Clutch, Engine, And Transmission Controlled Patents (Class 477/77)
  • Patent number: 8725372
    Abstract: A method for adjusting the point of engagement of a friction clutch of a step-variable transmission for a motor vehicle, in particular a friction clutch of a dual clutch transmission. The friction clutch is controllably actuated by means of a clutch actuator and at least one synchronizer shifting clutch is controllably actuated by means of a shift actuator for the engagement and disengagement of a gear ratio of the spur-gear transmission. A set-point of the clutch actuator for the point of engagement of the friction clutch is adjusted as a function of a speed gradient value, which ensues from a transitional state with the friction clutch actuated and the shifting clutch actuated, once the shifting clutch is opened. The transitional state is established by setting the clutch actuator and the shift actuator to a respective transitional value substantially at the same time or, at least in sections, in parallel.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: May 13, 2014
    Assignees: GETRAG Getriebe-und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG, Bayerische Motoren Werke Aktiengesellschaft, Conti Temic microelectronic GmbH
    Inventors: Rainer Rinck, Markus Schuerlein, Tobias Soller
  • Publication number: 20140106931
    Abstract: Disclosed is a controller of a stepped automatic transmission. The stepped automatic transmission has a plurality of lock-up elements and performs downshift during coasting while an engine has a fuel cut-off state by changing over a pair of lock-up elements including an open side lock-up element and a lock-up side lock-up element. Downshift operation includes torque phase control and inertia phase control. The controller includes: a fuel cut-off recovery executing unit that is configured to perform recovery from the fuel cut-off state for an inertia phase control period; and a cylinder number restricting unit that is configured to restrict a count of cylinders recovered from the fuel cut-off state.
    Type: Application
    Filed: February 16, 2012
    Publication date: April 17, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Tomoaki Honma, Masahiro Iriyama
  • Patent number: 8690728
    Abstract: A method for controlling a vehicle powertrain during launch includes controlling slip across a first clutch that transmits engine torque through the first clutch and the current gear while a transmission operates in a current gear other than a launch gear, disengaging the first clutch, engaging the launch gear, and controlling slip across a second clutch that transmits engine torque through the second clutch and the launch gear.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: April 8, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Chad E. Griffin, Bradley D. Riedle, Jeffrey M. Jarvi, James B. Keyse, Daniel T. Lin
  • Patent number: 8682535
    Abstract: A vehicle speed estimator includes a unit that selects a minimum rotation speed among rotation speeds of wheels detected by a rotation speed detector and calculates a reference wheel speed of a construction vehicle at every predetermined time. The unit includes: a variable filter processor that performs a low-pass filter processing to the minimum rotation speed, the variable filter processor having a variable time constant; and a time constant changer that changes the time constant of the variable filter processor in accordance with travel conditions of the construction vehicle.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: March 25, 2014
    Assignee: Komatsu Ltd.
    Inventors: Koji Uematsu, Kazuhiro Hatake, Azumi Nomura
  • Patent number: 8663067
    Abstract: A method of operating an automatic transmission of a motor vehicle. The automatic transmission, when the motor vehicle is driven with an actuated accelerator and an engaged starting clutch, and then coasts with the accelerator not actuated and the starting clutch engaged, during coasting with the engaged starting clutch the transmission remaining in the gear in which it was previously driven with the gas pedal actuated. When the transmission input speed of the automatic transmission drops below a limit value, during coasting, the starting clutch is disengaged. During coasting with a disengaged starting clutch in the automatic transmission, a gear is shifted that matches the current speed of the motor vehicle so that, when the starting clutch is subsequently engaged, a gear is available that matches the speed of the motor vehicle prevailing at the time the starting clutch is subsequently engaged.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: March 4, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Roland Mair, Florian Schneider
  • Publication number: 20140057755
    Abstract: A method for improving starting of an engine that may be repeatedly stopped and started is presented. In one example, the method adjusts a desired engine speed to at least two levels during engine speed run-up from cranking to engine idle speed. The method may improve vehicle launch for stop/start vehicles.
