And Aluminum Patents (Class 501/66)
  • Patent number: 9440875
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: September 13, 2016
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Timothy James Kiczenski
  • Patent number: 9365446
    Abstract: Methods for processing glass using select wavelength radiation in a convective environment, broadly referred to as “Local Temporary Annealing”, “LASER Edge Strengthening” and “LASER Enhanced Thermal Strengthening.” Local Temporary Annealing allows strengthened glass to be brought to a neutral stress state so daughter units can be cut from strengthened glass and other processes usually only performed on annealed glass. LASER Edge Strengthening allows surface compression to be thermally imparted to the edges of a whole sheet or daughter units cut from annealed glass, or modification of residual edge stress profiles in strengthened glass to produce stable, strengthened edges. LASER Enhanced Thermal Strengthening allows surface compression to be imparted to a sheet of annealed glass whilst maintaining reduced surface temperatures so the glass has superior geometric stability and surface compression can be imparted at levels not conventionally possible.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: June 14, 2016
    Inventor: Richard Green
  • Patent number: 9346705
    Abstract: Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: May 24, 2016
    Assignee: Corning Incorporated
    Inventors: Timothy James Kiczenski, John Christopher Mauro, Michelle Diane Pierson-Stull, Robert Anthony Schaut, Natesan Venkataraman
  • Patent number: 9290407
    Abstract: A glass and an enclosure, including windows, cover plates, and substrates for mobile electronic devices comprising the glass. The glass has a crack initiation threshold that is sufficient to withstand direct impact, has a retained strength following abrasion that is greater than soda lime and alkali aluminosilicate glasses, and is resistant to damage when scratched. The enclosure includes cover plates, windows, screens, and casings for mobile electronic devices and information terminal devices.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: March 22, 2016
    Assignee: Corning Incorporated
    Inventors: Kristen L. Barefoot, Matthew John Dejneka, Sinue Gomez, Timothy Michael Gross, Nagaraja Shashidhar
  • Patent number: 9193622
    Abstract: The present invention relates to an alkali-free glass having a strain point of 725° C. or higher, an average thermal expansion coefficient at from 50 to 300° C. of from 30×10?7 to 40×10?7/° C., a temperature T2 at which a glass viscosity is 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which a glass viscosity is 104 dPa·s of 1,320° C. or lower, the alkali-free glass including, in terms of mol % on the basis of oxides, SiO2: 66 to 70, Al2O3: 12 to 15, B2O3: 0 to 1.5, MgO: more than 9.5 and 13 or less, CaO: 4 to 9, SrO: 0.5 to 4.5, BaO: 0 to 1, and ZrO2: 0 to 2, in which MgO+CaO+SrO+BaO is from 17 to 21, MgO/(MgO+CaO+SrO+BaO) is 0.4 or more, MgO/(MgO+CaO) is 0.4 or more, MgO/(MgO+SrO) is 0.6 or more, and the alkali-free glass does not substantially contain an alkali metal oxide.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: November 24, 2015
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Tomoyuki Tsujimura, Manabu Nishizawa, Akio Koike
  • Patent number: 9193623
    Abstract: A borosilicate glass is provided that has high solarization resistance and a defined position of the UV edge. The borosilicate glass includes the following constituents, in percent by weight based on oxide, of: SiO2 65-85%; B2O3 7-20%; Al2O3 0-7%; Li2O 0-2%; Na2O 0-8%; K2O 0-12%; BaO 0-5%; CaO 0-2%; MgO 0-2%; ZnO 0-2%; TiO2 0.05-0.4%; MoO3 0.025-0.3%; and V2O5 0.001-0.01%.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: November 24, 2015
    Assignee: SCHOTT AG
    Inventor: Christof Kass
  • Patent number: 9162919
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: October 20, 2015
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Timothy James Kiczenski, Shawn Rachelle Markham, John Christopher Mauro
  • Patent number: 9150448
    Abstract: Described herein are aluminoborosilicate glass compositions that are substantially alkali-free and exhibit desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions can be formed into glass sheets by, for example, the float process. When used as substrates, the glass sheets exhibit dimensional stability during processing and damage resistance during cutting.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 6, 2015
    Inventor: Adam James Ellison
  • Patent number: 9133052
    Abstract: A glass sheet for a thin-film solar cell of the present invention is characterized by including, as a glass composition in terms of mass %, 45 to 60% of SiO2, more than 8.0 to 18% of Al2O3, 0 to 15% (excluding 15%) of B2O3, 1 to 40% of MgO+CaO+SrO+BaO, and 1 to 30% of Na2O+K2O, and having a strain point of more than 580° C.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: September 15, 2015
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Masato Muguruma
  • Patent number: 9120697
    Abstract: Use of a glass composition to make a tubular glass body that is adapted to form a glass-metal joint in a tubular solar collector. The composition is a borosilicate glass having a dilatometric chart with a hard segment and a soft segment hysteresis where the soft segment glass transition temperature is less than the hard segment glass transition temperature for a temperature difference ?T higher than 20° C. comprising 5% to 8% Na2O, 0.1% to 3% K2O, 0.1% to 1.5% CaO, 5% to 7.5% Al2O3, 70% to 75% SiO2, and 11.6% to 13.7% B2O3.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: September 1, 2015
    Assignee: Gerresheimer Pisa S.P.A.
