And Boron Patents (Class 501/47)
  • Patent number: 7312169
    Abstract: The present invention provides a high refractive index, high dispersion optical glass for precision molding, being free from harmful materials causing environmental problems, such as lead oxide, etc., and having a low yield temperature, a refractive index (nd) of at least 1.83 and an Abbe number (?d) of at most 26.0 and further providing a low softening property as well as an improved mass production property with less coloration, which is represented in terms of for making up the glass, by the following chemical composition (wt %): P2O5 15 to 29% B2O3 ?0 to 2% GeO2 ?0 to 14% Sum of P2O5 + B2O3 + GeO2 20 to 35% Li2O ?0 to 5% Na2O ?3 to 14% K2O ?0 to 9% Sum of Li2O + Na2O + K2O ?5 to 15% Nb2O5 ?2 to less than 22% Bi2O3 34 to 60% WO3 ?0 to 5% BaO ?0 to 5% In2O3 ??0 to 7%.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: December 25, 2007
    Assignee: Sumita Optical Glass, Inc.
    Inventors: Yoshinori Yamamoto, Naruhito Sawanobori, Shinobu Nagahama
  • Patent number: 7309670
    Abstract: The present invention relates to optical glass having a high refractive index, high dispersion, and a low glass transition temperature; a preform comprised of the optical glass for precision press-molding and a method of manufacturing the same; and an optical element comprised of the optical glass and a method of manufacturing the same.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: December 18, 2007
    Assignee: Hoya Corporation
    Inventors: Yasuhiro Fujiwara, Xuelu Zou
  • Publication number: 20070243991
    Abstract: A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 18, 2007
    Inventors: Richard K. Brow, Signo T. Reis, Mariano Velez, Delbert E. Day
  • Patent number: 7157391
    Abstract: An optical glass being free of lead and fluorine, having a low glass transition temperature permitting press-molding with a mold formed of stainless steel and having high climate resistance includes an optical glass comprising, by mol %, 25 to 44% of P2O5, 10 to 40% of a total of Li2O, Na2O and K2O, 5 to 40% of ZnO, 1 to 35% of BaO and at least one components selected from Nb2O5, Bi2O3 and WO3, having a glass transition temperature (Tg) of 370° C. or lower and being free of lead and fluorine and an optical glass which is free of lead and fluorine, has a mass loss ratio of less than 0.25% when immersed in pure water, and has a glass transition temperature (Tg) of 370° C. or lower.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: January 2, 2007
    Assignee: Hoya Corporation
    Inventors: Yoshiko Kasuga, Xuelu Zou
  • Patent number: 7141524
    Abstract: The lead-free, Li2O-free, CuO-free and preferably arsenic-free optical glass is suitable for applications in the fields of imaging, projection, telecommunications, optical communication technology and/or laser technology, and has a refractive index nd of 1.55?nd?1.60, an Abbe number Vd of 54?Vd?63 and a transformation temperature Tg?500° C. This optical glass has good production and processing properties and crystallization stability, and, at the same time, advantageously does not contain PbO and As2O3. These glasses contain, in percent by weight based on oxide content: P205, 43-56; ZnQ, 21-36; Al2O3, 0-6; Na2O, 0-16; K2O, 0-8; ?M2O ?16; MgO, 0-5; CaO, 0-5; BaO, 3-14; B2O3, 0-8; La2O3, 0-7. In addition, it may also contain standard refining agents.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: November 28, 2006
    Assignee: Schott AG
    Inventors: Silke Wolff, Ute Woelfel
  • Patent number: 7141525
    Abstract: The present invention provides a high refractive index, high dispersion optical glass for precision molding, being free from harmful materials causing environmental problems, such as lead oxide, etc., and having a low yield temperature (At), i.e. at most 580° C., a refractive index (nd) of at least 1.89 and an Abbe number (?d) of at most 23.0 and further providing a low softening property as well as an improved mass production property with less coloration, which is represented in terms of for making up the glass, by the following chemical composition (wt %): P2O5 3 to 20% B2O3 0 to 5% GeO2 more than 14 to 37% Sum of P2O5 + B2O3 + GeO2 24 to 43% Li2O 0 to 5% Na2O 0 to 8% K2O 0 to 10% Sum of Li2O + Na2O + K2O 1 to 10% Nb2O5 0 to 50% Bi2O3 12 to 67% BaO 0 to 5% WO3 0 to 12%.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: November 28, 2006
    Assignee: Sumita Optical Glass, Inc.
