Apparatus For Converting Or Treating Hydrocarbon Gas Patents (Class 48/127.9)
  • Patent number: 7192458
    Abstract: A process, control system and apparatus for controlling the air side flows to the major components of a fuel processor apparatus are provided. The control system employs a multi-capacity blower provides process air to a partial oxidation reactor and a preferential oxidation reactor. The multi-capacity blower preferably provides a portion of the process air through a control valve to the partial oxidation reactor and the remaining portion of the process air is passed through a flow restrictor to supply process air to the preferential oxidation reactor. The control system of the present invention is simple, low cost and reliable.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: March 20, 2007
    Assignee: HyRadix Incorporated
    Inventors: John R. Harness, Gavin P. Towler, Kurt M. Vanden Bussche, John J. Senetar, Daniel R. Sioui
  • Patent number: 7192460
    Abstract: A cooling system (10) is provided for use with a fuel processing subsystem (12) for reducing a level of carbon monoxide in a reformate flow (14) for a proton exchange membrane fuel cell system (16). The fuel processing subsystem (12) includes first and second preferential oxidizers (18, 20) to oxidize the carbon monoxide carried in the reformate flow. The reformate cooling system (10) includes a coolant flow path (30), a reformate flow path (32), and first, second, third, and fourth heat exchanger core portions (34, 36, 38, 40). The core portions (36–40) are arranged in numbered sequence along the reformate flow path (32) with the first and second core portions (34, 36) located upstream of the first preferential oxidizer (18), and the third and fourth core portions (38, 40) located downstream of the first preferential oxidizer (18) and upstream of the second preferential oxidizer (20).
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: March 20, 2007
    Assignee: Modine Manufacturing Company
    Inventor: Jeroen Valensa
  • Patent number: 7189371
    Abstract: The invention presents a fuel reforming technique for a mobile fuel cell system capable of obtaining a reformed gas composition usable in fuel cell 200 even if vapor temperature supplied from an evaporator 102 into a fuel reformer 107 varies significantly. This system comprises means 601, 602 for detecting the flow rate of fuel vapor and oxygen to be supplied into the fuel reformer 107, and means 600 for detecting at least temperature of fuel vapor to be supplied into the fuel reformer, temperature of oxygen, and temperature of mixed gas of fuel vapor and oxygen, in which the ratio of the flow rate of fuel vapor and the flow rate of oxygen is corrected on the basis of the signal value of the temperature detecting means, and oxygen is supplied depending on the corrected ratio.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: March 13, 2007
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Yasukazu Iwasaki
  • Patent number: 7189270
    Abstract: A method and apparatus for conversion of solid and liquid fuels to a synthesis gas, steam and/or electricity in which about 10% to about 40% of a solid fuel and/or a liquid fuel is introduced into a gasifier and gasified, resulting in formation of a synthesis gas. The remaining portion of the solid fuel and/or liquid fuel is introduced into a first stage of a multi-stage combustor, resulting in formation of products of combustion and ash and/or char. The synthesis gas is introduced into a second stage of the multi-stage combustor disposed downstream of the first stage and overfire oxidant is introduced into a third stage of the multi-stage combustor disposed downstream of the second stage. The ash and/or char from the multi-stage combustor is then recycled into the gasifier.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 13, 2007
    Assignee: Gas Technology Institute
    Inventors: Bruce Bryan, Iosif Rabovitser
  • Patent number: 7189271
    Abstract: A catalytic reactor comprises a plurality of thin tray-like metal sheets each with a peripheral rim and arranged as a stack to define first gas flow channels between adjacent sheets, alternating with second gas flow channels between adjacent sheets, so as to ensure good thermal contact between gases in the first and the second gas flow channels. Each sheet also defines at least four apertures for flow of gases, and tubes and seal apertures in one sheet to corresponding apertures in the adjacent sheet. The gas flows through the channels may be guided by corrugations, and are preferably in countercurrent in adjacent channels. Appropriate catalysts are coated onto the sheets and in the two gas flow channels.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: March 13, 2007
    Assignee: Compactgtl PLC
    Inventor: Jason Andrew Maude
  • Patent number: 7186388