    Inventors: Lorenzo Paolo Dante Fiorentini, Marco Soldani, Oliver Bellina
  • Publication number: 20150147575
    Abstract: Alkali aluminosilicate glasses that are ion exchangeable to high compressive stresses, have fast ion exchange kinetics, and high intrinsic damage resistance. The glasses achieve all of the above desired properties either with only small amounts of P2O5 (<1 mol %) or without addition of any P2O5.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 28, 2015
    Inventors: Matthew John Dejneka, John Christopher Mauro
  • Patent number: 9040177
    Abstract: A dopant host containing, in terms of mole %, 20 to 50% SiO2, 30 to 60% (exclusive of 30%) Al2O3, 10 to 40% B2O3, and 2 to 10% RO, wherein R represents alkaline earth metal, or being a laminate including a boron component volatilization layer containing, in terms of mole %, 30 to 60% SiO2, 10 to 30% Al2O3, 15 to 50% B2O3, and 2 to 10% RO, wherein R represents alkaline earth metal, and a heat resistant layer containing, in terms of mole %, 8 to 30% SiO2, 50 to 85% Al2O3, 5 to 20% B2O3, and 0.5 to 7% RO, wherein R represents alkaline earth metal. A process for producing a boron dopant for a semiconductor including the steps of slurrying a starting material powder containing a boron-containing crystalline glass powder, forming the slurry to prepare a green sheet, and sintering the green sheet.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: May 26, 2015
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Yoshio Umayahara, Ryota Suzuki, Yoshikatsu Nishikawa, Masaru Ikebe, Hiroki Mori, Yoshinori Hasegawa
  • Publication number: 20150140299
    Abstract: Ion exchangeable boroaluminosilicate glasses having high levels of intrinsic scratch resistance are provided. The glasses include the network formers SiO2, B2O3, and Al2O3, and at least one of Li2O, Na2O, and K2O. When ion exchanged these glasses may have a Knoop scratch initiation threshold of at least about 40 Newtons (N). These glasses may also be used to form a clad layer for a glass laminate in which the core layer has a coefficient of thermal expansion that is greater than that of the clad glass.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: Adam James Ellison, John Christopher Mauro, Douglas Miles Noni, JR., Lynn Marie Thirion, Natesan Venkataraman
  • Publication number: 20150140325
    Abstract: Embodiments of glass composition including at least about 65 mol % SiO2, Al2O3 in the range from about 7 mol % to about 11 mol %, Na2O in the range from about 13 mol % to about 16 mol %; and a non-zero amount of one or more alkali earth metal oxides selected from MgO, CaO and ZnO, wherein the sum of the alkali earth metal oxides is up to about 6 mol %, are disclosed. The glass compositions can be processed using fusion forming processes and float forming processes and are ion exchangeable. Glass articles including such glass compositions and methods of forming such glass articles are also disclosed. The glass articles of one or more embodiments exhibit a Vickers indentation crack initiation load of at least 8 kgf.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Inventors: Timothy Michael Gross, Xiaoju Guo, Charlene Marie Smith
  • Patent number: 9029280
    Abstract: A substrate for p-Si TFT flat panel displays made of a glass having a high low-temperature-viscosity characteristic temperature and manufactured while avoiding erosion/wear of a melting tank during melting through direct electrical heating. The glass substrate comprises 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-20 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-0.8 mass % of R2O, wherein R2O is total amount of Li2O, Na2O, and K2O, and 0-0.3 mass % of Sb2O3, and substantially does not comprise As2O3, wherein the mass ratio CaO/RO is equal to or greater than 0.65, the mass ratio (SiO2+Al2O3)/B2O3 is in a range of 7-30, and the mass ratio (SiO2+Al2O3)/RO is equal to or greater than 5. A related method involves melting glass raw materials blended to provide the glass composition; a forming step of forming the molten glass into a flat-plate glass; and an annealing step of annealing the flat-plate glass.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 12, 2015