    Type: Application
    Filed: October 29, 2013
    Publication date: February 27, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Felix Nedorezov, Seung-Hoon Lee, Yuji Fujii, Jeffrey Allen Doering
  • Patent number: 8655560
    Abstract: A control apparatus and a control method for a vehicular drive apparatus that includes a driving power source, and a power transmission device that transmits power from the driving power source to a drive wheel are provided. It is determined that a malfunction occurs in the power transmission device, when a comparison value remains equal to or above a predetermined value for a predetermined period. The comparison value is obtained by making a comparison between an actual value and a theoretical value that relate to a rotational speed of a predetermined rotational member that constitutes at least a part of the vehicular drive apparatus. The predetermined period is set according to an operating state of the power transmission device. Thus, it is possible to reduce the possibility that it is erroneously determined that a malfunction occurs, and to quickly determine that a malfunction occurs.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tooru Matsubara, Atsushi Tabata, Masakazu Kaifuku, Hidenori Katoh
  • Patent number: 8630778
    Abstract: A system and method for determining a required throttle position and operating a throttle in the required throttle position to attain a required engine speed for fuel cut acquisition is disclosed. A lock-up clutch may be engaged without a shock if a required engine speed is achieved that corresponds to a current transmission speed. Fuel economy may be increased by cutting fuel to the engine when a lock-up clutch is engaged.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: January 14, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Chris Hopp
  • Patent number: 8620513
    Abstract: An actuator arrangement for a motor vehicle drive train has a control device, an electric actuator and a drive circuit for the actuator. The drive circuit receives at least one nominal signal relating to an actuator from the control device and converts it into a drive signal for the actuator. The control device is checked for faults by means of a monitoring device. The drive circuit and/or a power stage which is arranged between the drive circuit and the motor receives a reset signal when such a fault occurs. Further, the control device is configured to check the function of the drive circuit and to generate a reset signal for the drive circuit and/or for the power stage if a malfunction occurs.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 31, 2013
    Assignee: GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventors: Martin Seufert, Michael Gerhard Ludwig, Volker Naegele
  • Patent number: 8585550
    Abstract: A coast stop vehicle includes a hydraulic pressure supplying unit which supplies a hydraulic pressure to the transmission while the engine is stopped, a coast stop start condition judging unit which judges whether or not a coast stop start condition holds, a coast stop control unit which stops the engine when the coast stop start condition is judged to hold by the coast stop start condition judging unit and starts the engine when receiving an acceleration request from a driver during the coast stop, a transmission control unit which causes a downshift of the transmission when receiving the acceleration request from the driver during the coast stop, and a hydraulic control unit which supplies the hydraulic pressure to an after-shift frictional engagement element which realizes a gear position after the downshift of the transmission during the coast stop.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 19, 2013
    Assignee: Jatco Ltd
    Inventors: Shinichiro Watanabe, Keichi Tatewaki, Naohiro Yamada, Noritaka Aoyama
  • Patent number: 8574122
    Abstract: Methods and systems are provided for controlling a vehicle engine coupled to a stepped-gear-ratio transmission. One example method comprises, in response to a first vehicle moving condition, shutting down the engine and at least partially disengaging the transmission while the vehicle is moving; and during a subsequent restart, while the vehicle is moving, starting the engine using starter motor assistance and adjusting a degree of engagement of a transmission clutch to adjust a torque transmitted to a wheel of the vehicle.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: November 5, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Ross Dykstra Pursifull, Gopichandra Surnilla, Joseph Norman Ulrey, Roger Lyle Huffmaster, Peter John Grutter, Yuji Fujii, Gregory Michael Pietron, Seung-Hoon Lee
  • Publication number: 20130260961
    Abstract: A wheel hub transmission for a vehicle driveline is provided. The wheel hub transmission includes an input shaft, a planetary gear arrangement, a casing member, and a clutching device. The input shaft is drivingly engaged with a power source and the planetary gear arrangement. The planetary gear arrangement is drivingly engaged with the input shaft and is in one of driving engagement and selective driving engagement with the casing member. The clutching device may be selectively drivingly engaged with a portion of the planetary gear arrangement, wherein upon engagement of the clutching device the planetary gear arrangement is fixed. The wheel hub transmission facilitates a torque multiplication at the wheel hub transmission, which reduces an amount of torque applied to a portion of the vehicle driveline.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 3, 2013
    Inventors: Jacquiline Dedo, Steven J. Wesolowski, Donald J. Remboski, Mark R.J. Versteyhe
  • Patent number: 8540603