    Abstract: A catalytic reactor comprises a stack of sheets defining flow channels between them. Within each flow channel is a flexible wire structure whose surfaces are coated with catalytic material. Flow channels for a first gas extend along S-shaped curved paths whereas the flow channels for a second gas are straight. The reactor incorporates header chambers to supply gas mixtures to the flow channels, each header chamber being a rectangular cap attached to a face of the stack. The reactor enables different gas mixtures to be supplied to adjacent channels, which nay be at different pressures, and the corresponding chemical reactions are also different. Where one of the reactions is endothermic while the other reaction is exothermic, heat is transferred through the sheets separating the adjacent channels, from the exothermic reaction to the endothermic reaction. When the catalyst in one set of flow channels becomes spent, it can be replaced by removing a header.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 6, 2007
    Assignee: Compactgtl PLC
    Inventors: Michael Joseph Bowe, Jason Andrew Maude
  • Patent number: 7182921
    Abstract: A cylindrical steam reforming unit contains a plurality of cylindrical bodies consisting of a first cylindrical body, a second cylindrical body and a third cylindrical body of successively increasing diameters disposed in concentric spaced relationship, a radiation cylinder disposed within and concentrically with the first cylindrical body, a burner disposed in the radial central portion of the radiation cylinder, and a reforming catalyst layer with a reforming catalyst filled in a gap between the first and second cylindrical bodies, wherein a CO shift catalyst layer and a CO removal catalyst layer are disposed in a gap between the second and third cylindrical bodies, the CO shift catalyst layer being formed in a gap with the direction of flow reversing at one axial end of the reforming catalyst layer and through a heat recovery layer of predetermined length.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: February 27, 2007
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Toshiyasu Miura, Jun Komiya, Hiroshi Fujiki, Naohiko Fujiwara
  • Patent number: 7179313
    Abstract: A compact steam reformer produces hydrogen to power a fuel cell, such as can be used in a vehicle. The steam reformer includes a first channel, at least partly coated with a steam reforming catalyst, and a second channel, at least partly coated with a combustion catalyst, the channels being in thermal contact with each other. Heat from the combustion is used in the steam reforming reaction. In another embodiment, the gas streams feeding the reforming and combustion channels pass through a valve which reverses the gas streams periodically. The combustion channel becomes the reforming channel, and vice versa, so that carbon deposits in the former reforming channel are burned off. This arrangement enables the reforming reaction to continue indefinitely at peak efficiency.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: February 20, 2007
    Assignee: Catacel Corp.
    Inventors: William B. Retallick, William A. Whittenberger
  • Patent number: 7175817
    Abstract: The compact chemical reactor includes a first substrate, a second substrate attached to the first substrate. A micro flow path is defined between the first substrate and the second substrate. A thin film heater provided in the flow path.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: February 13, 2007
    Assignee: Casio Computer Co., Ltd.
    Inventors: Yoshihiro Kawamura, Naotsugu Ogura
  • Patent number: 7172638
    Abstract: An autothermal reformer according to the principles of the present invention comprises a first stage that selectively receives a fuel flow, a first oxidant flow, and a steam flow. The first stage has a first portion of a catalyst bed. The fluids within the first stage are routed through the first portion of the catalyst bed and react. There is a second stage downstream from and communicating with the first stage. The second stage receives the fluids from the first stage and also selectively receives a second oxidant flow. The second oxidant flow and the fluids received from the first stage flow through a second portion of a catalyst bed and further react.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: February 6, 2007
    Assignee: General Motors Corporation
    Inventor: Gary M. Robb
  • Patent number: 7172736
    Abstract: A compact chemical reactor has a first substrate. A catalyst layer is provided on an inner surface of a groove formed in a first surface of the first substrate. A second substrate, in which a concave portion to receive a portion of the catalyst layer is formed on a surface opposite to the first surface of the substrate, contacts the first substrate on the opposite surface.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: February 6, 2007
    Assignee: Casio Computer Co., Ltd.
