Apparatus For Converting Or Treating Hydrocarbon Gas Patents (Class 48/127.9)
  • Patent number: 7018435
    Abstract: Described is a mixing device for mixing a gaseous stream of a fuel and an oxidant that has a cylindrical mixing chamber, means for injecting a gaseous stream of the fuel tangentially along the inner surface of the wall of the mixing chamber, and means for injecting a stream of the oxidant axially along the central longitudinal axis of the mixing chamber, wherein the diameter of the mixing chamber and the dimensions and location of the means for injecting the fuel and the oxidant are such that the tangentially injected stream of the fuel forms a wall jet around the axially injected stream of the oxidant without impinging upon the other stream. A reactor for the partial oxidation of a hydrocarbonaceous fuel containing the mixing device and to a process for the catalytic partial oxidation of a hydrocarbonaceous fuel using the mixing device is further described.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: March 28, 2006
    Assignee: Shell Oil Company
    Inventor: Hendrik Martinus Wentinck
  • Patent number: 7008707
    Abstract: A fuel cell system including a fuel reforming processor having a catalyst therein constructed and arranged to produce a reformate stream including hydrogen and carbon monoxide, a water gas shift reactor downstream of the fuel reforming processor and wherein the water gas shift reactor includes a catalyst therein constructed and arranged to reduce the amount of carbon monoxide in the reformate stream, a preferential oxidation reactor downstream of the water gas shift reactor and wherein the preferential oxidation reactor includes a catalyst therein constructed and arranged to preferentially oxidize carbon monoxide into carbon dioxide and to produce a hydrogen-rich stream, and a fuel cell stack downstream of the preferential oxidation reactor constructed and arranged to produce electricity from the hydrogen-rich stream, a first direct water vaporizing combustor constructed and arranged to combust fuel producing a high-temperature fuel combustion byproducts exhaust and to produce steam from water sprayed into th
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: March 7, 2006
    Assignee: General Motors Corporation
    Inventor: Steven G. Goebel
  • Patent number: 7005113
    Abstract: A fuel processing assembly adapted to produce hydrogen gas from a carbon-containing feedstock. The fuel processing assembly includes a fuel processor, such as a steam reformer. The fuel processing assembly further includes a feed assembly adapted to deliver a carbon-containing feedstock, such as a hydrocarbon, to the fuel processor. In some embodiments, the fuel processing system includes a fuel cell stack that includes at least one fuel cell adapted to produce electrical power from hydrogen gas produced by the fuel processor.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: February 28, 2006
    Assignee: IdaTech, LLC
    Inventors: David J. Edlund, Thomas G. Herron
  • Patent number: 6986797
    Abstract: An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: January 17, 2006
    Assignee: Nuvera Fuel Cells Inc.
    Inventors: Lawrence G. Clawson, Matthew H. Dorson, William L. Mitchell, Brian J. Nowicki, Jeffrey M. Bentley, Robert Davis, Jennifer W. Rumsey
  • Patent number: 6969411
    Abstract: A fuel gas-steam reformer assembly, preferably an autothermal reformer assembly, for use in a fuel cell power plant, includes a catalyst bed which is formed from a cylindrical monolithic open cell foam body. The foam body is preferably formed from a high temperature material such as stainless steel, nickel alloys and iron-aluminum alloys, or from a ceramic material. The foam body includes open cells or pores which are contained within the metal or ceramic lattice. The lattice is coated with a porous wash coat which serves as a high surface area substrate onto which catalysts used in the reformer are applied. The foam body has an inlet end into which a mixture of fuel, steam and air is fed to begin the reforming process. An inlet portion of the foam body may be provided with an iron oxide and/or noble metal catalyst and the remainder of the foam body may be provided with a nickel and/or noble metal catalyst.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: November 29, 2005
    Assignee: UTC Fuel Cells, LLC
    Inventor: Roger R. Lesieur
  • Patent number: 6964696
    Abstract: An apparatus and method for recovering a clean liquid condensate from a synthesis gas at elevated temperatures and pressures. The apparatus includes at least one heat exchanger for reducing the temperature of the synthesis gas down to below 200° F. (93° C.) so as to form a syngas condensate at elevated pressure. The syngas condensate is flashed so that it separates into a liquid phase condensate and a gas phase. The liquid phase condensate comprises water, dissolved ammonia and particulates. The gas phase contains carbon monoxide, carbon dioxide, various sulfur containing compounds and trace amounts of other compounds that may have been dissolved in the syngas condensate. The gas phase is removed from the flash tank and sent to a sour gas treatment unit and/or flare. The liquid phase condensate is then filtered so as to remove larger sized particulates. Clean liquid condensate is reused in the gasification process.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: November 15, 2005
    Assignee: Texaco, Inc.