    Inventors: Yoshinori Yamamoto, Koichi Tsuchiya, Naruhito Sawanobori, Shinobu Nagahama
  • Patent number: 7115536
    Abstract: A rare earth containing glass nominally based on the ternary P2O5—WO3—Na2O-Ln2O3 compositional space, with WO3>30-65 mole %, Na2O 15-35 mole %, P2O5 5-65 mole %, Ln2O3 (Ln=one or more cations selected from lanthanum or any of the rare earth oxides) up to the limit of solubility; with optional additives, MoO3 being a preferred additive, that can be employed alone or in combination at levels up to 15 mole %.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: October 3, 2006
    Assignee: Schott Glass Technologies, Inc.
    Inventors: Joseph Hayden, Sally Pucilowski, Bianca Schreder, Ulrich Peuchert, Ruediger Sprengard, Martin Letz
  • Patent number: 7060640
    Abstract: An optical glass comprises, in mass percent, 15–35% of P2O5, 40–60% of Nb2O5, 0.5% to less than 15% of Na2O and 3% to less than 25% of BaO, has a ratio in mass % of (BaO+Nb2O5)/{(TiO2+WO3)×3+Bi2O3+Nb2O5}>1.0; is free of Pb and As; and has a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (?d) within a range from 18 to 27.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: June 13, 2006
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Michiko Ogino, Yoshio Mori, Masahiro Onozawa
  • Patent number: 7033966
    Abstract: An optical glass which contains at least 20 mol % of TeO2 and has an internal transmittance of at least 80% in a thickness of 2 mm to a light having a wavelength of 405 nm and a refractive index of at least 1.85 to the same light, and which contains no alkali metal oxide or contains alkali metal oxides in a total amount of at most 15 mol %.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: April 25, 2006
    Assignee: Asahi Glass Company, Limited
    Inventors: Tomoyuki Kobayashi, Minoru Sekine, Naoki Sugimoto, Syuji Matsumoto
  • Patent number: 7005396
    Abstract: The present invention provides a composition for use in forming an enamel cover coat from which baked-on foods can be removed without the need for pyrolysis or highly alkaline cleaners. The enamel cover coat preferably exhibits no chipping or other surface defects subsequent to a 2.0 mm Plum Jam Test and an acid resistance of A or better according to ISO 2722. The composition according to the invention includes a glass component including at least a first glass frit comprising a low SiO2 glass frit. Preferably, the glass component includes a blend of the first glass frit and at least a second glass frit. Preferably, the first glass frit includes by weight from about 30% to about 45% P2O5, from about 20% to about 40% Al2O3, from about 15% to about 35% Li2O+Na2O+K2O, up to about 15% B2O3, up to about 15% MgO+CaO+SrO+BaO+ZnO, up to about 10% TiO2+ZrO2, and up to about 10% SiO2.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: February 28, 2006
    Assignee: Ferro France-S.A.R.L.
    Inventors: Sophie Espargillière, Andreas Schanné, Francois Roques
  • Patent number: 7001858
    Abstract: Glass fiber which substantially has the following composition as represented by mol percentage and has a glass transition temperature higher than 300° C. and lower than 400° C.: Li2O+Na2O+K2O: 5 to 35%, P2O5: 20 to 27%, SO3: 3 to 20%, ZnO: 10 to 55%, MgO: 0 to 20%, ZnO+MgO: 10 to 55%, Al2O3: 1 to 5%, and B2O3: 8 to 20%.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: February 21, 2006
    Assignees: Asahi Glass Company, Limited, Asahi Fiber Glass Company, Limited
    Inventors: Hideki Nakagawa, Yoshiro Niino, Yoshinao Kobayashi
  • Patent number: 6995101
    Abstract: An optical glass having a high refractive index and high dispersion characteristics suitable for application to precision press molding to precisely mold final products without requiring grinding or polishing. An optical glass can be prepared exhibiting a refractive index in the range of from 1.75 to 2.0, and an Abbé number in the range of from 20 to 28.5. Optical parts comprised of this glass; press-molding materials comprised of this glass; methods of manufacturing the same; and methods of manufacturing molded glass products employing these materials. A suitable optical glass is composed of the following in molar percent: 15–30% P2O5; 0.5–15% B2O3; 5–25% Nb2O5; 6–40% WO3; 4–45% of at least one of Li2O, Na2O or K2O; 1–5% K2O; 2–9% TiO2; and 0–30% (excluding 30%) of at least one RO selected from among BaO, ZnO, and SrO; with the total content of the above-stated components being equal to or more than 95 percent.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: February 7, 2006
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Hiromasa Tawarayama, Kazutaka Hayashi, Hiroshi Kawazoe
  • Patent number: 6984261
