Clutch, Engine, And Transmission Controlled Patents (Class 477/77)
  • Publication number: 20120135838
    Abstract: A method of operating a transmission of a vehicle drive-train that comprises frictional shifting elements and an interlocking shifting element. In the neutral operating condition of the transmission, and in the case of an operating condition variation of the vehicle drive-train in which, when it is required to establish the force flow in the transmission, the interlocking shifting element is to be changed from a disengaged to an engaged operating condition, by increasing the transmission capacities of at least two frictional shifting elements which have to be engaged for producing the force flow, a rotational speed difference in the area of the interlocking shifting element is determined, and a drive torque of a drive machine is adjusted to a level that brings the speed difference within a predefined range at which the interlocking shifting element is approximately synchronized and can therefore be engaged.
    Type: Application
    Filed: July 22, 2010
    Publication date: May 31, 2012
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Ruben Cuppers, Werner Fuchs, Thilo Schmidt
  • Patent number: 8185282
    Abstract: A method for the operation of a drivetrain comprising an automatic transmission, a motor and at least five shift elements in which two shift elements are engaged and three shift elements are disengaged. When carrying out an upshift or downshift, a first shift element is either disengaged or engaged, and a second shift element is engaged or disengaged. While the first upshift or downshift is being carried out, a second shift element is prepared for disengaging or engaging and a third shift element is prepared for engaging or disengaging. Actuation of the second shift element occurs by virtue of a minimum selection of a first alternative or a maximum selection a second alternative. While the first upshift or downshift is being carried out and while the second upshift or downshift is being carried out, at least one fourth shift element is kept engaged or nearly engaged.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 22, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Klaus Steinhauser, Christian Popp
  • Patent number: 8177684
    Abstract: A gear change control device is provided for a straddle-type vehicle having a clutch and a transmission. The device includes a clutch actuator configured to engage and disengage the clutch. A transmission actuator is configured to change a gear of the transmission. At least one sensor is configured to sense an operational condition of the straddle type vehicle. At least one switch is configured to generate a gear change command. A controller is operatively connected to the clutch actuator, the transmission actuator, the at least one sensor, and the at least one switch. The controller is configured to change gears in response to the gear change command and during the gear change reengage the clutch under either a first control routine or second, different control routine based upon the operational condition of the straddle-type vehicle determined by the at least one sensor.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 15, 2012
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Toru Zenno
  • Patent number: 8162796
    Abstract: A method for operating an automatic transmission of a motor vehicle, in particular a variable-speed automatic transmission. The automatic transmission has five shift elements and for transferring torque or force in a forward gear and in a reverse gear at least three of the five shift elements are engaged. In a neutral position of the automatic transmission, to prevent torque or force flow at least one of the shift elements that are engaged in the respective forward or reverse gear is fully disengaged.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: April 24, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Christian Popp, Klaus Steinhauser, Peter Schiele, Bernd Allgaier, Thilo Schmidt
  • Publication number: 20120065022
    Abstract: A power transmitting apparatus for a vehicle mounted with a torque converter and an idle-stop mechanism can be configured to improve fuel economy without cancelling a fuel-cut-ff during vehicle speed reduction and to reduce the manufacturing cost by eliminating an electrically-driven oil pump. A power transmitting apparatus can comprise a torque converter, a clutch mechanism, an oil pump, a continuously variable transmission, a clutch control device, an engine control device, and a flow control device. The flow control device can be configured to limit or prevent the supply of oil to the torque converter by the oil pump and to prioritize the supply of oil to the clutch mechanism and the continuously variable transmission when the vehicle speed is reduced below a predetermined value with fuel being cut off by the engine control device during vehicle speed reduction.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 15, 2012
    Applicant: KABUSHIKI KAISHA F.C.C.
    Inventors: Tatsuyuki Ohashi, Shouji Asatsuke, Akio Oishi, Ryouhei Chiba, Jun Ishimura, Keiichi Ishikawa
  • Patent number: 8135517
    Abstract: A control method of the torque of a road vehicle having a powertrain system provided with an engine and a driveline which transmits the torque generated by the engine to the road surface; the method contemplates the steps of: determining a target torque; modeling the powertrain system as a single physical component which presents a characteristic mechanical inertia and a characteristic torsional elasticity; determining a current load torque of the vehicle; determining a target torsion of the powertrain system according to the target torque and the current load torque; determining a current torsion of the powertrain system and a current torsion speed of the powertrain system; determining a requested torque on the basis of the energy balance according to the target torsion, the current torsion, the current torsion speed, and the current load torque; and using the requested torque on the basis of the energy balance to control the torque generation of the engine.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: March 13, 2012
    Assignee: Magneti Marelli Powertrain S.p.A.