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Patent number: 9023421
    Abstract: To provide a method for producing a magnetic disk, whereby a magnetic recording layer is formed at a high temperature. A method for producing a magnetic disk, which comprises a step of forming a magnetic recording layer on a glass substrate having a temperature of at least 550° C., wherein the glass substrate comprises, as represented by mol percentage, from 62 to 74% of SiO2, from 6 to 18% of Al2O3, from 2 to 15% of B2O3 and from 8 to 21%, in total, of at least one component selected from MgO, CaO, SrO and BaO, provided that the total content of the above seven components is at least 95%, and further contains less than 1%, in total, of at least one component selected from Li2O, Na2O and K2O, or contains none of these three components.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: May 5, 2015
    Assignee: Asahi Glass Company, Limited
    Inventor: Tetsuya Nakashima
  • Patent number: 9023744
    Abstract: Provided is an alkali-free glass, which is substantially free of alkali metal oxides, and has a strain point of more than 680° C., an average coefficient of thermal expansion in the temperature range of 30 to 380° C. of 40 to 55×10?7/° C., and a liquidus temperature of less than 1,200° C. Further, the alkali-free glass comprises, as a glass composition in terms of mass %, 55 to 70% of SiO2, 10 to 20% of Al2O3, 0.1 to 4.5% of B2O3, 0 to 1% of MgO, 5 to 15% of CaO, 0.5 to 5% of SrO, and 5 to 15% of BaO.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: May 5, 2015
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Takahiro Kawaguchi, Shinkichi Miwa
  • Publication number: 20150118497
    Abstract: An ion exchangeable glass having a high degree of resistance to damage caused by abrasion, scratching, indentation, and the like. The glass comprises alumina, B2O3, and alkali metal oxides, and contains boron cations having three-fold coordination. The glass, when ion exchanged, has a Vickers crack initiation threshold of at least 10 kilogram force (kgf).
    Type: Application
    Filed: January 7, 2015
    Publication date: April 30, 2015
    Inventors: Matthew John Dejneka, Adam James Ellison, John Christopher Mauro
  • Publication number: 20150093561
    Abstract: The present invention relates to an alkali-free glass having a strain point of from 680 to 735° C., an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., and a specific gravity of 2.60 or less, and containing, indicated by mol % on the basis of oxides, SiO2 65 to 69%, Al2O3 11.5 to 14%, B2O3 3 to 6.5%, MgO 1 to 5%, CaO 7.5 to 12%, SrO 0 to 1%, BaO 0.5 to 6%, and ZrO2 0 to 2%.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi Tokunaga, Manabu Nishizawa, Akio Koike
  • Publication number: 20150087494
    Abstract: The present invention relates to an alkali-free glass having a strain point of 710° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1,320° C. or lower, containing, indicated by % by mass on the basis of oxides: SiO2 58.5 to 67.5, Al2O3 18 to 24, B2O3 0 to 1.7, MgO 6.0 to 8.5, CaO 3.0 to 8.5, SrO 0.5 to 7.5, BaO 0 to 2.5, and ZrO2 0 to 4.0, containing 0 to 0.35% by mass of Cl, 0.01 to 0.15% by mass of F, and 0.01 to 0.3% by mass of SnO2, and having a ?-OH value of the glass of from 0.15 to 0.60 mm?1.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi TOKUNAGA, Akio Koike, Manabu Nishizawa, Tomoyuki Tsujimura
  • Publication number: 20150087495
    Abstract: The present invention relates to an alkali-free glass having a strain point of 680 to 735° C., an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102 dPa.s of 1,710° C. or lower, and a temperature T4 at which the glass viscosity reaches 104 dPa.s of 1,310° C. or lower, and containing, indicated by mol % on the basis of oxides, SiO2 63 to 74, Al2O3 11.5 to 16, B2O3 exceeding 1.5 to 5, MgO 5.5 to 13, CaO 1.5 to 12, SrO 1.5 to 9, BaO 0 to 1, and ZrO2 0 to 2, in which MgO+CaO+SrO+BaO is from 15.5 to 21, MgO/(MgO+CaO+SrO+BaO) is 0.35 or more, CaO/(MgO+CaO+SrO+BaO) is 0.50 or less, and SrO/(MgO+CaO+SrO+BaO) is 0.50 or less.