    Abstract: The invention relates to uses of glasses and glass-ceramics in dental and orthodontic applications.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: January 10, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Kevin M. Cummings, Jacqueline C. Rolf, Anatoly Z. Rosenflanz, Richard P. Rusin, Jerome E. Swanson
  • Patent number: 6927185
    Abstract: As-prepared AlPO4—B2O3—Na2O-based glasses were placed in an autoclave together with distilled water and were treated at 150° C. for two hours. Although the specific surface area of the as-prepared glass prior to autoclave treatment was negligibly small, the autoclave treatment dissolved most of the borate component and the sodium component to obtain a mesoporous material having a specific surface area of 236 m2/g and a pore size distribution of 5 to 10 nm. This mesoporous material is hydrophobic and has weak solid acidity and small polarity.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: August 9, 2005
    Assignee: Japan Science and Technology Corporation
    Inventors: Shoji Yamanaka, Toshiyuki Sasaki
  • Patent number: 6911160
    Abstract: A high-gain phosphate glass composition, which can be used to produce ultra-short gain length lasers and optical amplifiers is described wherein the composition of the glass in addition to exhibiting high gain for lasers and amplifiers, also exhibits high thermal shock resistance, high cross section, insignificant concentration quenching, and high solubility for rare earth ions and other properties which enable the material to be fabricated into a new class of ultra-short length micro-laser, fiber laser and amplifier configurations and designs.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: June 28, 2005
    Assignee: Kigre, Inc.
    Inventors: John D. Myers, Michael J. Myers
  • Patent number: 6878765
    Abstract: A method for producing a component from a glass/polymer mixture where, a component is formed from a mixture of a thermoplastic with a processing temperature T1 and first glass particles with saturated surface bonds and a glass temperature T2<T1, at a temperature T3>T1. By melting the first glass particles, second glass particles are produced with surface bonds which can be saturated. The bonds are saturated by being bonded to the thermoplastic.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: April 12, 2005
    Assignee: Siemens Aktiengesellschaft
    Inventors: Robert Greiner, Angelo Polese
  • Patent number: 6875714
    Abstract: An optical glass consists essentially, expressed in term of weight percent, of: P2O5: 20.0 to 30.0%, B2O3: 0.5 to 10.0%, Nb2O5: 5.0 to 50.0%, WO3: 15.0 to 27.0%, Bi2O3: 0.1 to 3.0%, ZnO: 1.0 to 7.0%, Li2O: 0 to 8.0%, Na2O: 0 to 15.0%, K2O: 0 to 15.0%, and Li2O+Na2O+K2O: 5.0 to 20.0%.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: April 5, 2005
    Assignee: Minolta Co., Ltd.
    Inventor: Manabu Izuki
  • Patent number: 6841493
    Abstract: The present invention is directed to a glass composition comprising, based on mole %, 15-35% MO where M is selected from BaO, CaO, MgO, PbO, SrO and mixtures thereof, 30-60% TiO2, 10-30% B2O3, 1-7% P2O5, 0-3% Li2O and 2-16% Ln2O3 where Ln is selected from the group of rare earth elements and mixtures thereof. The invention is further directed to the glass composition incorporated in a thick film composition or a castable dielectric composition comprising a dispersion of finely divided solids comprising, based on solids: (a) 30-100 wt. % the glass composition; (b) 0-50 wt. % ceramic filler; both dispersed in a solution of (c) an organic polymeric binder; and (d) a volatile organic solvent. The invention is still further directed to the castable dielectric composition used in a method of forming a high K green tape by casting a thin layer of the castable dispersion onto a flexible sheet and heating the cast layer to remove the volatile organic solvent.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: January 11, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Yong Cho, Kenneth Warren Hang
  • Patent number: 6838171
    Abstract: An antibacterial fiber and twisted yarn having an antibacterial imparting glass composition complexed therewith. The glass composition comprises 0.1-5.0 % by weight of Ag2O in a composition containing 45-67 mol % of P2O5, 5-20 mol % of A12O3, 1-22 mol % of one or more selected from MgO, CaO and ZnO, and 1-20 mol % of B2O3. An antibacterial fiber contains the antibacterial imparting glass composition in a ratio of 0.1-2.5%.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: January 4, 2005
    Inventor: Makio Nomura
  • Publication number: 20040266602
    Abstract: The present invention relates to optical glass having a high refractive index, high dispersion, and a low glass transition temperature; a preform comprised of the optical glass for precision press-molding and a method of manufacturing the same; and an optical element comprised of the optical glass and a method of manufacturing the same.