    Inventors: Savino Luigi Lupo, Gabriele Serra, Filippo Para
  • Patent number: 8116956
    Abstract: A method of engaging a clutch within a drive train may include detecting a fault in a clutch engagement data link, selecting an alternative clutch control logic, detecting a value indicative of a rotational speed of a first portion of the clutch and moving a second portion of the clutch based upon the detected value.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: February 14, 2012
    Assignee: Eaton Corporation
    Inventors: Thomas R. Connolly, Mark E. Hope
  • Patent number: 8092339
    Abstract: A method for controlling a powertrain includes operating a transmission in a neutral operating range state, monitoring commands affecting an input speed, monitoring a tracked clutch slip speed, determining constraints on an input acceleration based upon the commands, determining a clutch slip acceleration profile based upon the constraints on the input acceleration, determining an input acceleration profile based upon the clutch slip acceleration profile, and controlling the powertrain based upon the clutch slip acceleration profile and the input acceleration profile.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: January 10, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah, Kristin L Day
  • Patent number: 8079936
    Abstract: A method for controlling a gear shift of a dual clutch transmission having an offgoing clutch and an oncoming clutch, includes using torque transmitted by the oncoming clutch to control torque at a transmission output, using a speed of a power source to control a transfer of torque between the offgoing clutch and the oncoming clutch, and varying said torque capacity to produce a target slip across the oncoming clutch when the shift is completed.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: December 20, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Kevin MacFarlane, Brian Keyse, Eileen A. Davidson, David Orton, Thomas R. Langeland
  • Publication number: 20110307150
    Abstract: A method for controlling an upshift in a vehicle transmission includes transferring engine torque from an offgoing clutch to an oncoming clutch, using a torque capacity of the offgoing clutch to dampen oscillations when a difference between a speed of a transmission offgoing input and a calculated expected speed of said input is greater than a reference speed difference, and modulating engine torque during a ratio change phase of the shift.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 15, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Hong Jiang, Zhengyu Dai, Matthew J. Shelton
  • Publication number: 20110306464
    Abstract: A method for controlling a power-off downshift in a powershift transmission includes disengaging the current gear, synchronizing engine speed and a speed of the target gear layshaft by increasing a torque capacity of the target gear clutch, disengaging the clutch, engaging the target gear, and reengaging the clutch.
    Type: Application
    Filed: June 14, 2010
    Publication date: December 15, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Shawn A. Holland, Ralph S. Walker, George Herr, Jeffrey J. Tumavitch, Bradley D. Riedle, Steven C. Meisner, Hong Jiang, Matthew J. Shelton
  • Publication number: 20110287890
    Abstract: A method of operating a transmission positioned between a drive aggregate and an axle drive, a transmission input shaft is connected, via a clutch, with the drive aggregate, and a transmission output shaft is connected with the axle drive and power can be diverted from the transmission to drive a power take-off. The PTO is activated by an engine intervention, shifting the transmission to neutral and disengaging the clutch. Thereafter, the clutch is partially engaged at either a position dependent or distance dependent clutch speed while monitoring the input rotational speed and drive aggregate rotational speed. When the input rotational speed approximately equals the drive aggregate rotational speed and the idle rotation speed of the drive aggregate, the clutch is no longer being engaged at the position dependent or distance dependent clutch speed, but is fully engaged at a maximum clutch speed.