    Inventors: William A. Malatak, Brad X. Pan
  • Patent number: 6964692
    Abstract: An apparatus removes carbon monoxide (CO) from a hydrogen-rich gas stream in a hydrogen fuel cell system. CO fouls costly catalytic particles in the membrane electrode assemblies of proton exchange membrane (PEM) fuel cells. A vessel houses a carbon monoxide adsorbent. The vessel may be a rotating pressure swing adsorber. A water gas shift reactor is upstream of the rotating pressure swing adsorber. The water gas shift reactor may include a second adsorbent adapted to adsorb carbon monoxide at low temperatures and to desorb carbon monoxide at high temperatures. The apparatus advantageously eliminates the use of a preferential oxidation (PROX) reactor, by providing an apparatus which incorporates CO adsorption in the place of the PROX reactor. This cleans up carbon monoxide without hydrogen consumption and the concomitant, undesirable excess low grade heat generation. The present invention reduces start-up duration, and improves overall fuel processor efficiency during normal operation.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: November 15, 2005
    Assignee: General Motors Corporation
    Inventors: Craig S. Gittleman, William H. Pettit, Gerald E. Voecks
  • Patent number: 6960235
    Abstract: A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m2/cm3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: November 1, 2005
    Assignee: The Regents of the University of California
    Inventors: Jeffrey D. Morse, Alan Jankowski
  • Patent number: 6936082
    Abstract: An autothermal reforming process and apparatus including a combustion chamber, at least one catalytic reactor, a duct for leading combustion product from the combustion chamber to the catalytic reactor or reactors, and withdrawal ducts for withdrawing the product of the catalytic reactor or reactors.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: August 30, 2005
    Assignee: Haldor Topsoe A/S
    Inventor: Ivar I. Primdahl
  • Patent number: 6932958
    Abstract: A fuel processor for producing a hydrogen-rich product gas suitable for direct use in fuel cell applications includes a housing, an annular shift/methanator reactor vessel at least one reactor vessel wall disposed within the housing and forming an outer annular space between the at least one reactor vessel wall and the housing. A combustion chamber having at least one combustion chamber wall and forming a first inner annular space between the at least one combustion chamber wall and the at least one reactor vessel wall is disposed in the interior space formed by the annular shift/methanator reactor vessel, and a reformer reactor vessel having at least one reformer vessel wall and forming a second inner annular space between the at least one reformer vessel wall and the at least one combustion chamber wall is disposed within the combustion chamber.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: August 23, 2005
    Assignee: Gas Technology Institute
    Inventors: James R. Wangerow, Alvie R. Meadows, Andy H. Hill, Michael Onischak
  • Patent number: 6929785
    Abstract: An apparatus and method for a preheated micro-reformer system is disclosed comprising a reformer and a micro-reformer in fluid communication with the reformer. The micro-reformer being electrically preheatable. An apparatus comprising a micro-reformer including a first zone and a second zone, the first zone being preheatable to a first temperature and the second zone being preheatable to a second temperature, the second temperature being higher than the first temperature. A method of using a micro-reformer that is electrically preheatable is disclosed comprising initiating an electrically preheatable micro-reformer. The micro-reformer is preheated. The preheating can be accomplished by converting electrical energy into thermal energy. A method of using a preheated micro-reformer is disclosed comprising preheating a first zone, preheating a second zone to a temperature higher than the first zone, vaporizing a fuel air mixture in the first zone, and reforming the fuel air mixture in the second zone.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: August 16, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Malcolm James Grieve, David R. Schumann, John E. Kirwan, Galen B. Fisher, Ather A. Quader
  • Patent number: 6926748
    Abstract: A fuel processor for rapidly achieving operating temperature during startup. The fuel processor includes a reformer, a shift reactor, and a preferential oxidation reactor is provided for deriving hydrogen for use in creating electricity in a plurality of fuel cells. A first combustion heater system is coupled to at least one of the reformer, the shift reactor, and the preferential oxidation reactor to preheat the component during a rapid startup sequence. That is, the first combustion heater system is operable to produce thermal energy as a product of the combustion of air and fuel in the form of a first heated exhaust stream. This first heated exhaust stream is then used to heat the component directly or by using a heat exchanger type system. The first heated exhaust stream is also used by a second combustion device as a source of oxygen or diluent.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: August 9, 2005
    Assignee: General Motors Corporation
    Inventors: Steven G. Goebel, William H. Pettit, Mohammed E.H. Sennoun, Daniel P. Miller
  • Patent number: 6923944
    Abstract: The membrane reactor of the present invention generates a desired gas such as hydrogen produced by steam reforming liquid fuels. The membrane reactor provides thermal integration between the heating source and the reaction catalyst by heat conduction through a solid medium. Pressure energy within the membrane reactor provides compression of the feed to lower the partial pressure of product within the reactor, thereby increasing the membrane reactor effect.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: August 2, 2005