    Abstract: In a state in which a vehicle travels while an internal-combustion-engine driving torque (Te) is transmitted to drive wheels, the internal-combustion-engine driving torque (Te) and a clutch torque (Tc) are decreased and an electric-motor driving torque (Tm) is increased based on the satisfaction of a shift-up condition (t1). During the time period from the satisfaction of the shift-up condition to time at which the clutch torque (Tc) becomes zero (t1 to t2), a load torque (Ts) of a power generator rotationally driven by an output shaft of the internal combustion engine is generated. In a hybrid vehicle equipped with an AMT, power consumption with the driving of an electric motor when a shift-up action is carried out using the assist of the electric-motor torque can be reduced.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: September 24, 2013
    Assignees: Aisin AI Co., Ltd., Aisin Seiki Kabushiki Kaisha
    Inventors: Kazutaka Kobayashi, Yuichiro Nakamura
  • Patent number: 8528684
    Abstract: A charge pressure reduction circuit for a loader backhoe in which a directional control valve causes the charge pump to operate at a system pressure high enough to adequately supply a clutch circuit when conditions indicate the vehicle is operating in a loader or transport mode. The directional control valve causes the charge pump to operate at a lower pressure as, for example, required for a lubrication circuit when conditions indicate the vehicle is in a backhoe operating mode.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: September 10, 2013
    Assignee: Deere & Company
    Inventors: Nathan H. Laws, Jonathan R. Copeland, Jacob J. Foxen, Anthony W. Brandon
  • Patent number: 8523738
    Abstract: A method of shifting a power distribution unit for a vehicle from a first operating state to a second operating state is provided. The method includes the step of adjusting a rotational speed of a portion of a second axle assembly using a clutching device to impart energy to a lubricant within the second axle assembly. A controller in communication with a power source of the vehicle adjusts an operating condition of the power source to facilitate moving the clutching device. The power distribution unit includes an inter-axle differential capable being placed in a locked condition by the clutching device and of accommodating a rotational difference between a first output gear and a second output gear with the inter-axle differential.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: September 3, 2013
    Assignee: Dana Heavy Vehicle Systems Group, LLC
    Inventors: Timothy J. Morscheck, Kenneth E. Cooper, James F. Ziech, Richard A. Nellums, Steven J. Wesolowski, Donald J. Remboski
  • Patent number: 8522644
    Abstract: When shift transmission of an automatic transmission is performed in a free-run state, a driving force control apparatus controls a degree of engagement of an engaging device in accordance with a hydraulic difference between a first hydraulic pressure and a second hydraulic pressure in a condition that the first hydraulic pressure does not reach the second hydraulic pressure. As a result, an oil pump supplies a hydraulic pressure to the automatic transmission, and the shift transmission can be performed. The first hydraulic pressure is a hydraulic pressure of the automatic transmission. The second hydraulic pressure is a hydraulic pressure required to perform the shift transmission. The engaging device can adjust an extent of transmission power between an engine and the automatic transmission in accordance with the degree of engagement.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: September 3, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hitoshi Matsunaga, Yoji Takanami
  • Patent number: 8500602
    Abstract: A method of operating a transmission positioned between a drive aggregate and an axle drive, a transmission input shaft is connected, via a clutch, with the drive aggregate, and a transmission output shaft is connected with the axle drive and power can be diverted from the transmission to drive a power take-off. The PTO is activated by an engine intervention, shifting the transmission to neutral and disengaging the clutch. Thereafter, the clutch is partially engaged at either a position dependent or distance dependent clutch speed while monitoring the input rotational speed and drive aggregate rotational speed. When the input rotational speed approximately equals the drive aggregate rotational speed and the idle rotation speed of the drive aggregate, the clutch is no longer being engaged at the position dependent or distance dependent clutch speed, but is fully engaged at a maximum clutch speed.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: August 6, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Joachim Staudinger, Peter Herter, Wolfgang Groener
  • Publication number: 20130197769
    Abstract: A method of controlling shifts in a vehicle transmission, for example a utility vehicle, having a transmission or partial transmission designed as a dual-clutch transmission that shifts as a without traction force interruption. The transmission comprises a dual clutch having a first clutch and a second clutch that are functionally connected to a drive engine, and a transmission or partial transmission comprises a main transmission that shifts with traction force interruption and is connected to a drive-train downstream from the dual-clutch transmission. During shifts in the main transmission that is connected downstream from the dual-clutch transmission, the dual clutch is operated, by pre-loading the two clutches, as a transmission brake and/or an engine brake for adapting the speed of components to be shifted so as to enable short shifting times and ensure comfortable and reliable driving operation.