    Type: Application
    Filed: December 5, 2014
    Publication date: March 26, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Manabu NISHIZAWA, Hirofumi Tokunaga, Akio Koike
  • Publication number: 20150079400
    Abstract: Alkali boroaluminosilicate glasses with high resistance to crack initiation and damage due to sharp impact are provided. The glass compositions have melting and forming temperatures that allow forming the glass into sheets via float-based processes while still allowing for the glass to be efficiently ion exchanged. The glass compositions contain MgO, and when ion exchanged, have a Vickers indentation crack initiation load of at least about 10-15 kgf.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 19, 2015
    Inventors: Qiang Fu, Xiaoju Guo
  • Publication number: 20150074974
    Abstract: Disclosed are alkali aluminosilicate glasses having unexpected resistance to indentation cracking. The glasses obtain this high resistance as a result of a high level of surface compression accompanied by a shallow depth of layer. The advantaged glasses show greater resistance to radial crack formation from Vickers indentation than glasses with the same compressive stress, but higher depths of layer.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Inventors: Jonathan David Pesansky, Chandan Kumar Saha, Trevor E. Wilantewicz
  • Patent number: 8969226
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 3, 2015
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Patent number: 8962502
    Abstract: The present invention provides the composition of an alkali-free glass composition containing no alkali metal oxide and the preparation thereof. The alkali-free glass comprising substantially no alkali metal oxide according to the present invention comprises 61 to 73 wt % of SiO2; 0.5 to 3.9 wt % of B2O3; 3.5 to 13.5 wt % of Al2O3; 9 to 13 wt % of MgO; 1 to 8 wt % of CaO; and 4 to 10 wt % of SrO, based on the total weight of oxides present therein.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: February 24, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sang-Kook Kim, Won-Bae Lim, Du-Sun Hwang, Dong-Kwon Lee, Su-Hwan Kim, Da-Jeong Kim
  • Publication number: 20150051060
    Abstract: Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and Al2O3. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10?7/° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 19, 2015
    Inventors: Adam James Ellison, Jason Sanger Frackenpohl, John Christopher Mauro, Douglas Miles Noni, JR., Natesan Venkataraman
  • Publication number: 20150051061
    Abstract: Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 19, 2015
    Inventors: Timothy James Kiczenski, John Christopher Mauro, Michelle Diane Pierson-Stull, Robert Anthony Schaut, Natesan Venkataraman
  • Publication number: 20150045203
    Abstract: The present invention relates to a non-alkali glass having a strain point of from 710° C. to lower than 725° C., an average thermal expansion coefficient at from 50 to 300° C. of from 30×107 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102dPa.s of 1710° C. or lower, a temperature T4 at which the glass viscosity reaches 104 dPd.s of 1320° C. or lower, and containing, indicated by mol % on the basis of oxides, SiO2 66 to 70, Al2O3 12 to 14, B2O3 exceeding 0 to 1.5, MgO exceeding 9.5 to 13 (or 5 to 9.5), CaO 4 to 9 (or 4 to 11), SrO 0.5 to 4.5, BaO 0 to 0.5 and ZrO 0 to 2.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi TOKUNAGA, Tomoyuki TSUJIMURA, Manabu NISHIZAWA, Akio KOIKE
  • Patent number: 8951927
    Abstract: An ion exchangeable glass having a high degree of resistance to damage caused by abrasion, scratching, indentation, and the like. The glass comprises alumina, B2O3, and alkali metal oxides, and contains boron cations having three-fold coordination. The glass, when ion exchanged, has a Vickers crack initiation threshold of at least 10 kilogram force (kgf).