    Inventor: Robert E. Buxbaum
  • Patent number: 6921516
    Abstract: A reactor system including a reactor housing having an inlet portion defined at one end of the housing and having a discharge opening formed in the housing at an opposite end. An air intake charge line is connected to the housing for charging air into the inlet portion. A steam charge line is connected to the housing for charging steam into the inlet portion. A fuel injector is positioned in the housing for injecting fuel into the stream of air and steam flowing through the housing. A fuel charge line is connected to the fuel injector for charging a carbon-based fuel into the injector. A catalyst bed is carried in the housing and positioned downstream of the fuel injector and at least a portion of the catalyst bed includes a catalyst for promoting the reformation of the carbon-based fuel to produce hydrogen. An auto-ignition suppression and carbon-suppression foam is carried in the housing and positioned between the catalyst bed and the fuel injector.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: July 26, 2005
    Assignee: General Motors Corporation
    Inventors: Steven G. Goebel, Gerald E. Voecks, Robert N. Carter
  • Patent number: 6921517
    Abstract: A hydrocarbon gas to be decomposed, optionally mixed with water vapor, is allowed to flow through the gap between various porous tubes 4 constituting a group of porous tubes provided extending vertically in a decomposition reaction column 1 while air or oxygen is jetted homogeneously from the interior to the exterior of the porous tubes in the direction perpendicular to the stream of the hydrocarbon gas to be decomposed, optionally mixed with water vapor. The mixture is then ignited to form a diffusion flame layer B on the outer surface of the porous tubes 4. With the diffusion flame layer as a heat source, the hydrocarbon gas to be decomposed, optionally mixed with water vapor, undergoes pyrolysis.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: July 26, 2005
    Assignees: The Japan Steel Works, Ltd., Kubota Corporation
    Inventors: Shuzo Matsumura, Masaji Yoneta, Rokuro Denda, Yoshito Umeda, Masao Hattori, Satoshi Hagi, Jun Funakoshi, Akira Kosaka
  • Patent number: 6919055
    Abstract: In the hydrogen supply device for producing and supplying hydrogen to a fuel cell, a heat exchange section has a rotary thermal storage through which low and high temperature passages pass. Reforming material is supplied to the low temperature fluid passage on an upstream side of the heat exchange section. A reforming section for producing reformed gas containing hydrogen is located at a downstream side of the low temperature fluid passage. A combustion gas supply section for generating and supplying a combustion gas is located in the high temperature fluid passage. The rotary thermal storage rotates to move alternately between the low and high temperature fluid passages so that heat of the combustion gas flowing in the high temperature fluid conduit is transferred to reforming material flowing in the low temperature fluid conduit. The low temperature fluid passage communicates with the high temperature fluid passage via the fuel cell.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: July 19, 2005
    Assignee: Denso Corporation
    Inventors: Yasuo Kondo, Tadayoshi Terao, Kiyoshi Kawaguchi
  • Patent number: 6903259
    Abstract: A fuel reforming system comprises a fuel reformer and a thermoelectric device positioned in thermal communication with the fuel reformer. A method of generating electrical energy is also disclosed.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: June 7, 2005
    Assignee: Arvin Technologies, Inc.
    Inventors: Mehmet S. Ciray, Rodney H. Cain, William Taylor, III, Rudolf M. Smaling
  • Patent number: 6896709
    Abstract: A miniature fuel reformer utilizes a metal thin film and includes a plurality of unit modules connected together.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: May 24, 2005
    Assignee: Sk Corporation
    Inventors: Jaesung Han, Cheolwoo Park, Keunseob Choi, Ilsu Kim
  • Patent number: 6890672
    Abstract: A feedstock mixing apparatus for fuel processing systems, and fuel processing and fuel cell systems incorporating the same. A fuel processing system according to the present invention includes one or more fuel processors adapted to produce a product hydrogen stream from a feed stream containing water and a carbon-containing feedstock. The fuel processing system further includes a feedstock delivery system adapted to mix the components of the feed stream at a determined mix ratio and to deliver this feed stream to the fuel processor(s). The fuel processing system may also include one or more fuel cell stacks that are adapted to produce an electric current from the product hydrogen stream produced by the fuel processing system. When the fuel processing system includes at least one fuel cell stack, it may be referred to as a fuel cell system.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: May 10, 2005
    Assignee: IdaTech, LLC
    Inventors: Anthony J. Dickman, David J. Edlund, William A. Pledger
  • Patent number: 6887285
    Abstract: An apparatus for carrying out a multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of modules each module being in fluid communication with adjacent modules. The modules may be arranged axially along a common axis of flow or alternatively the modules are arranged along a common axis so that they are nested one within the other. The multi-step process includes: providing a fuel processor having a plurality of modules; and feeding the hydrocarbon fuel successively through each of the modules in the reactor to produce the hydrogen rich gas.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: May 3, 2005
    Assignee: Texaco Inc.