    Inventors: Yoshihiro Kawamura, Naotsugu Ogura
  • Patent number: 7166139
    Abstract: A reformer which enables rapid load changes of up to 100% within a few seconds and is intended to produce hydrogen from hydrocarbons by steam reformation, comprises an evaporator cooler for cooling the reformate and for generating steam. The evaporator cooler is disposed in the reformer, on the end of its reaction vessel. It keeps the applicable end of the tube cool and uses the waste heat of the reformate for generating steam. This makes fast load changes possible, because an increase in the introduction of water immediately causes an increase in the reformate produced and thus an increase in the heat output.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: January 23, 2007
    Assignee: WS Reformer GmbH
    Inventor: Joachim A. Wunning
  • Patent number: 7160341
    Abstract: A temperature control system and method controls temperatures of front and back ends of a shift reactor. Front and back end temperature sensors sense temperatures of the front and back ends of the shift reactor and generate front and back end temperature signals. An actuator injects fluid into the front end of the shift reactor. A controller communicates with the front end temperature sensor, the back end temperature sensor and the actuator and controls the temperature of the front end and the back end. The controller includes primary and secondary control loops. The secondary control loop communicates with the back end temperature sensor. The primary control loop communicates with the front end temperature sensor. The secondary control loop generates a temperature setpoint for the primary control loop. The secondary control loop has a slower response time that the primary control loop.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: January 9, 2007
    Assignee: General Motors Corporation
    Inventors: Manish Sinha, Paul T Yu, Bruce J Clingerman
  • Patent number: 7160523
    Abstract: A device for the production of hydrogen-containing gas for a fuel cell system, in particular in a motor vehicle, is disclosed. Suitable feed materials are water and at least one hydrocarbon-containing starting material, in particular a hydrocarbon derivative, such as methanol or ethanol. The device comprises an evaporator to evaporate the feed material; a superheater to superheat the feed material vapor; a high temperature reformer in which steam reforming of the superheated feed material is carried out; a burner which provides the thermal energy required for the steam reforming by burning a gas stream that contains fuel and oxygen; a water gas shift stage to reduce the carbon monoxide content of the reformate stream produced in the steam reforming; and a cooler to reduce the temperature of the reformate stream between the point where the reformate stream is discharged out of the high temperature reformer and the point where the reformate stream enters into the water gas shift stage.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: January 9, 2007
    Assignee: NuCellSys GmbH
    Inventor: Berthold Keppeler
  • Patent number: 7160340
    Abstract: An apparatus for carrying out a multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of reaction zones arranged in a common reaction chamber. The multi-step process includes: providing a fuel to the fuel processor so that as the fuel reacts and forms the hydrogen rich gas, the intermediate gas products pass through each reaction zone as arranged in the reactor to produce the hydrogen rich gas.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: January 9, 2007
    Assignee: Texaco Inc.
    Inventors: Curtis L. Krause, Jennifer L. Phan, Vijay Deshpande, Paul Martin
  • Patent number: 7160342
    Abstract: A method of main reformer startup is disclosed. The method comprises introducing a first supply of fuel and a first supply of air into a micro-reformer. The first supply of fuel is increased to produce a heated reformate in the micro-reformer. The heated reformate is directed through a main reformer in order to heat the main reformer. At least a portion of the heated reformate is burned in the main reformer. A second supply of fuel and a second supply of air is introduced into the main reformer to produce a main supply of reformate. A method for maintaining a vehicle device in standby condition is also disclosed.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: January 9, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: M. James Grieve, Karl Haltiner, Jr., Peter Hendler, John Noetzel
  • Patent number: 7156886
    Abstract: A reforming apparatus for producing a reformed gas from a fuel gas and steam, including a reformed gas-producing passage and a combustion gas passage, the reformed gas-producing passage having reforming catalyst, shift catalyst, and CO-selective oxidizing catalyst sections along a flowing direction of the reformed gas, the reformed gas-producing passage having a first passage adjacent to the combustion gas passage and including the reforming catalyst section and a second passage adjacent to the first passage, the second passage including a first heat-recovering section adjacent to the reforming catalyst section, and the first passage having a second heat-recovering section adjacent to one of the shift catalyst and CO-selective oxidizing catalyst sections, the first heat-recovering section located on an upstream side along the flow direction of the reformed gas relative to the reforming catalyst section.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: January 2, 2007
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Toru Nakamura, Susumu Kobayashi, Hitoshi Kudo, Mikio Sei, Yuichiro Yasuda, Zhongmin Fei
  • Patent number: 7153333
    Abstract: In a reforming reactor (31), a partial oxidation reaction is performed between a hydrocarbon fuel and air, and in a mixer (32), water is injected into hot gas heated by the partial oxidation reaction to vaporize the water, and the vaporized water is mixed with the hot gas. In a shift reactor (33), the vaporized water is made to undergo a shift reaction with the hot gas. In this way, a device for promoting vaporization of the water or a complex fuel injection device is not required.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: December 26, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akihiro Sakakida, Mikiya Shinohara, Tadashi Shoji, Shiro Tanaka