    Type: Application
    Filed: April 19, 2004
    Publication date: December 30, 2004
    Applicant: HOYA CORPORATION
    Inventors: Yasuhiro Fujiwara, Xuelu Zou
  • Publication number: 20040259714
    Abstract: The present invention relates to low-dispersion optical glass having a low glass-transition temperature suited to precision press molding, a press molding preform comprised of this glass, a method of manufacturing the same, an optical element, and a method of manufacturing the same. The optical glass comprises, given as molar percentages, 28 to 50 percent of P2O5; more than 20 percent but not more than 50 percent of BaO; 1 to 20 percent MgO; a sum of Li2O, Na2O, and K2O exceeding 3 percent (with 0 to 25 percent of Li2O, greater than or equal to 0 percent and less than 10 percent of Na2O, and 0 to 12 percent of K2O); more than 0 percent but not more than 15 percent of ZnO; 0 to 25 percent of B2O3; 0 to 5 percent of Al2O3; 0 to 8 percent of Gd2O3; 0 to 20 percent of CaO; 0 to 15 percent of SrO; and 0 to 1 percent of Sb2O3; with a sum of oxide contents of P, Ba, Mg, Li, Na, K, Zn, B, Al, Gd, Ca, Sr, and Sb being greater than or equal to 98 percent. The press molding preform is comprised of the optical glass.
    Type: Application
    Filed: April 16, 2004
    Publication date: December 23, 2004
    Applicant: HOYA CORPORATION
    Inventors: Yasuhiro Fujiwara, Xuelu Zou
  • Patent number: 6815379
    Abstract: An antibacterial cloth having an antibacterial imparting glass composition complexed therewith. The glass composition comprises 0.1-5.0% by weight of Ag2O in a composition containing 45-67 mol % of P2O5, 5-20 mol % of Al2O3, 1-22 mol % of one or ore selected from MgO, CaO and ZnO, and 1-20 mol % of B2O3. An antibacterial fiber contains the antibacterial imparting glass composition in a ratio of 0.1-2.5%.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: November 9, 2004
    Assignee: Ishizuka Garasu Kabushiki Kaisha
    Inventor: Makio Nomura
  • Patent number: 6809049
    Abstract: The present invention provides glass compositions that can be used instead of known glass compositions containing a large amount of PbO in applications such as coating ceramic substrates, e.g., alumina, or sealing fluorescent tubes or the like. The invention also provides glass forming materials containing the glass compositions as a primary component for glass formation. Glass compositions provided by the present invention are comprises essentially of primary oxide components. The primary oxide components include ZnO, B2O3 and P2O5 as essential components and Al2O3, MgO, CaO and BaO as optional components. The amount of the primary oxide components is 85 wt % or more (preferably 90 wt % or more) of the total weight of the glass composition. Typically, the primary oxide components include 45 to 80% of ZnO, 5 to 45% of B2O3, 1 to 35% of P2O5, 0 to 10% of Al2O3, 0 to 15% of MgO, 0 to 10% of CaO, and 0 to 5% of BaO.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: October 26, 2004
    Assignee: Noritake Co., Ltd.
    Inventor: Jun Hirose
  • Publication number: 20040182285
    Abstract: A modified alkali silicate composition for forming an inorganic polymer matrix having improved mechanical properties. The modified alkali silicate matrix is made by reacting an alkali silicate (or its precursors such as an alkali hydroxide, a SiO2 source and water), a non-silicate network former and/or reactive glass, water and optionally one or more multivalent cation(s) selected from Groups 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 of the periodic table such as an alkaline earth salt, water and optional processing aids. An inorganic matrix composite can be prepared by applying a slurry of the modified aqueous alkali silicate composition to a reinforcing medium and curing the composite at a temperature from about 15° C. up to 1000° C. and a pressure of up to 20,000 psi for typical high-performance organic polymer processing (temperatures about 15° C. to about 200° C. and pressures <200 psi).
    Type: Application
    Filed: February 12, 2004
    Publication date: September 23, 2004
    Inventors: Anthony M. Mazany, John W. Robinson, Craig L. Cartwright
  • Publication number: 20040176236
    Abstract: A rare earth containing glass nominally based on the ternary P2O5 —WO3—Na2O—Ln2O3 compositional space, with WO3>30-65 mole %, Na2O 15-35 mole %, P2O5 5-65 mole %, Ln2O3 (Ln=one or more cations selected from lanthanum or any of the rare earth oxides) up to the limit of solubility; with optional additives, MoO3 being a preferred additive, that can be employed alone or in combination at levels up to 15 mole %.
    Type: Application
    Filed: March 5, 2003
    Publication date: September 9, 2004
    Applicant: SCHOTT GLASS TECHNOLOGIES, INC.