    Type: Application
    Filed: August 3, 2011
    Publication date: August 1, 2013
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Florian Schneider, Roland Mair
  • Publication number: 20130172148
    Abstract: A method for operating a drive train having a variable speed transmission connecting a drive unit with an output drive. The transmission has gears that can be selected by the driver and has a clutch that can be manually actuated. The torque intended by the driver is determined based on accelerator pedal actuation and the drive unit is operated on that basis. Whenever the driver disengages the clutch and changes gears, the torque intended by the driver is not used for operating the drive unit, rather the drive unit is automatically operated by a rotational speed control. In a first phase rotational speed control, a target value is automatically determined, that is independent of the current transmission input speed, and used for the rotational speed control. During a second phase, a target value which is dependent on the current transmission input speed is used for the rotational speed control.
    Type: Application
    Filed: August 3, 2011
    Publication date: July 4, 2013
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Norbert Wiencek, Bernd Doebele
  • Publication number: 20130172147
    Abstract: A method and device for operating a dual clutch transmission connectable to an internal combustion engine provided in a vehicle includes providing a control unit for managing at least the internal combustion engine and the transmission, providing a prediction model including at least one simulated shift sequence for the transmission, predicting the time between a first power upshift/downshift and a second power upshift/downshift for the transmission by using the at least one prediction model, modifying at least one parameter for operating the transmission if the predicted time between the first power upshift/downshift and the second power upshift/downshift for the transmission is shorter than a predetermined time.
    Type: Application
    Filed: December 21, 2009
    Publication date: July 4, 2013
    Applicant: VOLVO LASTVAGNAR AB
    Inventors: Behrooz Razaznejad, Anders Eriksson, Johan Bjernetun
  • Patent number: 8460155
    Abstract: When reception of engine rotating speed information from an engine control unit is failed, the control unit puts gear positions belonging to a second gear position group in a non-operable and connected state, and then puts a second clutch into a engaged state to convert a rotating speed of a second input shaft detected by a second rotational sensor into a rotating speed of an engine output shaft. The control unit controls so as to fasten a first clutch based on the converted rotating speed of the engine output shaft, thereby enabling a star of a vehicle.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: June 11, 2013
    Assignee: Suzuki Motor Corporation
    Inventor: Minoru Murakami
  • Patent number: 8439801
    Abstract: A method for controlling a drivetrain in a motor vehicle which has an internal combustion engine with a crankshaft, an automated gearbox with engagable and disengagable gears and a gearbox input shaft and a gearbox output shaft which drives drive wheels, a friction clutch which connects the crankshaft and the gearbox input shaft in a separable manner and is operated in an automated fashion, and a control unit for controlling the drivetrain. For driving comfort, before the vehicle comes to a stop, a starting gear is engaged in an overrun mode such that, after opening the friction clutch, a synchronization of gearbox input and output shaft rotational speed of the starting gear is initiated at a gearbox input shaft rotational speed which is higher than a target rotational speed of the gearbox input shaft yielded by the transmission ratio of the starting gear between the gearbox input and output shaft.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: May 14, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Marian Preisner, Juergen Benz
  • Patent number: 8439800
    Abstract: A shift control system for a marine drive applies partial clutch engagement pressure upon initial shifting from forward to reverse to prevent stalling of the engine otherwise caused by applying full clutch engagement pressure upon shifting from forward to reverse.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: May 14, 2013
    Assignee: Brunswick Corporation
    Inventors: Andrew H. Bazan, Kyle M. Miller, William J. Samples, Doyle E. Whittington, Jr., Chih-hua Liang
  • Patent number: 8439802
    Abstract: A speed change control device of an automatic transmission comprises a first control section that, upon detecting a speed change instruction for a speed change from a first given speed to a second given speed, carries out the speed change by reducing an engaging pressure of a releasing side frictional element that has established the first given speed and increasing an engaging pressure of an engaging side frictional element that would establish the second given speed; a second control section that carries out a correction processing to increase the engaging pressure of the releasing side frictional element when a throttle open degree is increased during the speed change carried out by the first control section; and a third control section that inhibits the correction processing of the second control section when the engaging pressure of the releasing side frictional element is lower than a given value.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: May 14, 2013