    Type: Application
    Filed: January 8, 2010
    Publication date: November 24, 2011
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Joachim Staudinger, Peter Herter, Wolfgang Groener
  • Publication number: 20110287891
    Abstract: An overspeed system for a vehicle is disclosed. The overspeed system may have a power source, a transmission unit, and a torque converter assembly operatively coupling the power source to the transmission unit. The overspeed system may also have a travel speed sensor configured to generate a signal indicative of a vehicle speed, and a controller in communication with the torque converter assembly and the travel speed sensor. The controller may be configured to prevent a decoupling of the torque converter assembly in response to the signal.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 24, 2011
    Inventor: Hong-Chin Lin
  • Patent number: 8055402
    Abstract: A method for detecting a fault state in an automated motor vehicle gearbox having two parallel branches. Each branch has a clutch and is configured to transmit driving torques from a drive unit to at least one driven wheel of the motor vehicle. The method comprises the steps of sensing whether both clutches are at least partially closed; of sensing the rotational speed of the at least one driven wheel and sensing the rotational speed of a non-driven wheel, and of detection of a fault state if both clutches are at least partially closed, and a difference between the rotational speeds of the wheels is greater than a predetermined reference value.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: November 8, 2011
    Assignee: GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventors: Martin Seufert, Ralf Hettich, Josef Glatthaar, Ralph Richter, Tobias Kalisch, Marius Bryzgalski, Joerg Moellmann
  • Patent number: 8052573
    Abstract: A vehicle shift control apparatus is basically provided with an engine, a drive wheel, a transmission and a controller. The transmission is operatively disposed between the engine and the drive wheel for shifting gears by executing a clutch switch operation so as to change a drive transmission path of the transmission. The controller is operatively to the transmission to control a gear shifting of the transmission. The controller includes an engine speed suppressing section that is configured to execute an engine speed suppression control when a driver performs an accelerator operation during the clutch switch operation associated with downshifting while coasting. The engine speed suppression control is further configured to reduce a torque capacity decrease rate of a clutch being released in comparison with a torque capacity decrease rate that would occur if shifting was taking place during normal coasting in which the accelerator operation is not performed.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 8, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Tomoaki Honma
  • Patent number: 7963884
    Abstract: A straddle vehicle comprises a single actuator that controls clutch engagement as well as gear shifting. The actuator can be connected to the clutch and the shiftable transmission with a rotating shaft. When an engine speed reaches or exceeds a preset value during an up-shift operation, an ECU or other controller reduces the engine output to facilitate a smooth gear shift.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: June 21, 2011
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Kazutaka Hiroi
  • Publication number: 20110136621
    Abstract: Methods and systems are provided for reducing driveline unwinding during successive engine shutdown and restart operations. In one example, during an engine shutdown, torsion is maintained in a transmission gear-train until an engine restart is requested by engaging one or more transmission clutches while applying wheel brakes.
    Type: Application
    Filed: April 30, 2010
    Publication date: June 9, 2011
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Roger Lyle Huffmaster, Alex O'Connor Gibson, Gregory Michael Pietron, Seung-Hoon Lee
  • Patent number: 7953538
    Abstract: A control apparatus for a vehicular drive system including an electric differential portion and a mechanical power transmitting portion which are disposed in series in a power transmitting path between an engine and a drive wheel of a vehicle, the control apparatus being configured to limit an output of the engine according to a difference between an actual rotating speed of an input rotary member of the mechanical power transmitting portion, and a theoretical rotating speed calculated from an actual vehicle speed and a presently established speed ratio of the mechanical power transmitting portion, whereby reduction of torque capacity of an input clutch provided in the mechanical power transmitting portion does not cause an excessive rise of the rotating speed of a rotary member which is located on one side of the input clutch nearer to the engine, and an excessive rise of the rotating speed of an electric motor connected to the input rotary member.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: May 31, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tooru Matsubara, Atsushi Tabata, Koichiro Muta, Masakazu Kaifuku, Hidenori Katoh, Tomokazu Nomura
  • Patent number: 7951042
    Abstract: A control device for an automatic transmission having a torque converter with a lock-up clutch provided between an engine and the automatic transmission, and a lock-up control device for controlling an engaged condition of the lock-up clutch.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: May 31, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiharu Saitou, Masaaki Takamatsu
  • Patent number: 7933705
    Abstract: A method of controlling a reduction of an amount of fuel supplied to an engine provided to a motor vehicle with an automatic transmission separated from the engine by a torque converter is provided. The method includes the step of sensing commencement of a deceleration state during which an amount of the fuel supplied to the engine is to be reduced to an amount that is less than an amount of fuel being delivered to the engine immediately prior to the deceleration state. Whether synchronization of an engine output shaft and a transmission input shaft is appropriate under the deceleration stat is also to be determined.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: April 26, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Christopher Hopp
  • Patent number: 7894969
    Abstract: A control apparatus includes a torque-boost control portion that boosts torque output from the engine, and corrects the operation amount of an adjustment mechanism that adjusts the amount of air taken into the engine to increase the amount of air during a torque phase when the automatic transmission upshifts; and an inertia-phase determination portion that determines whether an inertia phase has started. The torque-boost control portion includes a torque-boost end control portion that executes a torque-boost end control that gradually decreases a correction amount, by which the operation amount is corrected, to zero when the inertia-phase determination portion determines that the inertia phase has started.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: February 22, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Asami, Toshio Sugimura, Takaaki Tokura, Nobufusa Kobayashi
  • Publication number: 20110015035
    Abstract: An embodiment of a control method for carrying out a gear shifting in an automatic manual transmission having a dual-clutch gearbox to pass from a current shorter gear to a successive longer gear; the embodiment includes the steps of: receiving a gear shifting command; opening a first clutch associated to the current gear; closing a second clutch associated to the successive gear in a same first moment; finishing the opening of the first clutch associated to the current gear and finishing the closure of the second clutch associated to the successive gear in a same closing moment; keeping the rotation speed of the drive shaft of the engine constant and equal to an initial value imposed by the gear ratio of the current gear until the closing moment in which the opening of the first clutch is completed; after the closing moment, progressively decreasing the rotation speed of the drive shaft of the engine from the initial value imposed by the gear ratio of the current gear to a final value imposed by the gear rat
    Type: Application
    Filed: March 18, 2010
    Publication date: January 20, 2011
    Applicant: FERRARI S.P.A.