    Inventors: Joseph Hayden, Sally Pucilowski, Bianca Schreder, Ulrich Peuchert, Ruediger Sprengard, Martin Letz
  • Publication number: 20040138043
    Abstract: An optical glass being free of lead and fluorine, having a low glass transition temperature permitting press-molding with a mold formed of stainless steel and having high climate resistance includes an optical glass comprising, by mol %, 25 to 44% of P2O5, 10 to 40% of a total of Li2O, Na2O and K2O, 5 to 40% of ZnO, 1 to 35% of BaO and at least one components selected from Nb2O5, Bi2O3 and WO3, having a glass transition temperature (Tg) of 370° C. or lower and being free of lead and fluorine and an optical glass which is free of lead and fluorine, has a mass loss ratio of less than 0.25% when immersed in pure water, and has a glass transition temperature (Tg) of 370° C. or lower.
    Type: Application
    Filed: December 24, 2003
    Publication date: July 15, 2004
    Inventors: Yoshiko Kasuga, Xuelu Zou
  • Patent number: 6743743
    Abstract: Optical glasses and optical articles comprised of the optical glass are disclosed. One of which comprises, by means of weight percentages, more than 32 percent and not more than 45 percent P2O5, more than 0.5 percent and not more than 6 percent Li2O, more than 5 percent and not more than 22 percent Na2O, 6-30 percent Nb2O5, 0.5-10 percent B2O3, 0-35 percent WO3, 0-14 percent K2O, and 10-24 percent Na2O+K2O, and the total of all the above components is not less than 80 percent.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: June 1, 2004
    Assignee: Hoya Corporation
    Inventor: Koichi Sato
  • Patent number: 6737375
    Abstract: Glass frit compositions, calculated in mole percent on an oxide basis, consisting essentially of 24.5 to 29.0% P2O5; 1.0 to 5.0% B2O3; 1.0 to 2.0% Al2O3; and sufficient amounts of SnO and ZnO (51.5 to 66.5% SnO, and 5.0-12.0% ZnO), wherein the molar ratio of SnO:ZnO is in the range of about 5.0:1 to 12:1, and 0.0 to 2.0% SiO2. The glass compositions exhibit, under NMR spectroscopic analysis of 11B nuclei, a signal containing at least two peaks at a chemical shift in the range of approximately −18 to −25 ppm. The frit compositions exhibit long term stability, durability, and resistance to attack against moisture in high temperature and humidity conditions and are capable of attaching optical fiber Bragg gratings without the use of a hermetic chamber and the like. An optoelectronic device that employs a sealing material that comprises a frit made from the glass compositions.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 18, 2004
    Assignee: Corning Incorporated
    Inventors: Carol L. Buhrmaster, Robert Morena, Kamjula P. Reddy, Randall E. Youngman
  • Publication number: 20040092378
    Abstract: The lead-free and preferably arsenic-free optical glass is suitable for applications in the fields of imaging, projection, telecommunications, optical communication technology and/or laser technology, and has a refractive index nd of 1.55≦nd≦1.60, an Abbe number vd of 54≦vd≦63 and a transformation temperature Tg≦500° C. This optical glass has good production and processing properties and crystallization stability, and, at the same time, advantageously does not contain PbO and As2O3. These glasses contain, in percent by weight based on oxide content: P2O5, 43-56; ZnO, 21-36; Al2O3, 0-6; Na2O, 0-16; K2O, 0-8; &Sgr;M2O≦16; MgO, 0-5; CaO, 0-5; BaO, 3-14; B2O3, 0-8; La2O3, 0-7. In addition, it may also contain standard refining agents.
    Type: Application
    Filed: August 19, 2003
    Publication date: May 13, 2004
    Inventors: Silke Wolff, Ute Woelfel
  • Publication number: 20040018933
    Abstract: An optical glass comprises, in mass percent, 15-35% of P2O5, 40-60% of Nb2O5, 0.5% to less than 15% of Na2O and 3% to less than 25% of BaO, has a ratio in mass % of (BaO+Nb2O5)/{(TiO2+WO3)×3+Bi2O3+Nb2O5}>1.0; is free of Pb and As; and has a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (&ngr;d) within a range from 18 to 27.
    Type: Application
    Filed: July 10, 2003
    Publication date: January 29, 2004
    Inventors: Michiko Ogino, Yoshio Mori, Masahiro Onozawa
  • Publication number: 20040002417
    Abstract: There is provided an antibacterial fiber, an antibacterial twisted yarn and an antibacterial cloth which exhibits high durability to post-processing with water, detergent, staining or the like at a small added amount.