    Assignee: Jatco Ltd
    Inventors: Masami Suzuki, Fumihiro Yamanaka
  • Patent number: 8417426
    Abstract: A tractor has a control system configured for disengaging the clutch a first time, selecting a first transmission ratio of the change speed gearbox, engaging the clutch a first time to drive the PTO shaft determining the speed of the PTO shaft, disengaging the clutch a second time when the PTO shaft attains a predetermined first speed, selecting a second transmission ratio of the change speed gearbox and engaging the clutch a second time to drive the PTO shaft up to a desired second speed.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 9, 2013
    Assignee: CNH America LLC
    Inventor: Antoon Vermeulen
  • Patent number: 8405497
    Abstract: An alarm device for a clutch that issues an alarm indicating a lifetime expiration of the clutch that selectively connects and disconnects an input shaft to and from an output shaft, includes: a slip heat release threshold setting unit 104 that establishes a threshold criteria as to a clutch damage or the clutch lifetime, in a form of a relation between a heat release generated in a clutch slip operation and a frequency of the heat release occurrences; and a slip heat release calculator 105 that calculates the heat release during the clutch operation, based on a hydraulic oil pressure in an actual clutch operation and a relative circumferential speed between input and output shafts, the alarm device 11 issues the alarm based on the calculation result through the slip heat release calculating means 105 and the slip heat release threshold setting means 104.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: March 26, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kazunari Okabe, Akihiko Fujimoto, Takeshi Harasawa
  • Patent number: 8401754
    Abstract: In a method for detecting the status of the clutch in the drive train of a motor vehicle, the engine speed and the speed are ascertained and a transmission ratio is formed as the quotient of the engine speed and speed. Furthermore, a reference value is determined, which is set equal to the transmission ratio from a first time step. In a subsequent time step, the difference between the instantaneous transmission ratio and the reference value is formed, a disengaged clutch status being detected if the difference exceeds a threshold value.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: March 19, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Helmut Wandel
  • Patent number: 8394000
    Abstract: A method for operating a vehicle drivetrain (1) having a drive motor (9), a transmission (10) and a drive output (2). When a gear ratio change is called for in the transmission (10), between an actually engaged gear and a target gear, one of a frictional or an interlock-type shift element is engaged in a flow of force in the vehicle drivetrain (1) and the other of an interlock-type or a frictional shift element is disengaged from the flow of force in the vehicle drivetrain (1). An actual speed that is at least equivalent to a transmission input speed is monitored and an actuation pressure of the frictional shift element involved in the shift operation and/or a torque of the drive motor (9) is/are varied to change the actual speed to a nominal speed.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: March 12, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Christian Popp, Klaus Steinhauser, Jorg Arnold, Valentine Herbeth
  • Patent number: 8392047
    Abstract: A system for preventing damage to a vehicle, such as a truck, is provided. A sensor may be operable to measure a parameter relating to a component in a vehicle and to provide a parameter signal indicative of the measured parameter. A processor may be in communication with the sensor and operable to receive the parameter signal from the sensor. The processor may be further operable to analyze the parameter signal. The processor may be further operable to initiate a damage prevention process including a reduction of heat generation in the vehicle based on the parameter.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: March 5, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Loren Christopher Dreier, Ingo-Gerd Sauter
  • Patent number: 8387479
    Abstract: A dual clutch transmission includes a first and second input shaft, an output shaft, a dual clutch having a first clutch and a second clutch, a first and second gear transmission mechanisms, and a control device connected to an accelerator opening degree sensor, detecting an accelerator opening degree, and a rotational speed sensor, detecting a rotational speed of an engine, and is provided with a pre-shift control device pre-selecting the shift stage gear set for establishing the shift stage, which is one stage upper or lower than the shift stage established by the selected shift stage gear set from one of the first and second gear transmission mechanisms, when values of the accelerator opening degree, the rotational speed, and the rotation acceleration, becomes equal to or more than predetermined upper shift stage pre-shift setting values or equal to or less than predetermined lower shift stage pre-shift setting values.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: March 5, 2013
    Assignee: Aisin AI Co., Ltd.