    Inventors: Francesco Marcigliano, Luca Poggio
  • Patent number: 7850570
    Abstract: A method of determining an application point of an automatically actuated clutch of an automatic mechanical transmission. After pre-selecting a new gear, the clutch automatically separates, the activated gear disengages, the engine rotational speed is brought to a target value for the new gear and the clutch, with higher advancing speed, is advanced to an application point at which the transmission input shaft is precisely entrained. To determine the application point, the gradient of the time curve of the rotational speed of the transmission input shaft is monitored, an important change of the gradient, that adjusts itself when reaching the application point, is determined and the current position of the clutch is defined as the application point. The application point is determined during downshifts, the time rotational speed curve of the transmission input shaft is between slowdown and re-acceleration, which is easily and accurately determined.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: December 14, 2010
    Assignee: ZF Friedrichshafen AG
    Inventors: Thomas Jäger, Roland Mair
  • Publication number: 20100228453
    Abstract: A vehicle control system for an engine-powered vehicle equipped with an engine and an automatic transmission with a clutch. When a given engine stop requirement is met during running of the engine, the system stops the engine automatically. When a given engine restart requirement is met after stop of the engine, the system restarts the engine and enters a clutch control mode to bring the clutch in the automatic transmission into a slippable state in which the clutch is permitted to slip based on the speed of the vehicle, thereby absorbing the acceleration shock which usually occurs upon engagement of the clutch to transmit engine torque to wheels of the vehicle when the engine is restarted, and the speed of the vehicle is relatively low.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: DENSO CORPORATION
    Inventor: Tatsuya Saito
  • Patent number: 7769517
    Abstract: A lock-up clutch control apparatus for controlling a lock-up clutch (6) provided in a torque converter (5) installed between an engine (3) and a transmission (4), is disclosed. The lock-up clutch control apparatus has a differential pressure generator (7,8) which engages, causes a slip of or disengages the lock-up clutch by adjusting the differential pressure supplied to the lock-up clutch (6); a sensor (11/15) for detecting a rotational speed of the engine; a sensor (16) for detecting an input rotational speed to the transmission; and a controller (1). The controller (1) conducts proportional integration control by using a command signal to the differential pressure generator (7,8), so that an actual slip rotational speed, which is the difference between the engine rotational speed (Np) and input rotational speed (Ni) to the transmission, becomes a target slip rotational speed (Nt).
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: August 3, 2010
    Assignee: JATCO Ltd
    Inventors: Satoshi Segawa, Hiroshi Sekiya, Tatsuya Imamura, Koji Dohi, Kouji Saitou, Masayuki Kobayashi, Masayoshi Nakasaki
  • Publication number: 20100151991
    Abstract: A method of operating an automatic transmission of a motor vehicle. The automatic transmission, when the motor vehicle is driven with an actuated accelerator and an engaged starting clutch, and then coasts with the accelerator not actuated and the starting clutch engaged, during coasting with the engaged starting clutch the transmission remaining in the gear in which it was previously driven with the gas pedal actuated. When the transmission input speed of the automatic transmission drops below a limit value, during coasting, the starting clutch is disengaged. During coasting with a disengaged starting clutch in the automatic transmission, a gear is shifted that matches the current speed of the motor vehicle so that, when the starting clutch is subsequently engaged, a gear is available that matches the speed of the motor vehicle prevailing at the time the starting clutch is subsequently engaged.