  • Patent number: 7153334
    Abstract: Carbonaceous material is removed from a catalyst within an autothermal reformer by introducing an isolated oxidant stream into the autothermal reformer prior to introduction of hydrocarbon fuel into the reformer. A hydrocarbon stream is introduced into the autothermal reformer following removal of the carbonaceous material. A concurrent supply of the hydrocarbon stream and the oxidant stream to the autothermal reformer is maintained such that an exothermic reaction driven by the oxidant stream provides heat to an endothermic reaction driven by water vapor in the hydrocarbon stream. In accordance with 37 CFR 1.72(b), the purpose of this abstract is to enable the United States Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract will not be used for interpreting the scope of the claims.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: December 26, 2006
    Assignee: General Motors Corporation
    Inventors: Suzanne Rose Ellis, Jessica Grace Reinkingh, Jullian Elaine Bailie, David Wails, Michael Ian Petch
  • Patent number: 7150769
    Abstract: A fuel reforming apparatus includes a reforming reaction section in which a reforming catalyst is disposed, and a reformed fuel distribution chamber. A fuel air mixture of a hydrocarbon fuel and air is reformed in the reforming reaction section. The reformed fuel is supplied from the reformed fuel distribution chamber to chambers of the engine. The adsorbent member is disposed between the reforming reaction section and the reformed fuel distribution chamber. The adsorbent member captures a non-reformed fuel.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: December 19, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Sakurai, Kazuhiro Wakao, Tetsuzou Tsuchiya
  • Patent number: 7146801
    Abstract: Hydrogen-rich reformate gas is produced by a fuel reformer (2) from fuel vapor containing hydrocarbon, which is produced by a fuel vaporizer (6), by means of a partial oxidation reaction and a steam reforming reaction. A fuel injector (8, 9) supplies fuel to the fuel vaporizer (6), and an air injector (8a) supplies air to the fuel vaporizer (6). A glow plug (13) partially oxidizes the air-fuel mixture inside the fuel vaporizer (6). By controlling the air supply amount in relation to the fuel supply amount to obtain an excess air factor corresponding to a predetermined rich air-fuel ratio, a part of the air-fuel mixture in the fuel vaporizer (6) is partially oxidized, and the remaining fuel vapor is heated by the oxidation heat. As a result, the partial oxidation reaction and steam reforming reaction in the fuel reformer (2) are performed with a favorable balance.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: December 12, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Motohisa Kamijo, Takashi Aoyama, Takao Izumi
  • Patent number: 7147680
    Abstract: Conventional hydrogen purification apparatuses cannot be used satisfactorily for applications in which much time is required for startup of the apparatus, and the apparatus is repeatedly started and stopped at frequent intervals because of complicated handling. In a hydrogen purification apparatus comprising at least a catalysis body removing carbon monoxide from a reformed gas containing hydrogen, carbon monoxide and steam, the catalyst body is constituted by a carrier comprised of a complex oxide in which at least one of Mo, W and Re is compounded with Zr, or comprised of an oxide of one of Mo, W, Re and Zr, and at least one of Pt, Pd, Rh and Ru carried on the surface of the carrier.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: December 12, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kiyoshi Taguchi, Kunihiro Ukai, Seiji Fujiwara, Takeshi Tomizawa, Hidenobu Wakita
  • Patent number: 7141231
    Abstract: This invention relates to a novel fluidized bed membrane reactor for autothermal operations. More particularly, this invention pertains to a unique fluidized bed membrane reactor which includes internal catalyst solids circulation for conveying heat between a reforming zone and an oxidation zone.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: November 28, 2006
    Assignee: Membrane Reactor Technologies Ltd.
    Inventors: John Grace, Choon Jim Lim, Alaa-Eldin M. Adris, Donglai Xie, David Anthony Boyd, Warren MacKay Wolfs, Clive M. H. Brereton
  • Patent number: 7138001
    Abstract: Low-energy hydrogen production is disclosed. A reforming exchanger is placed in parallel with a partial oxidation reactor in a new hydrogen plant with improved efficiency and reduced steam export, or in an existing hydrogen plant where the hydrogen capacity can be increased by as much as 20–30 percent with reduced export of steam from the hydrogen plant.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: November 21, 2006
    Assignee: Kellogg Brown & Root LLC
    Inventors: Stanislaus A. Knez, Avinash Malhotra, David P. Mann, Martin J. Van Sickels
  • Patent number: 7135049
    Abstract: A method for operating a gas generation device, for example, for a fuel cell system, having at least two gas generation units through which a starting-material stream flows in series. The two gas generating units have a first and second rated power Prated—1, Prated—2 and a first and second predetermined operating temperature Trated—1, Trated—2, and the first gas generation unit has a lower thermal mass than the second gas generation unit. During a starting phase only the first gas generation unit is operated, with a power Pstart—1>Prated—1. After the end of the starting phase at least the second gas generation unit is operated.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: November 14, 2006
    Assignee: NuCellSys GmbH
    Inventors: Stefan Boneberg, Martin Schuessler, Hans-Frieder Walz
  • Patent number: 7135048
    Abstract: A fuel processing assembly adapted to produce hydrogen gas from a volatile feedstock. The fuel processing assembly includes a fuel processor, such as a steam reformer. The fuel processing assembly further includes a feed assembly adapted to deliver a volatile feedstock, such as propane, to the fuel processor. In some embodiments, the fuel processing system includes a fuel cell stack that includes at least one fuel cell adapted to produce electrical power from hydrogen gas produced by the fuel processor.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: November 14, 2006
