DC offset number and compares it to a previous DC offset estimate that is fed back to the search logic. If the difference between the current and previous estimates is less than a predefined threshold value, the current estimate is treated as being associated with the DC offset of the selected gain of the amplification stage and is stored in the look-up table. This process is repeated for each selected gain of each amplification stage of interest until the look-up tables are populated.
    Type: Application
    Filed: June 6, 2012
    Publication date: September 27, 2012
    Applicant: MaxLinear, Inc.
    Inventors: Curtis Ling, Andy Lo, Tete Sedalo
  • Patent number: 8275332
    Abstract: An apparatus comprising a plurality of switchable full step mixer unit cells, wherein each switchable full step unit cell is configured to, when the full step transceiver mixer unit cell is turned on, increase the gain experienced by an electronic signal by a full step increment, and wherein the step increment is substantially constant regardless of temperature; and at least one switchable partial step mixer unit cell configured to, when the partial step transceiver mixer unit is turned on, increase the gain experienced by the electronic signal by a predetermined step increment less than that of a full step, and wherein the partial step increment is substantially constant regardless of temperature.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 25, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Alireza Zolfaghari, Hooman Darabi
  • Patent number: 8259878
    Abstract: Provided are apparatus and method for receiving signals in a wireless communication system.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 4, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chanho Yoon, Hun-Sik Kang, Eun-Young Choi, Sok-Kyu Lee
  • Patent number: 8238861
    Abstract: Techniques for performing automatic gain control (AGC) at a terminal in a wireless communication network are described. In an aspect, the terminal may use different receiver gain settings to receive different types of signals in different time intervals. The terminal may determine a receiver gain setting for each signal type and may use the receiver gain setting to receive signals of that signal type. In another aspect, the terminal may determine a receiver gain setting for a future time interval based on received power levels for peer terminals expected to transmit in that time interval. The terminal may measure received power levels of signals received from a plurality of terminals. The terminal may determine a set of terminals expected to transmit in the future time interval and may determine the receiver gain setting for the future time interval based on the measured received power levels for the set of terminals.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 7, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Junyi Li, Ying Wang, Thomas Richardson, Aleksandar Jovicic
  • Patent number: 8229381
    Abstract: A wireless communication receiver includes a multitude of look-up tables each storing a multitude of DC offset values associated with the gains of an amplification stage disposed in the wireless communication receiver. The entries for each look-up table are estimated during a stage of the calibration phase. During such a calibration stage, for each selected gain of an amplification stage, a search logic estimates a current DC offset number and compares it to a previous DC offset estimate that is fed back to the search logic. If the difference between the current and previous estimates is less than a predefined threshold value, the current estimate is treated as being associated with the DC offset of the selected gain of the amplification stage and is stored in the look-up table. This process is repeated for each selected gain of each amplification stage of interest until the look-up tables are populated.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: July 24, 2012
    Assignee: MaxLinear, Inc.
    Inventors: Curtis Ling, Andy Lo, Tete Sedalo
  • Patent number: 8180308
    Abstract: A communication apparatus includes a radio frequency (RF) apparatus. The RF apparatus includes an amplifier, and a signal detection circuit. The amplifier receives RF signals and amplifies those signals. The amplifier has an adjustable gain value. The signal detection circuit detects whether a received signal is an out-of-band radar signal depending on the gain value of the amplifier and a characteristic of the received signal.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: May 15, 2012
    Assignee: Marvell International Ltd.
    Inventors: Sek Kin Neng, Yungping Hsu, Tsunglun Yu, Ming Ta Lin, Naveen-Kumar Arani
  • Patent number: 8155241
    Abstract: A method includes receiving data elements representative of constellation points of a modulated signal. Each data element includes a gain. The method also includes identifying a common gain value among the received data elements, and adjusting the data elements to include the common gain value.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: April 10, 2012
    Assignee: MediaTek Inc.