    Inventor: Vijay A. Deshpande
  • Patent number: 6866091
    Abstract: A method for vaporizing and/or superheating a combustible/water mixture, wherein the combustible is especially methanol, for supplying a gas generation system (2) belonging to a fuel cell installation (3). The waste-gas from the fuel cell and/or gas generation system is catalytically combusted together with a gas containing oxygen in order to produce the thermal energy required therefore. The combustible is added in a dosed manner to the volume flow from the gas containing oxygen and the waste gases of the fuel cell and/or gas generator system in the direction of flow prior to catalytic combustion.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: March 15, 2005
    Assignee: DaimlerChrysler AG
    Inventor: Rainer Autenrieth
  • Patent number: 6838063
    Abstract: In the hydrogen supply device for producing and supplying hydrogen to a fuel cell, a reforming section has a rotary thermal storage through which low and high temperature passages pass. Reforming material is supplied to the low temperature fluid passage on an upstream side of the first rotary thermal storage. A combustion gas supply section for generating and supplying a combustion gas is located in the high temperature fluid passage on a downstream side of the first rotary thermal storage. With the hydrogen supply device mentioned above, the first rotary thermal storage rotates to move alternately between the low and high temperature fluid passages so that, in the reforming section, the reforming material flowing in the low temperature fluid passage is catalytically reformed to a reformed gas containing hydrogen upon receiving combustion heat of the combustion gas flowing in the high temperature fluid conduit.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: January 4, 2005
    Assignee: Denso Corporation
    Inventors: Yasuo Kondo, Tadayoshi Terao, Kiyoshi Kawaguchi, Masanori Uehara
  • Publication number: 20040265224
    Abstract: An autothermal reactor and method for producing synthesis gas in which a heated oxygen containing stream is expanded into a mixing chamber to entrain a hydrocarbon containing stream to form a reactant stream without reaction of the oxygen and hydrocarbon contents of the streams. The reactant stream is reacted in a series of sequential catalytic reaction zones to react the hydrocarbon and oxygen contained in the reactant stream to form the synthesis gas. The sequential catalytic reaction zones are configured such that an initial partial oxidation reaction occurs that is followed by endothermic reforming reactions having ever decreasing temperatures. The sequential catalytic reaction zones in which the endothermic reforming reactions occur contain a precious metal catalyst supported on ceramic supports that have successively greater surface areas to compensate for the temperature decrease while remaining stable and without a transform in state.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: Vasilis Papavassiliou, Minish Mahendra Shah, Thomas John Bergman
  • Patent number: 6835219
    Abstract: An apparatus and method is disclosed for rapidly heating fuel processor components during startup of a fuel cell powered vehicle. Rapid heating is achieved by placing a water adsorbent downstream of the fuel processor's primary reactor, which converts a hydrocarbon-based fuel to a hydrogen-rich fuel. In addition to hydrogen, the reformed fuel (reformate) includes carbon dioxide, carbon monoxide and water. The water adsorbent, which has a high heat of adsorption, produces heat as it adsorbs water in the reformate. Heat generated by water adsorption enhances the rate at which fuel processor components, such as a water-gas-shift reactor, reach their operating temperatures. In addition, water adsorption reduces water condensation on the water-gas-shift reactor catalyst. Once the fuel processor components attain their operating temperatures, water desorbs from the adsorbent and is available for converting carbon monoxide to carbon dioxide and hydrogen in the water-gas-shift reactor.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: December 28, 2004
    Assignee: General Motors Corporation
    Inventor: Craig S Gittleman
  • Publication number: 20040258587
    Abstract: A catalytic reactor (10) comprises a stack of sheets (12) defining flow channels (14) between them. Within each flow channel (14) is a flexible wire structure (16) whose surfaces are coated with catalytic material. Flow channels (14, 14a) for a first gas extend along S-shaped curved paths whereas the flow channels (14b) for a second gas are straight. The reactor (10) incorporates header chambers (18) to supply gas mixtures to the flow channels (14), each header chamber being a square cap attached to a face of the stack. The reactor (10) enables different gas mixtures to be supplied to adjacent channels (14), which may be at different pressures, and the corresponding chemical reactions are also different. Where one of the reactions is endothermic while the other reaction is exothermic, heat is transferred through the sheets (12) separating the adjacent channels (14), from the exothermic reaction to the endothermic reaction.
