And Aluminum Patents (Class 501/66)
  • Patent number: 7524783
    Abstract: Titanium is added in the form of atoms, a colloid, or ions to a glass to be subjected to laser processing in which the ablation or vaporization caused by the energy of an absorbed laser light is utilized. Since titanium can be incorporated into the glass through melting, the threshold value for processing can be easily regulated by changing the amount titanium to be added and a material having evenness in processability can be obtained.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: April 28, 2009
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Hirotaka Koyo, Tadashi Koyama, Keiji Tsunetomo
  • Publication number: 20090099001
    Abstract: Glass, glass compositions, methods of preparing the glass compositions, microfluidic devices that include the glass composition, and methods of fabricating microfluidic devices that include the glass composition are disclosed. The borosilicate glass composition includes silicon dioxide (SiO2) in a range from about 60% to 74% by total composition weight; boric oxide (B2O3) in a range from about 9% to 25% by total composition weight; aluminum oxide (Al2O3) in a range from about 7% to 17% by total composition weight; and at least one alkali oxide in a range from about 2% to 7% by total composition weight. In addition, the borosilicate glass has a coefficient of thermal expansion (CTE) that is in a range between about 30×10?7/° C. and 55×10?7/° C. Furthermore, the borosilicate glass composition resists devitrification upon sintering without the addition of an inhibitor oxide.
    Type: Application
    Filed: January 18, 2008
    Publication date: April 16, 2009
    Inventor: Paulo Marques
  • Patent number: 7517822
    Abstract: The invention relates to a borosilicate glass having the following composition (in wt. % based on oxide content): between 55 and 80 of SiO2; between 8 and 25 of B2O3; between 0.5 and 10 of Al2O3; between 1 and 16 of Li2O+Na2O+K2O; between 0 and 6 of MgO+CaO+SrO+BaO; between 0 and 3 of ZnO; between 0 and 5 of ZrO2; between 0 and 5 of Bi2O3; and between 0 and 3 of MoO3; the sum of the Bi2O3 and MoO3 amounting to between 0.01 and 5. The invention also relates to a fluorescent lamp, especially a miniature fluorescent lamp.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: April 14, 2009
    Assignee: Schott AG
    Inventors: Joerg Fechner, Franz Ott, Rainer Haspel, Ralf Diezel
  • Publication number: 20090092775
    Abstract: Provided are glass compositions with higher softening point temperatures than conventional glasses, which improve flame penetration test performance of flexible duct insulation. In particular, the glass compositions have a softening point in the range of about 1230-1276° F., a log-3 viscosity temperature in the range of about 1802-1879° F., and a temperature difference between log-3 viscosity and liquidus temperatures of at least 150° F. These glasses are specially formulated to increase softening point while only minimally increasing log-3 viscosity temperature, so as to allow fiber insulation manufacturing without requiring increased energy use.
    Type: Application
    Filed: October 4, 2007
    Publication date: April 9, 2009
    Inventors: Phillip James Tucker, Elam Leed
  • Patent number: 7515802
    Abstract: The glass fiber for an optical amplifier has a matrix glass core, a first glass cladding, and a second glass cladding. The matrix glass core has a composition, in mol %, of Bi2O3, 30-60; SiO2, 0.5-40; B2O3, 0.5-40; Al2O3, 0-30; Ga2O3, 0-20; Ge2O3, 0-25 ; La2O3, 0-15; Nb2O5, 0-10; SnO2, 0-30; alkali metal oxides, 0-40; and Er2O3, 0.05-8. The glass claddings have the same composition as the core, except that a transition metal compound is included as an absorbent. The refraction index of the matrix glass is > about 1.85, the refraction index of the first glass cladding is less than that of the core, and the refraction index of the second glass cladding is higher than that of the first.
    Type: Grant
    Filed: September 7, 2002
    Date of Patent: April 7, 2009
    Assignee: Schott AG
    Inventors: Ulrich Peuchert, Ruediger Sprenhard, Martin Letz, Frank Buellesfeld
  • Publication number: 20090088309
    Abstract: A glass composition of the present invention includes the following components, in terms of mass % and mass ppm: 60 to 79% SiO2; 0 to 13% B2O3 (exclusive of 13%); 0 to 10% Al2O3; 0 to 10% Li2O; more than 0% but not more than 20% Na2O; 0 to 15% K2O; 0 to 10% MgO; 0 to 15% CaO; 0 to 15% SrO; 0 to 15% BaO; 0 to 10% ZnO; 0 to 15% Nb2O5; 0 to 20% Ta2O5; more than 0.02% but not more than 10% TiO2; and 0.5 to 50 ppm T-Fe2O3 (where T-Fe2O3 denotes a total iron oxide obtained by converting all of iron compounds into Fe2O3).