    Inventor: Timothy Perrin Fisher-Jeffes
  • Patent number: 8085839
    Abstract: An adaptive equalizer may include one or more equalizing gain stages coupled to an input signal. An automatic gain control circuit may be used to control the gain of the one or more equalizing gain stages, the automatic gain control circuit having an AGC reference input. A dual-output DC restoration circuit may be coupled to the output of the one or more equalizing gain stages for generating a first output signal using a first hysteresis slicer that DC restores the input signal and for generating a second output signal using a second hysteresis slicer that is coupled to the AGC reference input of the automatic gain control circuit, wherein the second hysteresis slicer introducing less hysteresis than the first hysteresis slicer.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: December 27, 2011
    Assignee: Gennum Corporation
    Inventors: Mohammad H. Shakiba, Eliyahu D. Zamir
  • Patent number: 8081937
    Abstract: An apparatus comprising a plurality of switchable full step mixer unit cells, wherein each switchable full step unit cell is configured to, when the full step transceiver mixer unit cell is turned on, increase the gain experienced by an electronic signal by a full step increment, and wherein the step increment is substantially constant regardless of temperature; and at least one switchable partial step mixer unit cell configured to, when the partial step transceiver mixer unit is turned on, increase the gain experienced by the electronic signal by a predetermined step increment less than that of a full step, and wherein the partial step increment is substantially constant regardless of temperature.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 20, 2011
    Assignee: Broadcom Corporation
    Inventors: Ahmad Mirzaei, Alireza Zolfaghari, Hooman Darabi
  • Patent number: 8063997
    Abstract: An integrated tuner is programmable to optimize its components for either analog signal reception or digital signal reception. Power to the components is increased for analog operation and decreased for digital operation. The tuner also includes a selectable and integrated low noise amplifier that may be selected for single-signal reception and bypassed for multi-signal reception.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: November 22, 2011
    Assignee: NXP B.V.
    Inventors: Mats Lindstrom, Glenn W. Eswein, Abdolreza Shafie, Mike A. Ploof, Ryuji Maeda, Manjit S. Gill, Eileen Carlson, Anthony R. Simon, Henry S. Lau
  • Patent number: 8055232
    Abstract: A receiving apparatus may achieve optimal RF and IF gain control while suppressing saturated amplification due to interference. The receiving apparatus includes an RF variable gain Amp that amplifies a received RF signal, a mixer that converts an output signal of the RF variable gain Amp into an IF signal, an IF variable gain Amp that amplifies the IF signal, a demodulator that demodulates an output signal of the IF variable gain Amp, and an AGC circuit. The AGC circuit sets a period of gain control for the RF variable gain Amp to be shorter than a period of gain control for the IF variable gain Amp when gains of the RF variable gain Amp and the IF variable gain Amp are controlled based on the output signal of the IF variable gain Amp.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: November 8, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Hiroji Akahori
  • Patent number: 8014743
    Abstract: This disclosure discloses methods and apparatus for calibrating received signal strength indicators.
    Type: Grant
    Filed: April 24, 2011
    Date of Patent: September 6, 2011
    Assignee: Beken Corporation
    Inventors: Ronghui Kong, Dawei Guo
  • Patent number: 7962112
    Abstract: A heterodyne receiver comprising a gain controllable RF mixer (14) which has a first input connected to a first local oscillator (16) and a second input connected to an RF input. The receiver comprises a peak detector (38) which detects a peak value of an input signal at the second input of the HF mixer and generates a digital control signal if it is determined that the peak value of the input signal is above a predetermined level. A digital automatic gain control circuit (34) decreases upon reception of the digital control signal the gain of the RF mixer.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: June 14, 2011
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Harald Sandner, Ajaib Hussain
  • Patent number: 7894786
    Abstract: Provided is a receiver capable of automatically controlling a gain of the receiver and receiving three or more band signals. A gain controlled receiver includes a low noise amplifier, a first variable gain control amplifier, a frequency mixer, a filter, a second variable gain control amplifier, and a gain control block. The gain controlled receiver automatically controls gains of the low noise amplifier, the first variable gain control amplifier, the frequency mixer, the filter, the second variable gain control amplifier by detecting strength of the signals processed in the receiver. Therefore, without an additional manual tuning operation, the gain of the receiver can be automatically maintained in an optimal state. A multi-band processing receiver includes a first receiving unit, a second receiving unit, and a switch. The multi-band processing receiver can process three or more RF signals in multi-band by using a single receiver.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: February 22, 2011
    Assignee: FCI Inc.