    Assignee: IdaTech, LLC
    Inventors: David J. Edlund, Thomas G. Herron
  • Patent number: 7135050
    Abstract: In a hydrogen generator comprising a reforming unit having a material supply unit and a water supply unit, and a burner for heating the reforming unit, having a fuel supply unit and an air supply unit, a control unit is arranged for controlling the amount of air to be supplied from the air supply unit to the burner, based on the temperature of the reforming unit and the amount of a raw material supplied to the reforming unit, in order to make the combustion state of the burner stable so as to improves the operation and convenience thereof.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: November 14, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tomonori Asou, Akira Maenishi, Takeshi Tomizawa
  • Patent number: 7132002
    Abstract: When the hydrogen separating membrane is in a low temperature condition, a lean bus operation is carried out in a reformer in order to conduct warm-up while suppressing generation of hydrogen. At the timing t1 where the temperature of the hydrogen separator membrane has reached a temperature at which hydrogen embrittlement does not occur, reforming is initiated. In such a condition, oxygen is supplied to hydrogen which is permeated through the hydrogen separator membrane for burning the hydrogen, so as to further facilitate the warm-up. At the timing t2 where the temperature has reached an operation temperature, the supply of oxygen in a purge side is stopped so as to stop the burning of hydrogen, and an operation mode is shifted to a normal operation.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: November 7, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Aoyama, Hiromichi Sato, Toshihide Nakata, Naoki Ito
  • Patent number: 7128768
    Abstract: A hydrogen-rich reformate gas generator (36), such as a mini-CPO, POX, ATR or other hydrogen generator provides warm, dry, hydrogen-rich reformate gas to a hydrogen desulfurizer (17) which provides desulfurized feedstock gas to a major reformer (14) (such as a CPO) which, after processing in a water-gas shift reactor (26) and preferential CO oxidizer (27) produces hydrogen-containing reformate in a line (31) for use, for instance, as fuel for a fuel cell power plant. The expensive prior art hydrogen blower (30) is thereby eliminated, thus reducing parasitic power losses in the power plant. The drier reformate provided by the small hydrogen generator to the hydrogen desulfurizer favors hydrogen sulfide adsorption on zinc oxide and helps to reduce sulfur to the parts per billion level.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: October 31, 2006
    Assignee: UTC Fuel Cells, LLC
    Inventors: Ke Liu, Richard J. Bellows, John L. Preston, Jr.
  • Patent number: 7128769
    Abstract: Methanol steam reforming catalysts, and steam reformers and fuel cell systems incorporating the same. In some embodiments, the methanol steam reforming catalyst includes zinc oxide as an active component. In some embodiments, the methanol steam reforming catalyst further includes at least one of chromium oxide and calcium aluminate. In some embodiments, the methanol steam reforming catalyst is not pyrophoric. Similarly, in some embodiments, steam reformers including a reforming catalyst according to the present disclosure may include an air-permeable or air-accessible reforming catalyst bed. In some embodiments, the methanol steam reforming catalyst is not reduced during use. In some embodiments, the methanol reforming catalysts are not active at temperatures below 275° C. In some embodiments, the methanol steam reforming catalyst includes a sulfur-absorbent material. Steam reformers, reforming systems, fuel cell systems and methods of using the reforming catalysts are also disclosed.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: October 31, 2006
    Assignee: IdaTech, LLC
    Inventor: Curtiss Renn
  • Patent number: 7118606
    Abstract: A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: October 10, 2006
    Assignee: UT-Battelle, LLC
    Inventors: Solomon Davidovich Labinov, Timothy Robert Armstrong, Roddie Reagan Judkins
  • Patent number: 7115148
    Abstract: Hydrogen is produced in a compact methanol-steam reformer, which integrates an inner cylindrical heating chamber; and a reactant vaporizer and heating zone, and an outer Cu/ZnO/Al2O3 catalyst bed in concentric annuli around the heating chamber. Tubular, palladium-silver alloy membranes in the catalyst bed separate hydrogen from retentate gas, which is separately discharged from the apparatus through a manifold.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: October 3, 2006
    Assignee: Her Majesty the Queen in right of Canada, as respresented by the Minister of Defence of Her Majesty's Canadian Government
    Inventors: Ian R. Wheeldon, Brant A. Peppley, Helmut Wieland
  • Patent number: 7108730
    Abstract: This invention relates to a method for providing controlled heat to a process utilizing a flameless distributed combustion.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: September 19, 2006
    Assignee: Shell Oil Company
    Inventors: Rashmi K Shah, Thomas Mikus, Pettai Krishna Shankar
  • Patent number: 7101513
    Abstract: A fuel supplying apparatus for maintaining a stable supply of a mixed water-methanol solution while preventing water from freezing in a cold climate, and for immediately supplying a mixed water-methanol gas that has a composition which is outside of the high-rate reaction region during the starting/stopping operation of the reformer when the control tends to be unstable. The methanol reforming apparatus that generates a hydrogen-rich gas by reacting a mixed gas of water, methanol and air on a catalyst is supplied with the fuel from a fuel supplying apparatus comprising a mixed water-methanol solution tank wherein the molar ratio of water and methanol used for reforming is controlled to a predetermined value, a mixed water-methanol solution tank wherein the molar ratio of water and methanol is controlled to 4.6 or higher, and a switching means that switches the mixed water-methanol solution tank used as a fuel source according to the conditions of operation of the methanol reforming apparatus.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: September 5, 2006
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Mitsubishi Gas Chemical Co., Inc.