    Type: Application
    Filed: March 5, 2008
    Publication date: June 17, 2010
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Roland Mair, Florian Schneider
  • Patent number: 7706949
    Abstract: A method and system for executing a shift from a first fixed gear to a second fixed gear in a powertrain system comprising a two-mode, compound-split, electro-mechanical transmission operative to receive a speed input from an engine is described. It includes deactivating an off-going clutch, and generating a time-based profile for rotational speed of an oncoming clutch. The input speed is controlled based upon the rotational speed of the oncoming clutch and an output of the transmission. The oncoming clutch is actuated, preferably when the input speed is synchronized with a rotational speed of an output shaft of the transmission multiplied by a gear ratio of the second fixed gear, preferably after a predetermined elapsed period of time in the range of 500 milliseconds.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: April 27, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Jy-Jen F. Sah, Anthony H. Heap
  • Publication number: 20100099536
    Abstract: A drive unit for a motor vehicle, comprising an engine, a transmission or gearbox, a clutch aggregate for transmitting torque, the clutch aggregate including at least two friction clutches that are assigned to an input shaft of the transmission or gearbox, wherein at least one of the at least two friction clutches features an energy accumulator operatively arranged to generate a lock-up force required for torque transmission through the clutch aggregate, and a control unit operatively arranged to control an automatic activation of the at least two friction clutches and the transmission or gearbox, wherein in the event of a malfunction of the activation of the friction clutch, the stored energy in the accumulator creates an interruption of torque transmission within a section of the drive unit connected downstream of the clutch aggregate.
    Type: Application
    Filed: December 21, 2009
    Publication date: April 22, 2010
    Applicant: LUK LAMELLEN UND KUPPLUNGSBAU BETEILIGUNGS KG
    Inventor: Klaus-Guenter Vennemann
  • Patent number: 7693637
    Abstract: A vehicle control system is comprised of a controller which is arranged to select an optimal mode adapted to a driving point of a vehicle from an optimal mode map of defining a plurality of running modes of the vehicle, to detect a generation of a mode transition in the optimal mode map, and to hold a current running mode selected before the transition for a holding time period when the generation of the mode transition is detected.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: April 6, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Michel Mensler, Shinichiro Joe
  • Patent number: 7691029
    Abstract: A method for operation of a drive train having a drive machine and an automatic, unsynchronized gearwheel variable-speed transmission, which can be connected to the drive machine by using an automatic clutch is described. A control device carries out a selection process as a function of vehicle parameters and/or operating variables of the motor vehicle to determine whether a gear change of the unsynchronized gearwheel variable-speed transmission will be carried out with the clutch engaged or disengaged. To ensure reliable operation of the motor vehicle, a gear change is carried out with the clutch disengaged in a time interval after initial starting up of the drive train and/or after starting of the drive machine and/or when a malfunction is identified in a component in the drive train.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: April 6, 2010
    Assignee: Daimler AG
    Inventors: Manfred Guggolz, Werner Hillenbrand, Xiayoi Liu, Detlef Schnitzer, Markus Veit
  • Patent number: 7670258
    Abstract: A control device is provided for a vehicle drive apparatus, which includes a differential mechanism distributing an output of an engine to a first electric motor and an output shaft, and an electric motor provided on the output shaft, for miniaturizing the drive apparatus and/or providing improved fuel economy while preventing switching shocks from occurring in starting or stopping the engine. A switching clutch C0 or switching brake B0 is provided for placing a shifting mechanism 10 in a continuously variable shifting state and a step-variable shifting state, enabling the vehicle drive apparatus to have combined advantages including a fuel economy improving effect of a transmission, enabled to electrically change a speed ratio, and a high transmitting efficiency of a gear type transmitting device enabled to mechanically transmit drive power.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: March 2, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Kamada, Atsushi Tabata
  • Patent number: 7651438
    Abstract: A vehicle, such as a motorcycle, which has an engine control system that is configured to reduce an output of the engine upon a determination that a shifting of the transmission, without a corresponding disengagement of the clutch, is likely to occur. In one arrangement, the vehicle includes a controller that is configured such that if a release rate of the accelerator, calculated on the basis of signals from an accelerator position sensor, has been equal to or larger than a threshold value for a period of time, and other conditions have been met, it is determined that snapping of the accelerator by the operator has been performed. The snapping is a release of the accelerator that is predicted to be accompanied by a transmission shift without disengagement of the clutch. In response to the snapping determination, the engine output is reduced for a reduction duration, such as by retarding the ignition timing, after the elapse of a predetermined stand-by time.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: January 26, 2010
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Akira Someya, Daichi Noborio
  • Publication number: 20090325759
    Abstract: A power transmission device for a vehicle having a clutch 3 between an engine 1 and a transmission 4, preventing variation in the engine torque and shift shock when the engine control mode returns from an engine control at the time of shifting back to an accelerator pedal follow-up control for normal traveling. Timer means 62 is provided for a clutch control device 6 that executes the control for disengaging the clutch 3 at the time of shifting and engaging it after the completion of the shifting. The timer means 62 controls a moment for starting the clutch engagement control depending on the engine conditions, etc. The state of increasing the amount of clutch engagement varies and the state of engine rotational speed varies, too. When the engine control at the time of shifting is returned back to the accelerator pedal follow-up control at the time of normal traveling, therefore, the engine can be placed in a condition where the engine torque does not vary despite the control mode is changed over.