    Inventor: Shiro Ogami
  • Patent number: 8380411
    Abstract: A clutch control device for vehicle equipped with a clutch actuator driven by a working fluid, wherein secular change in the flow rate control valve for controlling the working fluid is compensated, and the rate of connection of the clutch is correctly controlled by a simple means. To control the stroke of a clutch actuator 110, the clutch control device is provided with a single flow rate control valve 1 that controls the feed and discharge of the working fluid by using an electromagnetic solenoid. A flow rate control valve control device 9 is provided with a learning device 91 that learns the neutral position of the flow rate control valve 1 which shuts off the flow of the working fluid, separately detects the amounts of electric current to a coil 8 of when the rate of change in the stroke becomes zero depending upon the directions in which the valve body of the flow control valve 1 moves, and learns the central point at the neutral position by averaging the detected values.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: February 19, 2013
    Assignee: Isuzu Motors Limited
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Patent number: 8352136
    Abstract: A vehicle control system for an engine-powered vehicle equipped with an engine and an automatic transmission with a clutch. When a given engine stop requirement is met during running of the engine, the system stops the engine automatically. When a given engine restart requirement is met after stop of the engine, the system restarts the engine and enters a clutch control mode to bring the clutch in the automatic transmission into a slippable state in which the clutch is permitted to slip based on the speed of the vehicle, thereby absorbing the acceleration shock which usually occurs upon engagement of the clutch to transmit engine torque to wheels of the vehicle when the engine is restarted, and the speed of the vehicle is relatively low.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: January 8, 2013
    Assignee: Denso Corporation
    Inventor: Tatsuya Saito
  • Publication number: 20120316029
    Abstract: A method for controlling a vehicle on an uphill incline includes automatically shifting a transmission to first gear, automatically stopping the engine, using wheel torque to maintain a one-way clutch engaged and to hold a transmission component against rotation, preventing vehicle rollback by automatically engaging a target gear and tying-up the transmission automatically restarting the engine, and automatically reengaging first gear.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Davor D. Hrovat, Steven G. Thomas, Alex O. Gibson, Roger L. Huffmaster
  • Patent number: 8308609
    Abstract: A method for controlling a power-off downshift in a powershift transmission includes disengaging the current gear, synchronizing engine speed and a speed of the target gear layshaft by increasing a torque capacity of the target gear clutch, disengaging the clutch, engaging the target gear, and reengaging the clutch.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: November 13, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Shawn A. Holland, Ralph S. Walker, George Herr, Jeffrey J. Tumavitch, Bradley D. Riedle, Steven C. Meisner, Hong Jiang, Matthew J. Shelton
  • Patent number: 8308610
    Abstract: A device for controlling a power transmission device for a vehicle, which, at the time of gearshift, so controls the engine as to rotate at a target rotational speed, wherein at the time of shifting the gear up, a target value properly corresponding to an actual vehicle speed is set to quickly increase the engine output and to shorten the time for shifting the gear. In controlling the engine at the time of shifting the gear up, a target engine rotational speed is set based the signals from, wheel rotational speed detector means that detects the rotational speed of a wheel, such as an anti-lock control device. Thus, the target engine rotational speed is set depending properly upon an actual vehicle speed that varies accompanying an increase in the amount of engaging the clutch at the time of gearshift, and the gear at the time of accelerating the vehicle can be quickly shifted up without accompanied by the shift shock.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: November 13, 2012
    Assignee: Isuzu Motors Limited
    Inventors: Nobuyuki Iwao, Hiroshi Usuba
  • Patent number: 8306714
    Abstract: A start permission decision section issues a start permission when an engine speed and a throttle valve opening become higher than predetermined values. A clutch-torque capacity storage section stores a clutch-torque capacity reference map in which a clutch-torque capacity is set as a function of at least the engine speed or as a function of the engine speed and the throttle valve opening. A clutch-torque capacity correction section corrects the clutch-torque capacity reference map so that the clutch-torque capacity is proportionally reduced in response to the difference between the engine speed and a start permission speed when a start permission is issued. An oil pressure controlling section connects the clutch with the clutch-torque capacity obtained in accordance with the corrected clutch-torque capacity map to start the vehicle.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: November 6, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiaki Nedachi, Hiroyuki Kojima, Kazuyuki Fukaya, Takashi Ozeki, Taito Kobayashi
  • Patent number: 8285462
    Abstract: A hybrid transmission is operative to transfer torque between an input member and torque machines and an output member in one of a plurality of fixed gear and continuously variable operating range states through selective application of torque transfer clutches. The torque machines are operative to transfer power from an energy storage device. A method for controlling the hybrid transmission includes operating the hybrid transmission in one of the operating range states, determining a first set of internal system constraints on output torque transferred to the output member, determining a second set of internal system constraints on the output torque transferred to the output member, and determining an allowable output torque range that is achievable within the first set of internal system constraints and the second set of internal system constraints on the output torque transferred to the output member.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 9, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Tung-Ming Hsieh, Bin Wu