    Type: Application
    Filed: February 14, 2007
    Publication date: April 2, 2009
    Applicant: Nippon Sheet Glass Company, Limited
    Inventors: Haruki Niida, Akihiro Koyama
  • Patent number: 7510989
    Abstract: The invention is directed to a silver-containing polarizing boroaluminosilicate glass composition that has been doped with a noble metal selected from the group consisting of Pt, Pd, Os, Ir, Rh and Ru, including mixtures thereof, to nucleate and precipitate silver ions to silver metal without the need for a reducing atmosphere step. The invention is further directed to a method for making the glass composition of the invention. Using the composition and method of the invention, one can prepare a glass having a selected null transmission range.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: March 31, 2009
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, George Bigelow Hares, Sasha Marjanovic, David John McEnroe, Katherine Rose Rossington, Joseph Francis Schroeder, III
  • Publication number: 20090075805
    Abstract: An ultraviolet ray transmitting glass composition including the following components, in terms of mass % or mass ppm: 60 to 79% SiO2; 0 to 1% B2O3; exceeded 0% but not more than 20% Al2O3; 0 to 10% Li2O; 5 to 20% Na2O; 0 to 15% K2O; 0 to 10% MgO; 0 to 10% CaO; 0 to 15% SrO; 0 to 2% refining agent; 2 to 20 ppm T-Fe2O3 (in which T-Fe2O3 denotes a total iron oxide content obtained by converting all of iron compounds into Fe2O3); and 0 to 200 ppm TiO2. The ultraviolet ray transmitting glass composition is suitable for a glass article, such as a bioanalytical device that is used for analysis using ultraviolet rays.
    Type: Application
    Filed: April 5, 2006
    Publication date: March 19, 2009
    Applicant: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Junji Kurachi, Koji Fujita, Haruki Niida, Akihiro Koyama
  • Patent number: 7498731
    Abstract: Glass for gas discharge tubes, which are used in fluorescent lamps, especially EEFL and miniaturized lamps, LCD displays, computer monitors, telephone displays and TFT displays, and a process for making it are described. The glass contains, in % by weight based on oxide content: SiO2, 60-85; B2O3, 0-10; Al2O3, 0-10; Li2O, 0-10; Na2O, 0-20; K2O, 0-20; MgO, 0-8; CaO, 0-20; SrO, 0-5; BaO, 0-5; ZnO, 0-8; ZrO2, 0-5; TiO2, 0-10; Fe2O3, 0-5; CeO2 0-5; MnO2, 0-5; Nd2O3, 0-1.0; WO3, 0-2; Bi2O3, 0-5; MoO3, 0-5; PbO, 0-5; As2O3, 0-1; Sb2O3, 0-1; SO42?, 0-2; Cl?, 0-2 and F?, 0-2, wherein ? Li2O+Na2O+K2O=5-25% by weight; ? MgO+CaO+SrO+BaO=3-20; ? Fe2O3+CeO2+TiO2+PbO+As2O3+Sb2O3 is at least 0-10; and ? PdO+PtO3+PtO2+PtO+RhO2+Rh2O3+IrO2+Ir2O3 is 0.1.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: March 3, 2009
    Assignee: Schott AG
    Inventors: Joerg Fechner, Franz Ott, Brigitte Hueber
  • Patent number: 7490486
    Abstract: The process of producing a refined borosilicate glass includes preparing a glass batch with a composition in wt. % on the basis of oxide content of SiO2, 65-82; Al2O3, 2-8; B2O3, 5-13; MgO+CaO+SrO +BaO+ZnO, 0-7; ZrO2, 0-2; and Li2O+Na2O+K2O, 3-10; adding 0.05 wt. % to 0.6 wt. % of sulfate(s) expressed as SO3 to the glass batch as the refining agent; melting the glass batch including the refining agent to form melted glass; and then hot-shaping the borosilicate glass. The refining agent may also include from 0.01 wt. % to 0.6 wt. % of F? or from 0.015 wt. % to 0.6 wt. of Cl?. The sulfate is preferably an alkali metal and/or alkaline earth metal sulfate or sulfates.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: February 17, 2009
    Assignee: Schott AG
    Inventors: Karin Naumann, Christof Kass, Franz Ott
  • Patent number: 7491668