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: February 10, 2015
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, John Christopher Mauro
  • Publication number: 20150038316
    Abstract: To provide a glass plate which can be made to have higher Te than conventional glass plates when its iron content is substantially the same as the conventional glass plates, to have substantially the same level of Te as conventional glass plates when its iron content is larger than the conventional glass plates, or to have very high Te when its iron content is smaller than conventional glass plates, and which presents good productivity. A glass plate which comprises, as represented by mol percentage based on oxides, SiO2: from 57 to 71%, Al2O3: from 0 to 6%, B2O3: from 0 to 5%, Na2O: from 10 to 16%, MgO: from 7.5 to 19.8%, and CaO: from 1.6 to 11%, provided that S-value represented by MgO+Al2O3+B2O3—Na2O (as represented by mol percentage) is from ?10 to 10.5%, and the ratio of the content of MgO, as represented by mol percentage based on oxide, to the content of CaO, as represented by mol percentage based on oxide, ([MgO]/[CaO]), is from 0.8 to 10.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Tomoyuki KOBAYASHI, Yusuke Arai, Yuki Kondo
  • Publication number: 20150037552
    Abstract: High CTE glass compositions and laminated glass articles formed from the same are described. In one embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2, from about 0 mol. % to about 8 mol. % Al2O3, and from about 3 mol. % to about 10 mol. % B2O3 as glass formers. The glass composition may further include alkali oxides such as from about 0 mol. % to about 2 mol. % Na2O and from about 10 mol. % to about 15 mol. % K2O. In addition, the glass composition may include from about 5 mol. % to about 6 mol. % of alkaline earth oxide. The alkaline earth oxide may include at least one of CaO, SrO, and BaO. However, the glass composition may be substantially free from MgO. The glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 5, 2015
    Inventor: John Christopher Mauro
  • Publication number: 20150038315
    Abstract: To provide a method for producing chemically tempered glass, whereby frequency of replacement of the molten salt can be reduced. A method for producing chemically tempered glass, which comprises repeating ion exchange treatment of immersing glass in a molten salt, wherein the glass comprises, as represented by mole percentage, from 61 to 77% of SiO2, from 1 to 18% of Al2O3, from 3 to 15% of MgO, from 0 to 5% of CaO, from 0 to 4% of ZrO2, from 8 to 18% of Na2O and from 0 to 6% of K2O; SiO2+Al2O3 is from 65 to 85%; MgO+CaO is from 3 to 15%; and R calculated by the following formula by using contents of the respective components, is at least 0.66: R=0.029×SiO2+0.021×Al2O3+0.016×MgO?0.004×CaO+0.016×ZrO2+0.029×Na2O+0×K2O?2.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Jun Endo, Shusaku Akiba, Kazutaka Ono, Shigeki Sawamura
  • Publication number: 20150037553
    Abstract: Low CTE glass compositions and glass articles formed from the same are described. In one embodiment, a glass composition includes from about 60 mol. % to about 66 mol. % SiO2; from about 7 mol. % to about 10 mol. % AI2O3; and from about 14 mol. % to about 18 mol. % B2O3 as glass network formers. The glass composition may further include from about 9 mol. % to about 16 mol. % alkaline earth oxide. The alkaline earth oxide includes at least CaO. The CaO may be present in the glass composition in a concentration from about 3 mol. % to about 12 mol. %. The glass composition is free from alkali metals. The glass composition has a coefficient of thermal expansion which is less than or equal to 40×10?7/° C. averaged over the temperature range from about 20° C. to 300° C. The glass composition is particularly well suited for use as a glass cladding layer in a laminated glass article.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 5, 2015
    Inventor: John Christopher Mauro
  • Patent number: 8946103
    Abstract: An ion exchangeable glass having a high degree of resistance to damage caused by abrasion, scratching, indentation, and the like. The glass comprises alumina, B2O3, and alkali metal oxides, and contains boron cations having three-fold coordination. The glass, when ion exchanged, has a Vickers crack initiation threshold of at least 10 kilogram force (kgf).