    Inventors: Takahiro Naka, Hideaki Sumi, Masataka Furuyama, Shoji Isobe, Yasushi Hiramatsu, Mikio Yoneoka
  • Patent number: 7097675
    Abstract: A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: August 29, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Brent A. Detering, Peter C. Kong
  • Patent number: 7083658
    Abstract: A gasifier 10 includes a first chemical process loop 12 having an exothermic oxidizer reactor 14 and an endothermic reducer reactor 16. CaS is oxidized in air in the oxidizer reactor 14 to form hot CaSO4 which is discharged to the reducer reactor 16. Hot CaSO4 and carbonaceous fuel received in the reducer reactor 16 undergo an endothermic reaction utilizing the heat content of the CaSO4, the carbonaceous fuel stripping the oxygen from the CaSO4 to form CaS and a CO rich syngas. The CaS is discharged to the oxidizer reactor 14 and the syngas is discharged to a second chemical process loop 52. The second chemical process loop 52 has a water-gas shift reactor 54 and a calciner 42. The CO of the syngas reacts with gaseous H2O in the shift reactor 54 to produce H2 and CO2. The CO2 is captured by CaO to form hot CaCO3 in an exothermic reaction.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: August 1, 2006
    Assignee: ALSTOM Technology Ltd
    Inventors: Herbert E. Andrus Jr., Michael S. McCartney
  • Patent number: 7083657
    Abstract: The present invention relates to an improvement in a system for the generation of hydrogen by contacting an aqueous solution of a metal hydride salt with a hydrogen generation catalyst. In particular, the present invention relates to the incorporation within the system of a recycle line of water condensed from the fluid product to the feed line to be contacted with the catalyst. the internal recycle line permits the use of a more concentrated solution of metal hydride as it is diluted by the recycle line prior to contact with the catalyst.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: August 1, 2006
    Assignee: Millennium Cell, Inc.
    Inventors: Richard M. Mohring, Michael Strizki
  • Patent number: 7081144
    Abstract: A method for start-up and shut down of a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst is disclosed. Also disclosed are a computer programmed to start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst or a program storage medium encoded with instruction that, when executed by a computer, start-up or shut down a fuel processor including an autothermal reformer employing a non-pyrophoric shift catalyst.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: July 25, 2006
    Assignee: Texaco Inc.