    Inventor: Myung Woon Hwang
  • Patent number: 7873340
    Abstract: Systems and methods are provided for tracking and compensating for analog gain mismatches or changes in a receiver. In an embodiment, a method is provided to track analog gain step magnitudes during operation of a device. The method includes employing an error signal between an automatic gain control (AGC) output and a reference level as input to a gain step magnitude tracking component. This also includes determining at least one compensation value from the AGC output to update a nominal gain step magnitude that tracks an actual gain step magnitude.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: January 18, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Linbo Li, Fuyun Ling, Raghuraman Krishnamoorthi
  • Patent number: 7853227
    Abstract: A system for providing automatic gain control (AGC) comprises a signal path with an RF input, a plurality of power detectors in communication with the signal path, each of the power detectors operable to measure a total broadband power level of a signal in the signal path, each of the power detectors positioned to monitor a point in the signal path corresponding to a change in signal bandwidth, a control system operable to receive from each of the power detectors information associated with the power level and to adjust attenuation in the signal path in response to the information to achieve desired gain control.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: December 14, 2010
    Assignee: Microtune (Texas), L.P.
    Inventors: Jan-Michael Stevenson, Jose L. Esquivel, Carey Ritchey, Kim E. Beumer
  • Patent number: 7835706
    Abstract: An RF transmitter (104) includes a shared local oscillator circuit (126), transmit path circuitry (120, 122, 124), a divider (134), and a lowpass filter (322). The shared local oscillator circuit (126) generates a shared LO signal (116). The transmit path circuitry (120, 122, 124) mixes a baseband signal (107) and an IF mixing signal (116) to provide an IF signal (112), and converts the IF signal (112) to an RF transmit signal (105) at a desired frequency using an RF mixing signal received at a mixing input thereof. The divider (134) divides the shared LO signal (116) to provide an unfiltered RF mixing signal. The lowpass filter (322) has an input for receiving the unfiltered RF mixing signal, and an output coupled to the mixing input of the transmit path circuitry (120, 122, 124) for providing the RF mixing signal.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: November 16, 2010
    Assignee: Silicon Laboratories, Inc.
    Inventors: David R. Welland, Ramkishore Ganti, CaiYi Wang
  • Patent number: 7809341
    Abstract: A received low-frequency standard radio wave, which is an amplitude modulation signal, is converted to an intermediate frequency signal Sa, and is output to a detection circuit and an AGC circuit. The detection circuit and AGC circuit generates an RF control signal Sf1 and IF control signal Sf2 from the input intermediate frequency signal Sa, and controls an RF control circuit and IF control circuit by outputting the generated RF control signal Sf1 and IF control signal Sf2 to the RF control circuit and IF control circuit. By this a radio wave reception device can speed up AGC operation.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 5, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventor: Kaoru Someya
  • Patent number: 7783272
    Abstract: A broadband signal amplifier includes one of more broadband amplifier circuits, each dynamically controlled in response to a total power level of signals applied thereto to reduce linearity in response to a reduction of input signal strength. A filter may couple the output of the broadband amplifier circuits to each other to form a tandem arrangement. Power detectors are connected to detect and provide outputs indicative of the total power levels of the signals applied to respective broadband amplifiers. A control unit is connected to and receives the output from the power detectors and, in response, provides a control signals to the broadband amplifier circuit so as to operate each over portions of their operating characteristic curves that provide only that degree of linearity necessary to limit distortion to a predetermined or dynamically adjustable maximum acceptable level.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: August 24, 2010
    Assignee: Microtune (Texas), L.P.