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: February 3, 2015
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, John Christopher Mauro
  • Patent number: 8946102
    Abstract: This invention relates to lead free and cadmium free copper-containing glass fits that can be used as pigments to color other glass fits or to impart color to solid substrates such as glass, ceramic or metals, or to impart color to a thermoplastic mass. The compositions comprise silica, alkali metal oxides, alkaline earth metal oxides, tin oxide and copper oxide. The resulting compositions can be used to decorate and protect automotive, beverage, architectural, pharmaceutical and other glass substrates, generally imparting a red color.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 3, 2015
    Assignee: Ferro Corporation
    Inventors: Enos A. Axtell, III, George E. Sakoske, Andreas Schulz, Juergen Hanich, Lothar Heck, Dietrich Speer, Martin Baumann
  • Publication number: 20150030827
    Abstract: Glass compositions and glass articles comprising the glass compositions are disclosed. In one embodiment, a glass composition includes from about 65 mol. % to about 70 mol. % SiO2; from about 9 mol. % to about 14 mol. % Al2O3; and from about 0 mol. % to about 11 mol. % B2O3 as glass network formers. The glass composition also includes from about 5 mol. % to less than 10 mol. % alkali oxide R2O, wherein R is at least one of Li, Na, and K. The glass composition also includes from about 3 mol. % to about 11 mol. % of divalent oxide MO, wherein M is at least one of Mg, Ca, Ba, SrO and Zn. The glass composition has a coefficient of thermal expansion which is less than or equal to 55×10-7/° C. and is amenable to strengthening by ion-exchange. The glass composition is well suited for use as the glass cladding layers of a laminated glass article.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 29, 2015
    Applicant: One Incorporated
    Inventors: Sinue Gomez, Timothy James Kiczenski, John Christopher Mauro, Robert Anthony Schaut, Morten Mattrup Smedskjaer, Natesan Venkataraman
  • Publication number: 20150024210
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp which the viscosity is 35 kilopoise. T35kp is less than the breakdown temperature Tbreakdown of zircon.
    Type: Application
    Filed: August 11, 2014
    Publication date: January 22, 2015
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson
  • Patent number: 8937026
    Abstract: Novel glass compositions and method for producing a glass/metal join, in which the novel glass comprises: Oxide (%) B2O3 ??8-13.5 Al2O3 5-9 Na2O 3-9 K2O 0-5 CaO 2-4 MgO 0-4 ZnO 0-4 SiO2 Up to 100 depending on the necessary requirements, owing to the significance thereof the thermal expansion coefficient, such that this thermal expansion coefficient is adjusted to match that of the metal part or alloy with which the glass/metal weld is to be achieved, which makes it possible to satisfactorily produce said weld which results in a strong glass/metal join, that is free from tensile stresses and that is durable over time and may be used, inter alia, to obtain parts that form part of solar collectors.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 20, 2015
    Assignee: Abengoa Solar New Technologies, S.A.