    Type: Application
    Filed: April 6, 2004
    Publication date: December 23, 2004
    Inventors: Michael Joseph Bowe, Jason Andrew Maude
  • Publication number: 20040255514
    Abstract: In a reforming reactor (31), a partial oxidation reaction is performed between a hydrocarbon fuel and air, and in a mixer (32), water is injected into hot gas heated by the partial oxidation reaction to vaporize the water, and the vaporized water is mixed with the hot gas. In a shift reactor (33), the vaporized water is made to undergo a shift reaction with the hot gas. In this way, a device for promoting vaporization of the water or a complex fuel injection device is not required.
    Type: Application
    Filed: May 6, 2003
    Publication date: December 23, 2004
    Inventors: Akihiro Sakakida, Mikiya Shinohara, Tadashi Shoji, Shiro Tanaka
  • Patent number: 6830596
    Abstract: This invention is directed to a heat exchanged membrane reactor for electric power generation. More specifically, the invention comprises a membrane reactor system that employs catalytic or thermal steam reforming and a water gas shift reaction on one side of the membrane, and hydrogen combustion on the other side of the membrane. Heat of combustion is exchanged through the membrane to heat the hydrocarbon fuel and provide heat for the reforming reaction. In one embodiment, the hydrogen is combusted with compressed air to power a turbine to produce electricity. A carbon dioxide product stream is produced in inherently separated form and at pressure to facilitate injection of the CO2 into a well for the purpose of sequestering carbon from the earth's atmosphere.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: December 14, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, John W. Fulton, Jeffrey M. Grenda, Frank Hershkowitz
  • Publication number: 20040244289
    Abstract: The present invention relates to a combustible gas reforming method, a combustible gas reforming apparatus, and a gasification apparatus for gasifying a combustible material such as coal, biomass, municipal wastes, industrial wastes, RDF (refuse-derived fuel), waste plastics, and the like, and reforming a generated combustible gas. According to a combustible gas reforming method of the present invention, combustibles are gasified in a gasification apparatus (11), a generated gas (GA) produced by gasifying the combustibles is reformed in a gas reforming apparatus (12) using a catalyst to produce a product gas (GB), and a catalyst (CA′) degraded by the gas reforming apparatus (11) is regenerated in a catalyst regenerating apparatus (13). Waste heat (TP) of the combustible gas reforming process is used as heat to regenerate the catalyst in the catalyst regenerating apparatus (13).
    Type: Application
    Filed: March 26, 2004
    Publication date: December 9, 2004
    Inventors: Fumiaki Morozumi, Katsutoshi Naruse, Kaori Sasaki, Yuki Iwadate
  • Publication number: 20040244290
    Abstract: A chemical reactor includes a first reaction section which has a first flow path and causes a first reaction in the first flow path. A heating section heats the first reaction section. A second reaction section has a second flow path and causes a second reaction in the second flow path by heat of the heating section transmitted via the first reaction section.
    Type: Application
    Filed: June 23, 2004
    Publication date: December 9, 2004
    Inventors: Tadao Yamamoto, Masaharu Shioya
  • Patent number: 6827751
    Abstract: An apparatus which is capable of supporting a process for gasifying a variety of hydrocarbon-containing materials. The resulting hydrogen-containing gas is suitable for use in various combustion processes and for petrochemical processes. A hydrocarbon-containing material is mixed with natural gas (or other suitable hydrocarbon gas) under pressure. The suspended material and gas are then injected under pressure into an acceleration/gasification tube. Intense heat (provided by an external energy source) is applied to the mixture as it travels through this tube, resulting in the cracking of the hydrocarbon chains and the release of additional energy. The released bond energy, along with the addition of the external energy, rapidly expands the gas and causes the velocity of the moving mixture to rise sharply as it proceeds down the tube. The acceleration/gasification tube is connected to a diffuser, which is essentially an expansion nozzle with a series of heat exchangers to cool the rapidly expanding gas.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: December 7, 2004
    Inventors: Thomas W. Kaufman, Verner Christensen
  • Publication number: 20040237404
    Abstract: A gasifier 10 includes a first chemical process loop 12 having an exothermic oxidizer reactor 14 and an endothermic reducer reactor 16. CaS is oxidized in air in the oxidizer reactor 14 to form hot CaSO4 which is discharged to the reducer reactor 16. Hot CaSO4 and carbonaceous fuel received in the reducer reactor 16 undergo an endothermic reaction utilizing the heat content of the CaSO4, the carbonaceous fuel stripping the oxygen from the CaSO4 to form CaS and a CO rich syngas. The CaS is discharged to the oxidizer reactor 14 and the syngas is discharged to a second chemical process loop 52. The second chemical process loop 52 has a water-gas shift reactor 54 and a calciner 42. The CO of the syngas reacts with gaseous H2O in the shift reactor 54 to produce H2 and CO2. The CO2 is captured by CaO to form hot CaCO3 in an exothermic reaction.