    Abstract: The chemically resistant borosilicate glass has the following composition (in % by weight): SiO2, 67-74; B2O3, 5-10; Al2O3, 3-10; Li2O, 0-4; Na2O, 0-10; K2O, 0-10; MgO, 0-2; CaO, 0-3; SrO, 0-3; BaO, 0-3; ZnO, 0-3; ZrO2, 0-3; CeO2, 0-1; with ?Li2O+Na2O+K2O=0.5 to 10.5 and ?MgO+CaO+SrO+BaO+ZnO=0-6. The borosilicate glass is characterized by a composition including 0 to 10% of at least one of TiO2, Bi2O3 and MoO3 and a sum total of TiO2+Bi2O3+MoO3 of 0.1 to 10%. This glass is obtained from the melt under oxidative conditions. The glass is useful in gas discharge lamps, such as Xenon lamps and fluorescent lamps, and display devices, flat structured backlighting devices, and glass-to-metal seals with Mo, Wo and Ni—Fe—Co alloys.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: February 17, 2009
    Assignee: Schott AG
    Inventors: Joerg Fechner, Franz Ott, Brigitte Hueber
  • Publication number: 20090042712
    Abstract: The invention relates to a glass composition of silica-soda-lime type colored blue which comprises the coloring agents below in a content varying within the following limits, by weight: Fe2O3 (total iron) 0.2 to 0.51% CoO 10 to 50 ppm Cr2O3 10 to 300 ppm CuO 0-400 ppm the glass exhibiting a redox factor of less than 0.35, a dominant wavelength ?D of between 485 and 489 nm, an excitation purity of less than 13% and a selectivity at least equal to 1.1 under a thickness of between 3 and 5 mm. It also relates to the glass sheet obtained from the abovementioned composition, said sheet being intended in particular to form an automobile window or for the construction industry.
    Type: Application
    Filed: October 10, 2008
    Publication date: February 12, 2009
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Laurent TEYSSEDRE, Dominique SACHOT, Pierre JEANVOINE
  • Publication number: 20090042711
    Abstract: [Object] To provide a high-refractivity high-dispersion optical glass having excellent stability [Solution Means] An optical glass which is formed of an oxide glass containing 30 to 70 cationic % of Bi3+ and has a liquidus temperature of 800° C. or lower.
    Type: Application
    Filed: August 5, 2008
    Publication date: February 12, 2009
    Applicant: HOYA CORPORATION
    Inventors: Xuelu Zou, Yasuhiro Fujiwara, Yoshio Nojima
  • Publication number: 20090038508
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Application
    Filed: October 17, 2008
    Publication date: February 12, 2009
    Applicant: IVOCLAR VIVADENT AG
    Inventors: Elke APEL, Wolfram HOLAND, Marcel SCHWEIGER, Christian RITZBERGER, Harald BURKE, Volker M. RHEINBERGER
  • Publication number: 20090036290
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Lauren Kay Cornelius, Adam James Ellison, Shari Elizabeth Koval
  • Publication number: 20090011917
    Abstract: The glass composite has a linear thermal expansion coefficient ?(20-300) of 1.8×10?6K?1 to 2.4×10?6K?1, a glass transformation temperature Tg of less than 650° C., and a composition, in weight percent based on oxide content, of: 5-9, B2O3; 1-3, Na2O; 15-22, Al2O3; 61-68, SiO2; 0.2-0.5, K2O; and 5.5-8.5, MgO. It can be made by sintering a mixture of 40 to 60 wt. % of a borosilicate glass powder and 60 to 40 wt. % of a cordierite powder. The powder mixture can be used to make a glass solder for joining parts, to make a sintered body with thermal shock resistance, or for glazing or soldering PZT ceramics.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Inventors: Dieter Goedeke, Susanne Schmid
  • Patent number: 7473969
    Abstract: The present invention relates to semiconductor-on-insulator structures having strained semiconductor layers. According to one embodiment of the invention, a semiconductor-on-insulator structure has a first layer including a semiconductor material, attached to a second layer including a glass or glass-ceramic, with the strain point of the glass or glass-ceramic equal to or greater than about 800° C.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: January 6, 2009
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Matthew John Dejneka, Kishor Purushottam Gadkaree, Linda Ruth Pinckney
  • Patent number: 7470642