    Inventors: Noelia Martí´nez Sanz, José Luis Oteo Mazo, Jaun Rubio Alonso, Fausto Rubio Alonso, Alejandra Mazo Fernández
  • Patent number: 8937027
    Abstract: A glass composition and its use for producing glass tubes is provided. The glass tubes having the provided composition are particularly suitable for the outer tubes of fluorescent lamps in the case of which a phosphor layer is baked at temperatures of up to 700° C. The tubes composed of the glass of the provided composition have a lower tendency to deform or stick together when processed at high temperatures. To obtain the observed effects, the molar ratio of Na2O/(Na2O+K2O), inter alia, is greater than 0.4 and not more than 0.72.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Schott AG
    Inventors: Erhard Dick, Joerg Hinrich Fechner
  • Publication number: 20150017412
    Abstract: A tempered glass according to one embodiment of the present invention is a tempered glass having a compression stress layer in a surface thereof, the tempered glass including as a glass composition, in terms of mass %, 45 to 75% of SiO2, 10 to 25% of Al2O3, 0 to 10% of B2O2, 0 to 8% of MgO, 0 to 20% of SrO+BaO, and 0 to 14% of Na2O. Herein, the term “SrO+BaO” refers to the total amount of SrO and BaO.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 15, 2015
    Inventors: Takashi Murata, Takako Tojyo, Masato Muguruma, Kosuke Kawamoto
  • Patent number: 8932969
    Abstract: Provided are: a glass substrate for p-Si TFT flat panel displays that is composed of a glass having high characteristic temperatures in the low-temperature viscosity range, typified by the strain point and glass transition point, having a small heat shrinkage rate, and being capable of avoiding the occurrence of the problem regarding the erosion/wear of a melting tank at the time of melting through direct electrical heating; and a method for manufacturing same. The present glass substrate is composed of a glass comprising 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-25 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-1 mass % of Fe2O3, and 0-0.3 mass % of Sb2O3, and substantially not comprising As2O3, the glass having a mass ratio (SiO2+Al2O3)/B2O3 in a range of 7-30 and a mass ratio (SiO2+Al2O3)/RO equal to or greater than 6.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 13, 2015
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Publication number: 20150004390
    Abstract: A tempered glass has a compressive stress layer in a surface thereof, includes as a glass composition, in terms of mass %, 50 to 80% of SiO2, 10 to 30% of Al2O3, 0 to 6% of B2O3, 0 to 2% of Li2O, and 5 to 25% of Na2O, and is substantially free of As2O3, Sb2O3, PbO, and F.
    Type: Application
    Filed: June 6, 2013
    Publication date: January 1, 2015
    Applicant: Nippon Electric Glass Co., Ltd.
    Inventors: Kosuke Kawamoto, Takashi Murata, Takako Tojyo
  • Patent number: 8921245
    Abstract: The present invention provides a glass substrate having high glass transition temperature and small compaction (C) in a heat treatment at a low temperature (150 to 300° C.), the glass substrate including SiO2, Al2O3, B2O3, MgO, CaO, SrO, BaO, ZrO2, Na2O, K2O, and Li2O, wherein each amount of these compounds is specifically limited, Al2O3+K2O is 7 to 27 mass %, Na2O+K2O is 11.5 to 22 mass %, MgO+CaO+SrO+BaO is 0.2 to 14 mass %, MgO+0.357Al2O3?0.239K2O?5.58 is ?3.0 to 1.5, Na2O+0.272Al2O3+0.876K2O?16.77 is ?2.5 to 2.5, a glass transition temperature is 500° C. or higher, and an average thermal expansion coefficient at 50 to 350° C. is 100×10?7/° C. or less.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: December 30, 2014
    Assignee: Asahi Glass Company, Limited
    Inventor: Manabu Nishizawa
  • Publication number: 20140377525
    Abstract: Provided is an alkali-free glass, including as a glass composition, in terms of mol %, 60 to 70% of SiO2, 9.5 to 17% of Al2O3, 0 to 9% of B2O3, 0 to 8% of MgO, 2 to 15% of CaO, 0.1 to 10% of SrO, and 0.5 to 4% of BaO, having a molar ratio (CaO+SrO+BaO)Al2O3 of 0.6 to 1.0, and being substantially free of alkali metal oxides.
    Type: Application
    Filed: December 25, 2012
    Publication date: December 25, 2014
    Inventors: Takahiro Kawaguchi, Shinkichi Miwa
  • Publication number: 20140377529
    Abstract: The present invention relates to a float glass plate that is formed by continuously supplying a molten glass onto a molten metal in a bath and allowing the molten glass to flow on the molten metal, wherein the float glass plate satisfies the following expression (1) when, on a coordinate axis that is parallel to a through-thickness direction and has, as an origin, an arbitrary point on a principal surface which is positioned on the molten metal side in the bath among both principal surfaces of the float glass plate, a water concentration in glass at a coordinate x (?m) indicating a distance from the origin is represented by C(x) (mass ppm), the thickness of the float glass plate is represented by D (?m), a maximum value of the C(x) is represented by Ca (mass ppm), and a coordinate at which the C(x) is maximum is represented by Da (?m). [ Math . ? 1 ] 0.5 < ? 0 Da ? ( Ca - C ? ( x ) ) ? ? x Ca × D × 100 ? 2.