    Type: Application
    Filed: November 19, 2007
    Publication date: December 31, 2009
    Inventors: Nobuyuki Iwao, Hiroshi Usuba
  • Publication number: 20090270223
    Abstract: A two stage clutch and shift actuation paddle assembly provides clutch disengagement through a first range of movement of a manually operated control lever or paddle and electronic shifting of a transmission upon movement through a second range. A return spring force generator causes a lower return force to be exerted on the generator paddle in a range of motion wherein the clutch is disengaged and a pronounced increased spring force to be exerted in advanced range of motion wherein the transmission shift actuation occurs.
    Type: Application
    Filed: April 24, 2008
    Publication date: October 29, 2009
    Inventor: David Cook
  • Publication number: 20090233761
    Abstract: A system and method for overrun prevention is disclosed. Overrun of a one-way clutch may be prevented by determining a current torque value. When a current torque value approaches a negative value, a shift to a gear without a one-way clutch may be performed. Driving control may be increased by shifting from a gear associated with a one-way clutch when a current torque value approaches a negative value or another shifting parameter determines a shift is necessary.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Applicant: Honda Motor Co., Ltd.
    Inventor: Michael T. Dickinson
  • Publication number: 20090181822
    Abstract: A skidder having a diesel engine coupled to a multiple gear ratio transmission driving a pair of wheel sets for a skidder. The diesel engine is controlled by an operator manipulated foot pedal or hand lever to control the power output and ultimately the maximum skidder ground speed. A controller is provided to pre-select the maximum gear into which the transmission may be placed to ultimately limit the maximum ground speed of the skidder so that the operator sets the forward speed in a binary fashion by depressing the foot pedal or hand operated device to a maximum output condition.
    Type: Application
    Filed: January 10, 2008
    Publication date: July 16, 2009
    Inventors: Kevin G. Braun, Andrew Quinn, Todd Velde, Borislav Trifunovic
  • Patent number: 7534194
    Abstract: A vehicular transmission comprises an electrical control unit ECU, which controls to bring a starting clutch into loose engagement for a predetermined time while a deactivated cylinder mode is being terminated. The electrical control unit also estimates, during this predetermined time, an estimated PB, which is an estimated pressure inside the intake pipe, on the basis of a rotational speed Ne at the output shaft of the engine and of an opening TH at the throttle valve, and it then estimates or calculates the driving torque generated by the engine on the basis of this estimated PB and the rotational speed Ne. From this calculated driving torque, the electrical control unit sets respective pressures to be applied to a drive pulley and a driven pulley, which constitute a continuously variable transmission CVT.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 19, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takahiro Eguchi, Yuichiro Takemori, Toshikazu Uneyama
  • Patent number: 7530924
    Abstract: A method of using a torque converter bypass clutch to launch a vehicle, mitigate transient vibration, and mitigate vehicle natural frequency harshness. The method uses the torque converter when the bypass clutch power capacity is approaching its limit, when the vehicle load is high, or the vehicle is on a grade, where normally the bypass clutch would launch the vehicle.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: May 12, 2009
    Assignee: Ford Global Technologies, LLC
    Inventor: John E. Brevick
  • Publication number: 20090105042
    Abstract: A driving unit for a vehicle includes a transmission, a motor generator and a centrifugal release mechanism. The transmission is employed for transmitting a driving torque outputted from an engine to an output shaft operatively connected to a plurality of driving wheels. The motor generator is connected to the output shaft via a force transmitting mechanism. The motor generator functions as a motor for driving the output shaft in cooperation with the engine when supplied with electric current and functions as a generator when driven by the output shaft. The centrifugal release mechanism is provided at the force transmitting mechanism. The centrifugal release mechanism interrupts a force transmission between the output shaft and the motor generator in a predetermined driving state of the vehicle in which a running resistance applied to the driving wheels exceeds a driving force of the motor generator applied to the driving wheels.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 23, 2009
    Applicant: AISIN AI CO., LTD
    Inventor: Toshio Tanba
  • Patent number: 7517300
    Abstract: A retarding system for a work machine is disclosed. The retarding system has a power source, a transmission, and a torque converter operatively coupling the power source and the transmission. The torque converter has a lockup clutch. The retarding system also has a controller in communication with the lockup clutch. The torque converter is configured to receive an input indicative of a desired work machine acceleration, to determine a status of the lockup clutch, and to determine if engaging the lockup clutch will cause a speed of the power source to drop below a low idle speed. The controller is also configured to engage the lockup clutch if the input indicates that the desired work machine acceleration is below a predetermined amount, the lockup clutch is disengaged, and the speed of the power source will remain above the low idle speed after engagement of the lockup clutch.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: April 14, 2009
    Assignee: Caterpillar Inc.