    Type: Application
    Filed: April 11, 2003
    Publication date: January 1, 2004
    Applicant: Ishizuka Garasu Kabushiki Kaisha
    Inventor: Makio Nomura
  • Publication number: 20040002416
    Abstract: There is provided an antibacterial fiber, an antibacterial twisted yarn and an antibacterial cloth which exhibits high durability to post-processing with water, detergent, staining or the like at a small added amount.
    Type: Application
    Filed: April 11, 2003
    Publication date: January 1, 2004
    Applicant: Ishizuka Garasu Kabushiki Kaisha
    Inventor: Makio Nomura
  • Patent number: 6656859
    Abstract: A family of tellurite glasses and optical components for telecommunication systems, the glasses consisting essentially of, as calculated in cation percent, 65-97% TeO2, and at least one additional oxide of an element having a valence greater than two and selected from the group consisting of Ta, Nb, W, Ti, La, Zr, Hf, Y, Gd, Lu, Sc, Al and Ga, that may contain a lanthanide oxide as a dopant, in particular erbium oxide, and that, when so doped, is characterized by a fluorescent emission spectrum having a relatively broad FWHM value.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: December 2, 2003
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Adam J. G. Ellison, Randall E. Youngman
  • Publication number: 20030220182
    Abstract: An optical glass consists essentially, expressed in term of weight percent, of: P2O5: 20.0 to 30.0%, B2O3: 0.5 to 10.0%, Nb2O5: 5.0 to 50.0%, WO3: 15.0 to 27.0%, Bi2O3: 0.1 to 3.0%, ZnO: 1.0 to 7.0%, Li2O: 0 to 8.0%, Na2O: 0 to 15.0%, K2O: 0 to 15.0%, and Li2O+Na2O+K2O: 5.0 to 20.0%.
    Type: Application
    Filed: April 25, 2003
    Publication date: November 27, 2003
    Inventor: Manabu Izuki
  • Patent number: 6645893
    Abstract: A glass includes (a) a matrix containing a compound of at least one nonmetallic element; and (b) a particle selectively formed in the matrix. This particle is made of the at least one nonmetallic element. A process for producing such glass includes (a) providing a blank glass containing a compound of at least one nonmetallic element; (b) condensing a pulsed laser beam to a focal point in the blank glass such that a particle is selectively formed in the blank glass at a position corresponding to the focal point, the particle being made of the at least one nonmetallic element dissociated from the compound; and (c) moving the focal point in the blank glass to produce a pattern of the particle. The glass is suitable for optical functional elements.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: November 11, 2003
    Assignee: Central Glass Company, Limited
    Inventors: Kiyotaka Miura, Seiji Fujiwara, Takuya Teshima, Natsuya Nishimura, Yoshinori Kubota
  • Publication number: 20030181307
    Abstract: A high-gain phosphate glass composition, which can be used to produce ultra-short gain length lasers and optical amplifiers is described wherein the composition of the glass in addition to exhibiting high gain for lasers and amplifiers, also exhibits high thermal shock resistance, high cross section, insignificant concentration quenching, and high solubility for rare earth ions and other properties which enable the material to be fabricated into a new class of ultra-short length micro-laser, fiber laser and amplifier configurations and designs.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 25, 2003
    Inventors: John D. Myers, Michael J. Myers
  • Publication number: 20030153449
    Abstract: Glass fiber which substantially has the following composition as represented by mol percentage and has a glass transition temperature higher than 300° C. and lower than 400° C.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 14, 2003
    Applicant: Asahi Glass Company, Limited
    Inventors: Hideki Nakagawa, Yoshiro Niino, Yoshinao Kobayashi
  • Patent number: 6593260
    Abstract: An antibacterial property imparting glass composition is provided, which may be fixed in a form of, for example, a particle on the surface of a fiber substrate and/or dispersed and complexed in the fiber substrate. Such an antibacterial property imparting glass composition comprises 0.1 to 5.0% by weight of Ag2O in a composition containing 45-67 mol % of P2O5, 5 to 20 mol % of Al2O3, 1 to 40 mol % of 1 or 2 or more selected from MgO, CaO and ZnO, and 20 mol % or less of B2O3. An antibacterial fiber containing such an antibacterial property imparting glass composition at a ratio of, for example, 0.1 to 5.0% by weight shows high water resistance, acid resistance, alkali resistance and detergent resistance in antibacterial property.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: July 15, 2003
    Assignee: Ishizuka Garasu Kabushiki Kaisha
    Inventor: Makio Nomura
  • Publication number: 20030125185
    Abstract: The present invention provides glass compositions that can be used instead of known glass compositions containing a large amount of PbO in applications such as coating ceramic substrates, e.g., alumina, or sealing fluorescent tubes or the like. The invention also provides glass forming materials containing the glass compositions as a primary component for glass formation. Glass compositions provided by the present invention are comprises essentially of primary oxide components. The primary oxide components include ZnO, B2O3 and P2O5 as essential components and Al2O3, MgO, CaO and BaO as optional components. The amount of the primary oxide components is 85 wt % or more (preferably 90 wt % or more) of the total weight of the glass composition. Typically, the primary oxide components include 45 to 80% of ZnO, 5 to 45% of B2O3, 1 to 35% of P2O5, 0 to 10% of Al2O3, 0 to 15% of MgO, 0 to 10% of CaO, and 0 to 5% of BaO.