    Inventor: Timothy M. Magnusen
  • Publication number: 20100130153
    Abstract: A receiver (100) includes a first element (110) with a signal input, a control input, a signal output, and gain steps of a first magnitude, a signal processing circuit (120-168) with a signal input coupled to the first element, and a signal output, a second element (180) that has a signal input coupled to signal processing circuit, a control input, a signal output, and gain steps of a second magnitude smaller than the first magnitude, and a controller (180) that has a control output coupled to the first element (110), a control output coupled to the second element (180), and that adjusts receiver (100) gain by changing the first element (110) gain by a first magnitude, changing the second element (180) gain by substantially an inverse first magnitude, and subsequently changing the gain of the second element (180) by steps of the second magnitude to achieve a desired gain.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: SILICON LABORATORIES, INC.
    Inventors: Ramin Khoini-Poorfard, Alessandro Piovaccari, David S. Trager
  • Patent number: 7684772
    Abstract: A tuner down-converts a Radio Frequency (RF) wireless signal and outputs the converted signal. The tuner compensates for a TOP depending on a temperature and: detects a received signal strength depending on a RF output of the tuner and transmitting the detected strength to a gain control unit; measures an operating temperature of the tuner and transmits the measured temperature value; receives the measured temperature value to compare the received temperature value with a reference TOP value, compensating compensates for the TOP value depending on variation in temperature and outputting outputs the compensated value; and receives the compensated value to control the RF output based on the TOP value and the received signal strength.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: March 23, 2010
    Assignee: Integrant Technologies Inc.
    Inventors: Junghwan Lee, Bonkee Kim
  • Patent number: 7668523
    Abstract: An apparatus, a carrier medium storing instructions to implement a method, and a method for controlling the gain of a radio receiver for receiving packets of information in a wireless network. The receiver is connected to an antenna subsystem and has receive signal path including a plurality of sections including a first section coupled to the antenna subsystem and a next section. Each section has an adjustable gain and is able to provide a measure of the signal strength at its output. The method includes waiting for a start of packet indication, providing a measure of the signal strength at the output of the first section and the next section, and adjusting the gains of the first and the next sections using the provided measured signal strengths. In one embodiment, the receive signal path includes a filter, the provided measure for the first section is before the filter, and the provided measure for the second section is after the filter.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: February 23, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Andrew R. Adams, Philip J. Ryan, Brian Hart
  • Patent number: 7650128
    Abstract: A received low-frequency standard radio wave, which is an amplitude modulation signal, is converted to an intermediate frequency signal Sa, and is output to a detection circuit and an AGC circuit. The detection circuit and AGC circuit generates an RF control signal Sf1 and IF control signal Sf2 from the input intermediate frequency signal Sa, and controls an RF control circuit and IF control circuit by outputting the generated RF control signal Sf1 and IF control signal Sf2 to the RF control circuit and IF control circuit. By this a radio wave reception device can speed up AGC operation.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: January 19, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventor: Kaoru Someya
  • Patent number: 7640001
    Abstract: A system for filtering a signal includes a plurality of filter modules coupled in series. Each filter module includes a filter and a variable gain element. Each filter is capable of. receiving an input signal, attenuating a portion of the input signal that is outside a passband associated with the filter, and outputting at least a portion of the input signal that is within the passband associated with the filter. Each variable gain element is capable of receiving a control signal and inducing a gain in an output of the filter based on the control signal.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: December 29, 2009
    Assignee: Microtune (Texas), L.P.
    Inventors: Michael D. Womac, Armin G. Deiss, Thomas Leigh Davis, Kim E. Beumer