    Inventor: James W. Landes
  • Publication number: 20090075780
    Abstract: Monitoring operation of an electromechanical transmission having a hydraulic circuit with flow management valves and pressure control solenoids to actuate clutches and pressure monitoring devices to monitor the hydraulic circuit is provided. The transmission operates in fixed gear and continuously variable operating range states. The method comprises controlling position of one of the flow management valves to control operation in one of the operating range states. A fault is detected in the one of the flow management valves based upon outputs of the pressure monitoring devices during steady state operation in one of the continuously variable operating range states. A fault is detected in the one of the flow management valves based upon the output of one of the pressure monitoring devices during a transition in the flow management valve.
    Type: Application
    Filed: September 13, 2007
    Publication date: March 19, 2009
    Inventors: Ryan D. Martini, Charles J. Van Horn, Peter E. Wu, Andrew M. Zettel, Thomas E. Mathews, Jy-Jen F. Sah, Syed Naqi, Darren Crewes
  • Publication number: 20090069150
    Abstract: A dual-cylinder gasoline engine comprising a gasoline engine box, a cylinder I, a cylinder II, a centrifugal clutch and a gear box, wherein the cylinder I and the cylinder II are mounted with the gear box; the centrifugal clutch is installed on one side of the gear box the cylinders are located; the gear box is mounted at the rear of the gear box; and the output shaft of the centrifugal clutch is connected with gears in gear box. When in operation, the crankshaft drives the driving wheel of the clutch to rotate. Thus, the belt is driven and it drives the driven wheel of the clutch to rotate, whereby transferring power to vehicle wheels via the gearbox. The clutch is oil-free. The advantages of the invention include reliable use, convenient maintenance, and smooth operation.
    Type: Application
    Filed: September 2, 2008
    Publication date: March 12, 2009
    Inventor: Zhixin TAO
  • Publication number: 20090048747
    Abstract: A fast automated gear shift operation is performed using a powertrain in a hybrid vehicle, the powertrain including a gear box, an engine, at least one controllable motor, a torque ripple damping device, a mechanical connecting device for connecting or disconnecting the engine to or from, respectively, wheels of the vehicle. In the gear shift operation the motor is controlled to perform a sequence of steps in which different torques are delivered by the motor to temporarily change the speed thereof. The torques are selected so that they to reduce the mechanical tension over at least one elastic part of the powertrain. Hence it can be achieved, that during at least a period during the gear shift operation torques over mechanical elements in the gear box cooperating in the current gear and/or over the mechanical connecting device are eliminated or at least strongly reduced.
    Type: Application
    Filed: November 15, 2006
    Publication date: February 19, 2009
    Applicant: Stridsberg Powertrain AB
    Inventor: Lennart Stridsberg
  • Publication number: 20080207393
    Abstract: Appropriate torque is transmitted via a clutch that does not spend too much time on its engaging operation. A clutch controller controls a degree of engagement of the clutch by actuating a clutch actuator based on a difference between actual transmission torque that is transmitted from a drive-side member of a clutch to a driven-side member of the clutch, and target transmission torque that is supposed to be transmitted from the drive-side member to the driven-side member. The clutch controller also determines whether or not a difference in rotational speed between the drive-side member and the driven-side member of the clutch is reduced at an appropriate rate, and depending on the determination result, corrects the target transmission torque.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 28, 2008
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventor: Kengo MINAMI
  • Patent number: 7416511
    Abstract: In a hybrid-drive electric vehicle, upon request of gear shifting of a transmission (2), a clutch (3) is first disconnected and the transmission (2) is set to a neutral position. The rotating electric generator 4 is then operated in a motor mode or a power generating mode so that a rotational speed of an input shaft of the transmission (2) reaches a region of a synchronizing rotational speed in accordance with a requested gear position. When the rotational speed of the input shaft of the transmission (2) reaches the region of the synchronizing rotational speed, the gear position of the transmission (2) is changed over from the neutral position to the requested gear position. Thus the rotation synchronizing time for the gear shifting in the transmission (2) is reduced, making it possible to perform the gear shifting for a short period of time.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: August 26, 2008
    Assignee: Nissan Diesel Motor Co., Ltd.