    Type: Application
    Filed: November 21, 2002
    Publication date: July 3, 2003
    Inventor: Jun Hirose
  • Patent number: 6566289
    Abstract: The present invention provides a composition for use in forming a white porcelain enamel coating on aluminized or galvanized steel. The composition according to the present invention includes a solids portion including a glass component and a white pigment. The glass component includes one or more glass frits including by weight from about 30% to 50% P2O5, from about 15% to about 30% Al2O3, from about 8% to about 40% X2O where X=Na and/or K, up to about 30% TiO2, up to about 12% B2O3, up to about 10% K2O, up to about 10% ZnO, up to about 8% SiO2, up to about 7% La2O3, up to about 5% Li2O, and up to about 15% F. The white pigment include TiO2.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: May 20, 2003
    Assignee: Ferro France - S.A.R.L.
    Inventors: Alain Aronica, Emmanuel Marinho, David Coutouly, Luc Allemeersch, Christophe Reb
  • Patent number: 6528442
    Abstract: To provide an optically transparent film containing 0.01 to 20% by weight glass forming oxide consisting of Nb2O5, V2O5, B2O3, SiO2, and P2O6; 0.01 to 20% by weight Al2O3 or Ga2O3; and 0.01 to 5% by weight hard oxide of ZrO2 and TiO2 as required; balance being ZnO, and a sputtering target for forming such a film. This sputtering target reduces occurrence of particles during sputtering, decreases the number of interruption or discontinuance of sputtering to improve production efficiency, and forms a protective film for optical disks with large transmittance and low reflectance.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: March 4, 2003
    Assignee: Nikko Materials Company, Limited
    Inventors: Katsuo Kuwano, Hideo Takami
  • Patent number: 6528443
    Abstract: A composition for a water soluble glass is described. The composition is unusual in that it contains no or very small quantities (up to 5 mole %) of alkali earth metal compounds. The composition typically comprises P2O5: 40 to 60 mole %; B2O3: 0 to 10 mole %; Na2O: 30 to 40 mole %; K2O: 5 to 10 mole %; Ag2O: 0 to 5 mole %; and up to a total of 5 mole % of other compounds such as CaO, MgO etc. The composition is especially suitable for processing into water soluble glass fibers or wool since the melting point is very low, usually less than 350° C.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: March 4, 2003
    Assignee: Giltech Limited
    Inventor: David Michael Healy
  • Patent number: 6514891
    Abstract: The present invention related to a dielectric composition of a solid state display. The dielectric composition can be P2O5—ZnO-BaO glass, SiO2—ZnO-Ba2O3 glass of PbO—ZnO—B2O3 glass, and an oxide filler with a binary compound including PbTiO3 or a ternary compound including PbTiO3 and PbZrO3.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: February 4, 2003
    Assignee: LG Electronics Inc.
    Inventor: Yoon Kwan Lee
  • Publication number: 20020151424
    Abstract: Optical glasses and optical articles comprised of the optical glass are disclosed. One of which comprises, by means of weight percentages, more than 32 percent and not more than 45 percent P2O5, more than 0.5 percent and not more than 6 percent Li2O, more than 5 percent and not more than 22 percent Na2O, 6-30 percent Nb2O5, 0.5-10 percent B2O3, 0-35 percent WO3, 0-14 percent K2O, and 10-24 percent Na2O+K2O, and the total of all the above components is not less than 80 percent.