    Inventors: W. Spencer Wheat, Vesna R. Mirkovic, Kevin H. Nguyen, Curtis L. Krause, James F. Stevens, Daniel G. Casey
  • Patent number: 7070633
    Abstract: The present invention improves the start-up characteristics of a fuel gas generating apparatus for a fuel cell comprising a reformer. In a fuel gas generating apparatus 1 for a fuel cell comprising a vaporizer 22 that generates a fuel vapor by vaporizing a raw liquid fuel, a reformer 11 that generates a reforming gas that includes hydrogen from the raw fuel gas that has been partially oxidized by adding reforming air to the fuel vapor generated by the vaporizer 22, and a CO eliminator 13 that generates a fuel gas having carbon monoxide eliminated by adding a CO eliminating air to the reforming gas generated by the reformer 11, the supplied amount of the reforming air during the warm-up of the fuel gas generating apparatus for a fuel cell is larger than the supplied amount of reforming air during idle operation after completion of the warm-up.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 4, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hikaru Okada, Yasunori Kotani, Atsushi Sakuma
  • Patent number: 7070634
    Abstract: A plasma reformer for the chemical reforming of gaseous mixtures of water and hydrocarbon fuels for producing hydrogen. The reformer contains a reaction chamber with outer lateral walls containing emitter electrodes and inner lateral walls containing collector electrodes. The emitter electrodes and collector electrodes form an electric circuit. There are a multiplicity of thin needle-like extrusions on the emitter electrode from which a profusion of high energy electrons are emitted. These high-energy electrons dissociate the hydrocarbon fuel through absorption and ionization emitting low energy electrons in the process. These low energy electrons cause dissociation of water. Thus, dissociation of hydrocarbon fuel acts to initiate dissociation of water. The molar ratio of water to hydrocarbon fuel in the input mixture for reactions, and therefor the production of hydrogen from water, increases with carbon number of the hydrocarbon fuel.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: July 4, 2006
    Inventor: Chi S. Wang
  • Patent number: 7060118
    Abstract: Process for the preparation of hydrogen and carbon monoxide rich gas by steam reforming of hydrocarbon feedstock in presence of a steam reforming catalyst supported as thin film on the wall of a reactor, comprising steps of (a) optionally passing a process gas of hydrocarbon feedstock through a first reactor with a thin film of steam reforming catalyst supported on walls of the reactor in heat conducting relationship with a hot gas stream; (b) passing effluent from the first reactor to a subsequent tubular reactor being provided with a thin film of steam reforming catalyst and/or steam reforming catalyst pellets and being heated by burning of fuel, thereby obtaining a partially steam reformed gas effluent and a hot gas stream of flue gas; (c) passing the effluent from the second reactor to an autothermal reformer; and (d) withdrawing from the autothermal reformer a hot gas stream of product gas rich in hydrogen and carbon monoxide.
    Type: Grant
    Filed: July 21, 1998
    Date of Patent: June 13, 2006
    Assignee: Haldor Topse A/S
    Inventors: Ib Dybkjaer, Peter Seier Christensen, Viggo Lucassen Hansen, J. R. Rostrup-Nielsen
  • Patent number: 7056361
    Abstract: The invention relates to a device for generating a hydrogen-rich gas from a liquid, hydrogen-containing fuel using a reforming reaction, having feed lines for supplying starting materials and having discharge lines for discharging the reformate, having at least one component for evaporating liquid starting materials, having at least one component for reforming, having at least one component for the catalytic generation of thermal energy, and having at least one component for reducing the carbon monoxide fraction in the reformate, in which device at least two of the components are arranged on a common plate, which comprises a porous layer formed by pressing catalyst material, the reaction starting materials flowing over and/or through the layer.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: June 6, 2006
    Assignee: NuCellSys GmbH
    Inventors: Andreas Ebert, Markus Portscher, Martin Schüssler, Alexandra Hassert, Ralf Heuser, Oskar Lamla, Tomas Stefanovski
  • Patent number: 7048772
    Abstract: A process for carrying out secondary reforming reactions for the production of synthesis gas wherein a gas flow comprising oxygen and a gas flow comprising hydrocarbons are fed into a combustion chamber and are reacted upon mixing, thus obtaining a gas flow comprising hydrogen and carbon monoxide fed in turn to a catalytic bed for carrying out a steam reforming reaction, is distinguished in that it comprises the steps of:—feeding the gas flow comprising oxygen in the combustion chamber in the form of a plurality of jets not laid the one upon the other with respect to the direction of the flow comprising hydrocarbons and generated by corresponding parallel streamtubes having equal velocity;—splitting the plurality of jets within the gas flow comprising hydrocarbons in the combustion chamber so as to mix the gas flow comprising oxygen with amounts of gas flow comprising hydrocarbons at local constant ratio.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: May 23, 2006
    Assignee: Casale Chemicals S.A.
    Inventor: Gianfranco Bedetti
  • Patent number: 7037472
    Abstract: A single-pipe cylinder-type reformer includes a plurality of circular cylinders standing upright coaxially and forming therebetween a zigzag gas flow path allowing a raw material gas to flow therein, a radiation cylinder coaxially arranged inside the plurality of circular cylinders, a burner arranged at one end of a center of the radiation cylinder for generating a combustion gas, a reforming catalyst layer obtained by packing with a reforming catalyst at least a first gas flow path section of the gas flow path closest to the burner. A metal pre-heat layer formed on an upstream side of the reforming catalyst layer is packed with a metal packing. Helical dividing means are provided in each gas flow path section of the gas flow path to extend in the axial direction of the circular cylinders. The helical dividing means helically divide a gas and make it flow through the first gas flow section.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: May 2, 2006
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Jun Komiya, Toshiyasu Miura
  • Patent number: 7037473
    Abstract: An appliance for the gasification of carbon- and ash-containing fuel, residual and waste materials using an oxygen-containing oxidizing agent at temperatures above the melting point of the inorganic fractions, in a reaction chamber which is designed as an entrained-bed reactor, at pressures between atmospheric pressure and 80 bar, preferably between atmospheric pressure and 30 bar, the contour of the reaction chamber being delimited by a cooled reactor wall. The cooled reactor wall having the following structure, from the outside inward: a pressure shell, a cooling wall, a water-cooled gap between the pressure shell and the cooling wall, a ceramic protection for the cooling wall, and a layer of slag. The pressure and temperature of the cooling gap between the pressure shell and the cooling wall is controlled in such a way that it can be operated above and below the boiling point of the cooling water. The pressure in the cooling gap is higher than the pressure in the gasification chamber.