    Type: Application
    Filed: September 11, 2014
    Publication date: December 25, 2014
    Inventors: Yasuo HAYASHI, Satoshi MIYASAKA
  • Patent number: 8916487
    Abstract: The present invention relates to the glass substrate for an information recording medium comprising the following glass components: SiO2: 52 to 67; Al2O3: 8 to 20; B2O3: 0 to 6, with these three oxides FMO: 70 to 85; Li2O: 0.5 to 4; Na2O: 1 to 8; K2O: 0 to 5; and with these three oxides R2O: 5 to 15; MgO: 2 to 9; CaO: 0.1 to 5; BaO: 0 to 3; SrO: 0 to 3; ZnO: 0 to 5; and with these five oxides: 5 to 15; Y2O3: 0 to 4; La2O3: 0 to 4; Gd2O3: 0 to 4; CeO2: 0 to 4; TiO2: 1 to 7; HfO2: 0 to 2; ZrO2: 0 to 5; Nb2O5: 0.2 to 5; and Ta2O5: 0 to 5, and satisfies Li2O/R2O: 0.05 to 0.35; Li2O/FMO: 0.005 to 0.035; Li2O/(MgO+ZnO): less than 2 and Nb2O5/SiO2: 0.01 to 0.075.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: December 23, 2014
    Assignee: Hoya Corporation
    Inventors: Hideki Kawai, Hiroshi Kajita, Akio Oogaki, Toshiharu Mori
  • Patent number: 8912107
    Abstract: A composition for preparing high-performance glass fiber by tank furnace production comprising in preferred percentage by weight: 57.5˜62.5% of SiO2, 14.5˜17.5% of Al2O3, 13.5˜17.5% of CaO, 6.5˜8.5% of MgO, 0.05˜0.6% of Li2O, 0.1˜2% of B2O3, 0.1˜2% of TiO2, 0.1˜2% of Na2O, 0.1˜1% of K2O and 0.1˜1% of Fe2O3 and (CaO+MgO)/MgO>3, with the content of at least one of the three components, A2O, B2O3 and TlO2 higher than 0.5%, with the composition yielding glass fiber having improved mechanical property, causing the melting and clarification of glass and forming performance of fiber close to those of boron-free E glass, and facilitating industrial mass production by tank furnace processes with manufacturing costs close to those of conventional E glass.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: December 16, 2014
    Assignee: Jushi Group Co., Ltd.
    Inventors: Yuqiang Zhang, Guorong Cao, Bing Zhang, Lin Zhang, Wenzhong Xing, Guijiang Gu
  • Patent number: 8902493
    Abstract: Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 2, 2014
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Martin E. Fermann, Hugh McKay, Libin Fu, Shigeru Suzuki
  • Patent number: 8895461
    Abstract: Provided are: a glass substrate for p-Si TFT flat panel displays that is composed of a glass having high characteristic temperatures in the low-temperature viscosity range, typified by the strain point and glass transition point, having a small heat shrinkage rate, and being capable of avoiding the occurrence of the problem regarding the erosion/wear of a melting tank at the time of melting through direct electrical heating; and a method for manufacturing same. The present glass substrate is composed of a glass comprising 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-25 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-1 mass % of Fe2O3, and 0-0.3 mass % of Sb2O3, and substantially not comprising As2O3, the glass having a mass ratio (SiO2+Al2O3)/B2O3 in a range of 7-30 and a mass ratio (SiO2+Al2O3)/RO equal to or greater than 6.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 25, 2014
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Patent number: 8895462
    Abstract: The present invention provides the composition of an alkali-free glass composition containing no alkali metal oxide and the preparation thereof. The alkali-free glass comprising substantially no alkali metal oxide according to the present invention comprises 46 to 57 wt % of SiO2; 3.5 to 7.5 wt % of B2O3; 21 to 29 wt % of Al2O3; 3 to 14 wt % of MgO; 11 to 16 wt % of CaO; and 1 to 5 wt % of SrO, based on the total weight of oxides present therein.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: November 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Dong-Kwon Lee, Jung-Sik Bang, Sang-Kook Kim, Won-Bae Lim, Su-Hwan Kim, Da-Jeong Kim