    Type: Application
    Filed: January 29, 2002
    Publication date: October 17, 2002
    Applicant: HOYA CORPORATION
    Inventor: Koichi Sato
  • Publication number: 20020119884
    Abstract: Glass frit compositions, calculated in mole percent on an oxide basis, consisting essentially of 24.5 to 29.0% P2O5; 1.0 to 5.0% B2O3; 1.0 to 2.0% Al2O3; and sufficient amounts of SnO and ZnO (51.5 to 66.5% SnO, and 5.0-12.0% ZnO), wherein the molar ratio of SnO:ZnO is in the range of about 5.0:1 to 12: 1, and 0.0 to 2.0% SiO2. The glass compositions exhibit, under NMR spectroscopic analysis of 11B nuclei, a signal containing at least two peaks at a chemical shift in the range of approximately −18 to −25 ppm. The frit compositions exhibit long term stability, durability, and resistance to attack against moisture in high temperature and humidity conditions and are capable of attaching optical fiber Bragg gratings without the use of a hermetic chamber and the like. An optoelectronic device that employs a sealing material that comprises a frit made from the glass compositions.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 29, 2002
    Inventors: Carol L. Buhrmaster, Robert Morena, Kamjula P. Reddy, Randall E. Youngman
  • Patent number: 6432851
    Abstract: A durable low Tg Sb-stabilized Mo+W phosphate based glass composition exhibiting superior resistance to attack by boiling water, humidity and acids resulting from the addition of Sb to Mo+W phosphate based glass compositions. Specifically, the present invention discloses a glass composition comprising in mol % on the oxide basis, of 0-40% R2O where R includes the alkali metals (Li, Na, K, Rb or Cs) as well as Ag and Tl, 0-20% XO where X includes the alkaline earth metals (Mg, Ca, Sr or Ba) as well as Cu, Zn, Cd and Pb, 15-80% MoO3+WO3, 0.5-60% Sb2O3, and 10-40% P2O5. Additionally, the Sb-stabilized Mo+W phosphate based glass composition can contain a total of 0-5%, in mole percent (mol %) on the oxide basis, of glass forming oxides including, but not limited to, B2O3, Al2O3, SiO2, TeO2, Ga2O3, GeO2, transition metal and rare earth metal oxides, or mixtures thereof.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: August 13, 2002
    Assignee: Corning Incorporated
    Inventor: Bruce G. Aitken
  • Patent number: 6409396
    Abstract: The present invention relates to a fiber optic system including a light source, a fiber optic transmission component, a receiver or transmitter of radiation, and an interference filter. The interference filter may include a glass substrate with at least two interference layers coated thereon. The glass substrate can include: Oxide Range P2O5 30-70 Al2O3  5-15 R′O  5-15 R′ = Mg, Ca, Sr, Ba, Zn, Pb R2O R = Li, Na, K 15-40 where the glass substrate has a coefficient of, thermal expansion of 130-210×10−7/° C. at 30° C. to 70° C.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: June 25, 2002
    Assignee: Schott Glass Technologies, Inc.
    Inventors: Alexander J. Marker, III, Sally Pucilowski, Joseph Hayden
  • Publication number: 20020061809
    Abstract: The present invention provides a composition for use in forming a white porcelain enamel coating on aluminized or galvanized steel. The composition according to the present invention includes a solids portion including a glass component and a white pigment. The glass component includes one or more glass frits including by weight from about 30% to 50% P2O5, from about 15% to about 30% Al2O3, from about 8% to about 40% X2O where X=Na and/or K, up to about 30% TiO2, up to about 12% B2O3, up to about 10% K2O, up to about 10% ZnO, up to about 8% SiO2, up to about 7% La2O3, up to about 5% Li2O, and up to about 15% F. The white pigment include TiO2.
    Type: Application
    Filed: August 17, 2001
    Publication date: May 23, 2002
    Applicant: Ferro France S.A.R.L.
    Inventors: Alain Aronica, Emmanuel Marinho, David Coutouly, Luc Allemeersch, Christophe Reb
  • Patent number: 6376398
    Abstract: A dielectric composition for a plasma display panel. In the dielectric composition, a P2O5—ZnO—BaO group glass is used. Accordingly, the dielectric composition is capable of meeting optical, thermal and electrical characteristic requirements of a dielectric layer and allows the dielectric layer to have a light weight.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: April 23, 2002
    Assignee: LG Electronics Inc.
    Inventors: Yoon Kwan Lee, Byung Gil Ryu
  • Publication number: 20020042337
    Abstract: An optical glass having a high refractive index and high dispersion characteristics that is suited to application to precision press molding to precisely mold the shape of final products for objectives not requiring grinding or polishing. An optical glass exhibiting a refractive index in the range of from 1.75 to 2.0, an Abbé number in the range of from 20 to 28.5. Optical parts comprised of this glass; press-molding materials comprised of this glass; methods of manufacturing the same; and methods of manufacturing molded glass products employing these materials.
    Type: Application
    Filed: June 29, 2001
    Publication date: April 11, 2002
    Inventors: Xuelu Zou, Hiromasa Tawarayama, Kazutaka Hayashi, Hiroshi Kawazoe