    Type: Application
    Filed: May 29, 2003
    Publication date: December 2, 2004
    Applicant: ALSTOM (Switzerland) Ltd
    Inventors: Herbert E. Andrus, Michael S. McCartney
  • Publication number: 20040237406
    Abstract: The subject matter of the invention is a membrane reactor for the generation of high-purity hydrogen from a hydrocarbon stream and steam comprising a hydrogen-permeable diffusion membrane and possibly a catalyst for converting hydrocarbons into hydrogen and for separating the hydrogen gas from the residual gas, with the membrane and possibly the reactor being fitted with heating elements. A further subject matter of the invention is a process to generate high-purity hydrogen gas using a pre-treatment step.
    Type: Application
    Filed: February 19, 2004
    Publication date: December 2, 2004
    Inventor: Franz Fuder
  • Patent number: 6824576
    Abstract: Heterocyclic compounds containing furfural and hydroxymethylfurfural are derived from acidic hydrolysis of biomass. Heterocyclic compounds are vaporized and subjected to reforming and steam shifting to produce a gas containing hydrogen, carbon dioxide and carbon monoxide. The gas containing hydrogen, carbon dioxide and carbon monoxide is scrubbed by a solvent, capable of dissolving carbon monoxide, to produce a gas containing hydrogen, carbon dioxide and substantially devoid of carbon monoxide. The solvent containing dissolved carbon monoxide is heated to provide a solvent for scrubbing and a vapor containing carbon monoxide recycled for additional steam shifting. The gas containing hydrogen, carbon dioxide substantially devoid of carbon monoxide, is further scrubbed of carbon dioxide to produce a gas substantially devoid of carbon monoxide and substantially devoid of carbon dioxide containing hydrogen suitable for use in a fuel cell.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: November 30, 2004
    Inventor: Gene E Lightner
  • Patent number: 6824577
    Abstract: An apparatus for carrying out a multi-step process of converting hydrocarbon fuel to a substantially pure hydrogen gas feed includes a plurality of modules arranged in a nested manner along a common axis. The multi-step process includes: providing a fuel processor having a plurality of modules arranged so that they are nested one within the other; and feeding the hydrocarbon fuel successively through each of the modules in the reactor to produce the hydrogen rich gas.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: November 30, 2004
    Assignee: Texaco Inc.
    Inventor: Vijay A. Deshpande
  • Publication number: 20040226217
    Abstract: A fuel processor having a dynamically controlled thermal integration mechanism and a method for dynamically controlling temperatures in a fuel processor. Such dynamic control accomplished by the use of an autothermal reformer, a steam/air superheater, water/air injectors, water gas shift reactors, heat exchangers, preferential oxidation reactors, wherein the feed/reactant streams are used as the coolant to remove heat from the reformate gas stream.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 18, 2004
    Applicant: University of Chicago
    Inventors: Shabbir Ahmed, Rajesh K. Ahluwalia, Sheldon H.D. Lee
  • Publication number: 20040226218
    Abstract: A fuel reforming apparatus includes a premixed fuel tank. In the premixed fuel tank, premixed fuel which is formed by emulsifying gasoline and water that are mixed with each other at a predetermined ratio, using a emulsifier. The premixed fuel is sprayed into a vaporizing portion through a nozzle. Heat can be supplied to the vaporizing portion by the reformer in which oxidation reaction proceeds, a first heating portion, and air supplied to the vaporizing portion through a heat exchanger. The premixed fuel sprayed into the vaporizing portion is vaporized immediately by the thus supplied heat, and is supplied to the reformer. In addition, air which has been humidified in a humidifying module cam be supplied to the vaporizing portion.
    Type: Application
    Filed: October 23, 2003
    Publication date: November 18, 2004
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro Izawa, Takatoshi Masui, Satoshi Iguchi, Shigeru Ogino, Koichi Numata, Kenji Kimura, Satoshi Aoyama, Masahiko Iijima
  • Publication number: 20040221508
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. In particular, preferred embodiments of the present invention comprise rare earth catalyst supports, catalyst compositions having rare earth supports, and methods of preparing and using the catalysts and supports. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an oxygen containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the rare earth catalyst supports in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst supports and compositions described herein.
    Type: Application
    Filed: May 21, 2002
    Publication date: November 11, 2004
    Applicant: Conoco Inc.