  • Patent number: 8267836
    Abstract: A control system for an automatic transmission includes a downshift control section configured to increase an engaging capacity of an engaging-side engaging element to engage the engaging-side engaging element and decrease a first engaging capacity of a disengaging-side engaging element to disengage the disengaging-side engaging element when a parameter representing a progressing condition of the downshift reaches a value, thereby carrying out the downshift in a power-on condition. Additionally, the downshift control section is configured to decrease the engaging capacity of the disengaging-side engaging element to a second engaging capacity smaller than the first engaging capacity to continue the downshift which is currently progressing and to cause the engine control section to continue controlling the engine speed when a power-off condition is detected upon an accelerator pedal being returned to a position representing an operating amount during the downshift.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 18, 2012
    Assignee: JATCO Ltd
    Inventor: Masami Suzuki
  • Patent number: 8265844
    Abstract: A clutch control device for vehicle is equipped with a clutch actuator driven by a working fluid, and works to correctly control the rate of connection of the clutch by a simple means compensating secular change of a flow rate control valve that controls the working fluid. The clutch control device has a single flow rate control valve 1 for controlling the feed and discharge of the working fluid to change the stroke of the clutch actuator 110. The flow rate control valve 1 has a neutral position at where feed and discharge of the working fluid is stopped. A flow rate control valve control device 9 is provided with a learning device 91 for learning the neutral position. To control the stroke, the flow rate control valve control device 9 corrects the amount of electric current to a coil 8 of an electromagnetic solenoid based on a value learned by the learning device 91 and compensates a change in the flow rate characteristics caused by secular change.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: September 11, 2012
    Assignee: Isuzu Motors Limited
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Patent number: 8257223
    Abstract: A method of carrying out a shift with traction force interruption during hybrid operation in a parallel hybrid vehicle having an automated transmission. The method comprises the steps of maintaining the coupling between the internal combustion engine (1) and the electric machine (2), eliminating the load before disengaging the old gear, and synchronizing to the new gear by the operation of the electric machine (2).
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 4, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Johannes Kaltenbach, Stefan Wallner
  • Publication number: 20120220421
    Abstract: A method is proposed for controlling a through-connection clutch of a vehicle, in which an interlocking portion of the clutch is opened when the drive-train is virtually free from torque, a shifting operation is then carried out, and after the shifting operation the clutch is closed again. According to the invention, the torque transmitted by the interlocked connection in the clutch is influenced by controlling the motor in order to produce a torque-free condition at the interlocked connection in the clutch, in such manner that the interlocked connection is pre-stressed before the torque-free condition has been reached and separated immediately only when the torque-free condition is reached.
    Type: Application
    Filed: October 13, 2010
    Publication date: August 30, 2012
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Rainer Petzold, Peter Herter, Mario Steinborn, Franz Bitzer
  • Patent number: 8255135
    Abstract: A control method of shifting gear in an automatic manual transmission having a twin-clutch gearbox to pass from a current gear to a successive gear, the control method including the steps of receiving a command of gear shifting, opening a first clutch associated with current gear, closing a second clutch which is associated with successive gear and starts transmitting a torque after a delay time interval from the start of the closing, and starting the opening of first clutch, thus decreasing the torque transmitted by first clutch itself before second clutch starts transmitting a torque, such that first clutch decreases the torque transmitted to the driving wheels before the second clutch starts transmitting a torque to the driving wheels.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: August 28, 2012
    Assignee: Ferrari S.p.A.
    Inventors: Francesco Marcigliano, Davide Montosi
  • Patent number: 8251194
    Abstract: A solenoid valve device that includes a solenoid valve; a drive circuit that drives the solenoid section; a current sensor that detects a current applied to the solenoid section; and a control unit that controls, when the solenoid valve is served as the pressure control valve, the drive circuit by performing a feedback control based on the current detected by the current sensor so that a current in accordance with an output pressure command is applied to the solenoid section, and controls, when the solenoid valve is served as the solenoid pump, the drive circuit without performing the feedback control so that a pump current is applied to the solenoid section.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 28, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Noriomi Fujii, Kazuhiko Kato, Tetsuya Shimizu, Kazunori Ishikawa, Naoyuki Fukaya
  • Publication number: 20120202647