    Inventors: Mitsuhiro Nishina, Yuji Suzuki, Hideaki Gouda
  • Publication number: 20080200302
    Abstract: The invention relates to a method of transmitting power between a shaft (10) of a heat engine (2) and a wheel (6) axle shaft (12) of a hybrid vehicle. The inventive method involves the use of: a power transmission device (1) comprising an electric machine (4) which is connected to (i) the heat engine by means of a clutch (3) and (ii) a wheel (6) axle shaft (12); and a starting system (31) which is mechanically independent of the electric machine (4) and which is connected to the heat engine (2). According to the invention, the heat engine (2) is started by applying a torque to the shaft (10) simultaneously using the starting system (31) and the clutch (3).
    Type: Application
    Filed: May 12, 2006
    Publication date: August 21, 2008
    Applicant: PEUGEOT CITROEN AUTOMOBILES SA
    Inventors: Gaetan Rocq, Yvan Le Neindre, Cedric Launay
  • Patent number: 7409885
    Abstract: The invention concerns a method of controlling a twin-clutch transmission (10). When the torque transmitted in a first transmission path (C1, E2, Z8, Z9, S2, Z3, Z4) reaches an upper limit given by the torque transmission capacity of that path further additional torque produced by an engine at the drive shaft (I) is transmitted by closure of the second clutch (C2) to the output shaft (O) in parallel relationship by way of a second transmission path (C2, E1, Z1, Z2, S1, Z3, Z4). That permits the output of the engine to be better utilised and makes it possible to achieve better travel characteristics.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: August 12, 2008
    Assignee: Getrag Ford Transmissions GmbH
    Inventors: Christian Krauss, Michael Schwekutsch
  • Patent number: 7396314
    Abstract: A method and a device with which disturbing vibrations are diminished at least in the height of their amplitude. A control and regulating device (24) and suitable sensors (34, 36, 41) activate a device (7, 11, 15, 23, 29, 30) when previously established limiting values are exceeded with regard to procedure, with which components of the motor vehicle are influenced such that the disturbing vibrations are damped or compensated.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: July 8, 2008
    Assignee: ZF Friedrichshafen AG
    Inventors: Matthias Winkel, Thomas Jäger, Rupert Kramer, Horst Aepker
  • Patent number: 7387590
    Abstract: A method for operating a motor vehicle after receiving an acceleration signal in which the motor vehicle power train includes first and the second torque transmission devices connected to first and second subgears. The operational method includes selecting and engaging a predetermined target gear in one of the two subgears and selection and engagement of a predetermined intermediate target gear, in the other of the two subgears, while the power train continues to remain engaged. The intermediate target gear is so chosen that it will be higher than the target gear, so that the rpm of the gear input shaft of the target subgear, will be greater than the rpm of the gear input shaft of the intermediate target subgear, in which the current gear is engaged.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: June 17, 2008
    Assignee: LuK Lamellen und Kupplungsbau Beteiligungs KG
    Inventor: Felix Dreher
  • Publication number: 20080109139
    Abstract: A vehicle includes a drive device applying a driving force to a wheel, a brake device applying a braking force to the vehicle, and a control device controlling the drive device and the brake device. When the traveling direction and the acting direction of the driving force are opposite, the control device causes the drive device to generate a driving force corresponding to a driving force demand in the event of the drive device not entering an operation disallowed region even if the driving force corresponding to the driving force command is generated at the drive device, and causes the brake device to operate according to the drive driving force demand in the event of the drive device entering the operation disallowed region if the driving force corresponding to said driving force demand is generated at said drive device.
    Type: Application
    Filed: September 24, 2007
    Publication date: May 8, 2008
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN AW CO., LTD.
    Inventors: Koichiro Muta, Tomokazu Nomura, Daisuke Suyama