    Inventors: Yaming Jin, Tianyan Niu, Harold A. Wright
  • Publication number: 20040221507
    Abstract: Experiments were conducted to investigate the reforming of organic compounds (primarily methanol) in supercritical water at 550° C.-700° C. and 27.6 MPa in a tubular Inconel® 625 reactor. The results show that methanol can be completely converted to a product stream that is low in methane and near the equilibrium composition of hydrogen, carbon monoxide, and carbon dioxide. The effect of reactor temperature, feed concentration of methanol, and residence time on both conversion and product gas composition are presented.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Inventors: Benjamin C. Wu, Karl Wally, Steven F. Rice, Robert W. Crocker
  • Publication number: 20040216378
    Abstract: A plasma fuel reformer reforms hydrocarbon fuels to produce a reformed gas which is supplied to the intake of an internal combustion engine, an emission abatement device, or a fuel cell. The plasma fuel reformer includes a catalytic substrate positioned in the reaction chamber of the plasma fuel reformer to facilitate the reforming process of gas exiting the plasma-generating assembly of the reformer. A method of operating a plasma fuel reformer is also disclosed.
    Type: Application
    Filed: April 29, 2003
    Publication date: November 4, 2004
    Inventor: Rudolf M. Smaling
  • Patent number: 6811907
    Abstract: A fuel processor assembly that contains a device for supplying a high voltage electric discharge, a first catalytic body, and a second catalytic body. The two catalytic bodies have different shapes and properties.
    Type: Grant
    Filed: December 8, 2001
    Date of Patent: November 2, 2004
    Assignee: Nanoset, LLC
    Inventors: Xingwu Wang, Huihui Duan, Bigang Min
  • Patent number: 6811578
    Abstract: In a fuel reforming apparatus having a reformer for reforming a raw fuel containing a hydrocarbon-containing compound so as to produce a hydrogen-rich fuel gas for use in a fuel cell, a carbon removal process for removing carbon deposited on a reforming catalyst contained in the reformer is executed by controlling the amount of the raw fuel supplied to the reformer and the amount of the oxygen supplied to the reformer so that a ratio of the number of oxygen atoms O supplied to the reformer to the number of carbon atoms supplied to the reformer becomes larger than an appropriate range of the O/C ratio that is to be established during a normal operation of the reformer.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: November 2, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhisa Kunitake, Satoshi Iguchi, Satoshi Aoyama, Hiroyuki Usami
  • Publication number: 20040205997
    Abstract: A dual-chamber, aqueous-chemistry-based portable reactor for reducing water via any of numerous possible exothermic reactions to produce both heat and hydrogen gas. In one embodiment, aluminum metal is contained within a lower reaction chamber, an aqueous, sodium-hydroxide solution is contained in an upper chamber, and the aqueous, sodium-hydroxide solution is fed by gravity into the lower reaction chamber to vigorously react with the aluminum metal to produce both heat and hydrogen gas. A static feedback-control tube returns the aqueous, sodium-hydroxide solution back from the second chamber to the first chamber in the event that excessive hydrogen-gas pressure builds up in the second chamber, providing feedback-control of the rate of the reduction of water in the second chamber by a combination of gas pressure and hydrostatic pressure.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 21, 2004
    Inventor: David Youngblood
  • Publication number: 20040205998
    Abstract: According to an apparatus and method for determining degradation of a reforming catalyst degradation which reforms a mixture of air and fuel, in a reformer that supplies a reformate gas to an engine of a vehicle, a temperature sensor detects a temperature of a reforming reaction portion in which is provided a reforming catalyst. An ECU then determines the extent of degradation of the reforming catalyst based on the temperature detected by the temperature sensor.
    Type: Application
    Filed: April 5, 2004
    Publication date: October 21, 2004
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuhiro Wakao, Kazuhiro Sakurai, Takaaki Itou, Hiroki Ichinose
  • Patent number: 6802876
    Abstract: An apparatus for producing hydrogen by a steam reforming reaction, on a catalyst, of a hydrocarbon or an oxygen-containing hydrocarbon as a raw material is disclosed. The apparatus comprises a hydrogen separation type reformer which has a means for heating the catalyst and which has a hydrogen separation membrane built into a layer of the catalyst for selectively separating hydrogen; a cooling means for cooling high temperature high purity hydrogen obtained from the reformer; and a hydrogen charge/discharge means disposed downstream from the cooling means and composed of a hydrogen storage material.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: October 12, 2004
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kazuto Kobayashi, Yoshimasa Fujimoto
  • Publication number: 20040194381
    Abstract: A portable fuel processing apparatus and enclosure including an enclosure having an outer wall that defines an interior space and provides a gas impermeable barrier. Attached to the enclosure is porting means for use in moving the enclosure from one location to another. A fuel reformer capable of providing sufficient hydrogen-rich reformate to a fuel cell stack for use in generating at least about 1 kW per hour is disposed within the enclosure. An optional gas detection system includes a sensor disposed within the enclosure to monitor the interior of the enclosure for presence of combustible gases. The portable apparatus can have a number of connectors for connecting the enclosure and the fuel processing systems to a source of a reformer fuel and water as well as a domestic drain. Preferred sources of fuel and water are common utility lines available in buildings.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 7, 2004
    Applicant: Texaco Inc.