    Abstract: A speed change control device of an automatic transmission comprises a first control section that, upon detecting a speed change instruction for a speed change from a first given speed to a second given speed, carries out the speed change by reducing an engaging pressure of a releasing side frictional element that has established the first given speed and increasing an engaging pressure of an engaging side frictional element that would establish the second given speed; a second control section that carries out a correction processing to increase the engaging pressure of the releasing side frictional element when a throttle open degree is increased during the speed change carried out by the first control section; and a third control section that inhibits the correction processing of the second control section when the engaging pressure of the releasing side frictional element is lower than a given value.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 9, 2012
    Inventors: Masami SUZUKI, Fumihiro YAMANAKA
  • Patent number: 8226530
    Abstract: A method controls an automated dual clutch transmission of a motor vehicle. An actuating device, preferably arranged in the region of a steering wheel, for selecting the gear step of the shift transmission, which actuating device has a first and a second actuating element which, when actuated individually, cause an upshift or downshift of the shift transmission and, when actuated simultaneously, transfer the shift transmission into an idling state. When both actuating elements are actuated simultaneously, the force-transmitting clutch remains closed and consequently the selected gear remains engaged, and at the same time a clutch torque and/or an engine torque and, consequently, a drive torque acting on a driven wheel is reduced to approximately 0 Nm. It is thereby possible to tie up the force transmission again especially quickly after the termination of the idling state.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: July 24, 2012
    Assignee: Dr. Ing. H.C. F. Porsche AG
    Inventors: Peter Baur, Jan-Peter Hoffmeister, Jochen Möckl
  • Patent number: 8224538
    Abstract: An automatic transmission includes gears, torque-transmitting mechanisms, interconnecting members, an input member and an output member. A method of controlling the automatic transmission includes data acquisition from the output shaft torque sensor, commanding a hydraulic fluid pressure pulse time and a pressure pulse value to engage a first torque-transmitting mechanism, calculating a rate-of-change of a first data output from the output shaft torque sensor, calculating a rate-of-change of a second data output from the output shaft torque sensor, comparing the results of the rate-of-change calculations and adjusting the hydraulic fluid pressure pulse time and a pressure pulse value if the rate of change of the second data output is not equal to the rate-of-change of the first data output.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: July 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Zhen Zhang, Shushan Bai, John R. Maten
  • Patent number: 8219291
    Abstract: A method of controlling a vehicle includes signaling a transmission to shift into a first gear ratio and sensing a current gear ratio of the transmission after signaling the transmission to shift into the first gear ratio. The method further includes implementing a diagnostic transmission shift control strategy to override a normal transmission shift control strategy when the current sensed gear ratio is not equal to the requested first gear ratio to verify proper functionality of a mode control valve that is responsible for shifting the transmission into the first gear ratio.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: July 10, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Emmanuel V. Yabes, Brian J. Pellerito, Michael Chernyak, Craig J. Hawkins, Cheol W. Kim
  • Patent number: 8206261
    Abstract: The invention relates to a method of transmitting power between a shaft of a heat engine and a wheel axle shaft of a hybrid vehicle. The inventive method involves the use of: a power transmission device comprising an electric machine which is connected to (i) the heat engine by means of a clutch and (ii) a wheel axle shaft; and a starting system which is mechanically independent of the electric machine and which is connected to the heat engine. According to the invention, the heat engine is started by applying a torque to the shaft simultaneously using the starting system and the clutch.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: June 26, 2012
    Assignee: Peugeot Citroen Automobiles SA
    Inventors: Gaetan Rocq, Yvan Le Neindre, Cedric Launay
  • Publication number: 20120150397
    Abstract: A method for executing a gear shift step in a motor vehicle (100; 110) having an engine (220) and an automated manual transmission incorporating a clutch (230) and a gearbox (240), the method includes the steps, during a gear shift procedure, controlling a torque (Tc) in the clutch (230) to enable a gear shift step to take place before a target speed (rpm*) of the engine (220) is reached; and, when the clutch (230) has stopped sliding, of controlling a torque (Te) of the engine (220) on the basis of the torque (Tc) in the clutch (230). A computer program product includes program code (P) for a computer (200; 210) for executing a method according to the invention. Also disclosed is a device for executing the gear shift step in a motor vehicle (100; 110) having an engine (220) and an automated manual transmission incorporating a clutch (230) and a gearbox (240), and a motor vehicle equipped with the device is disclosed.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 14, 2012
    Inventors: Fredrik Swartling, Magnus Granström, Mikael Hanson
  • Patent number: 8192327
    Abstract: Methods and systems are provided for controlling a vehicle engine coupled to a stepped-gear-ratio transmission. One example method comprises, in response to a first vehicle moving condition, shutting down the engine and at least partially disengaging the transmission while the vehicle is moving; and during a subsequent restart, while the vehicle is moving, starting the engine using starter motor assistance and adjusting a degree of engagement of a transmission clutch to adjust a torque transmitted to a wheel of the vehicle.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: June 5, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Ross Dykstra Pursifull, Gopichandra Surnilla, Joseph Norman Ulrey, Roger Lyle Huffmaster, Peter John Grutter, Yuji Fujii, Gregory Michael Pietron, Seung-Hoon Lee