    Type: Grant
    Filed: July 16, 1998
    Date of Patent: May 2, 2006
    Assignee: Future Energy GmbH
    Inventors: Ralf Donner, Dietmar Degenkolb, Manfred Schingnitz
  • Patent number: 7037349
    Abstract: A fast start-up catalytic reformer for producing hydrogen-rich reformate from hydrocarbon fuel includes a reactor having an inlet for receiving a flow of fuel and a flow of air, a reforming catalyst disposed within a reforming chamber in the reactor, and an outlet for discharging the produced reformate stream. An ignition device within the reactor tube ignites a first lean mixture in combustion mode to generate exhaust gases to warm the catalyst which also warms the wall of the reactor adjacent the catalyst. The reactor then switches over to a rich fuel/air mixture during reforming mode. A jacket concentrically surrounds the reactor, defining a mixing chamber therebetween which communicates with the reforming chamber via openings in the wall of the reactor. Fuel entering the reformer in combustion mode is injected directly into the reforming chamber to provide rapid warming of the catalyst.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Kenneth J. Dauer, Michael R. Salemi, Richard F. Nashburn, John Kirwan
  • Patent number: 7033552
    Abstract: A process for upgrading at least one of a Fischer-Tropsch naphtha and a Fischer-Tropsch distillate to produce at least one of a gasoline component, a distillate fuel or a lube base feedstock component. The process includes reforming a Fischer-Tropsch naphtha to produce hydrogen by-product and a gasoline component with a research octane rating of at least about 80. The process further includes upgrading a Fischer-Tropsch distillate using the hydrogen by-product to produce a distillate fuel and/or a lube base feedstock component.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: April 25, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Lawrence W. Jossens
  • Patent number: 7033407
    Abstract: A method of producing hydrogen by reforming a hydrocarbon or an aliphatic alcohol. The method includes preparing a columnar catalytic member having many axial passages and containing a reforming catalyst, a shift catalyst and an oxidation catalyst; preparing a reformable gas containing a hydrocarbon or an aliphatic alcohol and water vapor mixed together; rotating the columnar catalytic member, while passing the gas therethrough transversely with respect to its cross-section such that the gas first flows along a forward path extending in one direction through a first portion of the axial passages and then flows along a backward path extending in the other direction through a second portion of the axial passages, thereby causing the gas to undergo reforming and shift reactions to form hydrogen for recovery, while the gas makes a round trip along the forward and backward paths; and introducing an oxygen containing gas into the forward path and/or the backward path.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: April 25, 2006
    Assignee: Nippon Chemical Plant Consultant Co., Ltd.
    Inventor: Saburo Maruko
  • Patent number: 7025941
    Abstract: A reactor system for reacting a hydrocarbon or hydrocarbon derivative charging material comprises a catalyst-coated reaction chamber, to which a reaction educt stream can be fed through a reaction chamber inlet, and electric heating means. The reaction chamber inlet has a flat, electrically heatable, catalyst-coated, and reaction educt stream-permeable heater, which covers at least partially the inlet cross section of the reaction chamber inlet and through which the educts for reacting the charging material can be fed at least in a start operating phase of the reactor system. An electric heater may be provided in front of the reaction chamber inlet, for the purpose of heating at least one reaction educt in a start operating phase and there are means for point-by-point injection of at least one reaction educt, heated in the heater, into the reaction chamber.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: April 11, 2006
    Assignee: DaimlerChrysler AG
    Inventors: Rainer Autenrieth, Andreas Docter, Norbert Wiesheu
  • Patent number: 7022149
    Abstract: An apparatus for carrying out a multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of reaction zones arranged in a common reaction chamber. The multi-step process includes: providing a fuel to the fuel processor so that as the fuel reacts and forms the hydrogen rich gas, the intermediate gas products pass through each reaction zone as arranged in the reactor to produce the hydrogen rich gas.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: April 4, 2006
    Assignee: Texaco Inc.
    Inventors: Curtis L. Krause, James F. Stevens, Jennifer L. Phan