    Inventors: William Spencer Wheat, James F. Stevens, Curtis L. Krause, Jeffrey A. Hedges, Eric G. Pow
  • Publication number: 20040194384
    Abstract: Apparatus for rapidly heating one or more reactants for use in a fuel reformer. The apparatus includes a combustion section having an outer wall enclosing a combustion chamber and a catalyst disposed within the combustion chamber. The catalyst provides a non-diffused flow path through the combustion chamber for the combustion of gases and generation of heat and passage of such gases and heat from the combustion chamber. A heat recovery section is in fluid communication with the combustion section and has an outer wall defining a heat recovery chamber. At least one heat exchanging element is located within the heat recovery chamber having an inlet for receiving a fuel reforming reactant and an outlet for directing a heated reactant out of the heat recovery section. The combustion section is elevated relative to the heat recovery section such that heated combustion gases are displaced down into the heat recovery section.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 7, 2004
    Applicant: Texaco Inc.
    Inventor: Kevin Hoa Nguyen
  • Publication number: 20040187386
    Abstract: A fuel processor for producing a hydrogen-rich product gas suitable for direct use in fuel cell applications includes a housing, an annular shift/methanator reactor vessel -at least one reactor vessel wall disposed within the housing and forming an outer annular space between the at least one reactor vessel wall and the housing. A combustion chamber having at least one combustion chamber wall and forming a first inner annular space between the at least one combustion chamber wall and the at least one reactor vessel wall is disposed in the interior space formed by the annular shift/methanator reactor vessel, and a reformer reactor vessel having at least one reformer vessel wall and forming a second inner annular space between the at least one reformer vessel wall and the at least one combustion chamber wall is disposed within the combustion chamber.
    Type: Application
    Filed: March 26, 2003
    Publication date: September 30, 2004
    Inventors: James R. Wangerow, Alvie R. Meadows, Andy H. Hill, Michael Onischak
  • Patent number: 6797022
    Abstract: The invention relates to an autothermic reforming reactor, comprising an endothermic reaction zone, in which the reforming reaction takes place; an exothermic reaction zone, in which the energy is released which is required for the reforming reaction; a quench zone connected downstream of the reaction zones for the rapid cooling of the reactor gas volume flow. According to the invention, the endothermic reaction zone and the quench zone are separated by a gas permeable heat shield (HS), whereby the heat shield (HS) comprises thermal insulation (IS) for thermally insulating the endothermic reaction zone and quench zone, in addition to a thermal radiator (STR) which faces the endothermic reaction zone and radiates the thermal energy which has been absorbed from the reactor gas volume flow.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 28, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Andreas Docter, Uli Roeltgen, Norbert Wiesheu
  • Publication number: 20040182002
    Abstract: Low-energy, low-capital hydrogen production is disclosed. A reforming exchanger 14 is placed in parallel with an autothermal reformer (ATR) 10 to which are supplied a preheated steam-hydrocarbon mixture. An air-steam mixture is supplied to the burner/mixer of the ATR 10 to obtain a syngas effluent at 650°-1050° C. The effluent from the ATR is used to heat the reforming exchanger, and combined reformer effluent is shift converted and separated into a mixed gas stream and a hydrogen-rich product stream. High capital cost equipment such as steam-methane reformer and air separation plant are not required.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 23, 2004
    Applicant: KELLOGG BROWN AND ROOT, INC.
    Inventors: Avinash Malhotra, James Hanlan Gosnell
  • Patent number: 6793700
    Abstract: An apparatus for a hydrocarbon reforming process includes a combustion chamber, a convection chamber in fluid communication with the combustion chamber, at least one burner disposed in the combustion chamber, a reaction chamber, a means for flowing a first mixed-feed through a first part of the reaction chamber, and a means for flowing a second mixed-feed through an annular portion of a second part of the reaction chamber, the second part being a tube-in-tube in fluid communication with the first part. The burner(s) generates a flow of a flue gas having a sensible heat from the combustion chamber to the convection chamber. The flow of the flue gas in the convection chamber is counter-currently with the flow of the second mixed-feed.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: September 21, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Hoanh Nang Pham, Shoou-I Wang, David Hon Sing Ying, Kevin Boyle Fogash