    Abstract: An aluminoborosilicate glass having a density less than 2.40 g/cm3 and a specific modulus of elasticity greater than 30 GPa·cm3·g?1 is disclosed that comprises the following components (in wt. %): SiO2 58-70, Al2O3 12-20, B2O3 5-15, MgO 0-9, CaO 2-12, BaO 0, 1-5, SnO2 0-1, As2O3 0-2, the glass, apart from random impurities, being free of SrO and free of alkali oxides. The glass is particularly suitable as a substrate glass for LCD displays, for example.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: December 30, 2008
    Assignee: Schott AG
    Inventors: Joerg Fechner, Peter Brix, Dirk Sprenger
  • Patent number: 7468148
    Abstract: The invention is directed to a silver-containing polarizing boroaluminosilicate glass composition that has been doped with a noble metal selected from the group consisting of Pt, Pd, Os, Ir, Rh and Ru, including mixtures thereof, to nucleate and precipitate silver ions to silver metal without the need for a reducing atmosphere step. The invention is further directed to a method for making the glass composition of the invention. Using the composition and method of the invention, one can prepare a glass having a selected null transmission range.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: December 23, 2008
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, George Bigelow Hares, David John McEnroe, Joseph Francis Schroeder, III
  • Publication number: 20080311302
    Abstract: This invention relates to boron-containing compositions for use in glaze compositions. There is provided a boron-containing composition for use in glaze production, which composition is obtainable by a process which comprises heating to a temperature sufficiently high that calcination occurs but insufficient for the formation of a homogeneous melt a mixture comprising components capable, under the conditions of heating, of forming the oxides B2O3, SiO2, Al2O3, Na2O and optionally CaO in proportions such that the relative percentages by weight of the said oxides, based on the total weight of the said oxides, are as follows: 10 to 18% B2O3, 40 to 65% SiO2, 17 to 32% Al2O3, 4 to 9% Na2O, and 0 to 10% CaO. The boron-containing compositions according to the present invention may be used in glaze compositions, suitably frit-free or boron-free frit-containing glaze compositions.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 18, 2008
    Applicant: U.S. BORAX INC.
    Inventors: Simon Gregson Cook, Miguel Joaquin Galindo Cercos
  • Patent number: 7462411
    Abstract: A substrate for an information recording medium, which substrate is made of a highly heat-resistant and low-alkali-elution glass and is suitable as a substrate for forming a perpendicular-magnetic-recording-mode layers thereon at a high temperature with a sputtering machine, the substrate being made of an alkali-metal-oxide-containing glass having a glass transition temperature (Tg) of 620° C. or higher and satisfying a requirement that the alkali ion elution amount per a unit area when the glass is immersed in water having a temperature of 80° C. for 24 hours is 0.2 ?mol/cm2 or less, an information recording medium having an information recording layer formed on the substrate, and a process for producing the information recording medium.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: December 9, 2008
    Assignee: Hoya Corporation
    Inventors: Mikio Ikenishi, Xuelu Zou
  • Publication number: 20080286548
    Abstract: An alkali aluminosilicate glass that is chemically strengthened and has a down-drawable composition. The glass has a melting temperature less than about 1650° C. and a liquidus viscosity of at least 130 kpoise and, in one embodiment, greater than 250 kpoise. The glass undergoes ion exchange at relatively low temperatures to a depth of at least 30 ?m.
    Type: Application
    Filed: July 31, 2007
    Publication date: November 20, 2008
    Inventors: Adam James Ellison, Sinue Gomez
  • Patent number: 7452607
    Abstract: Provided is a nonlead glass for covering an electrode, which comprises, in mol %, B2O3 15-65%, SiO2 2-38%, MgO 2-30%, MgO+CaO+SrO+BaO 5-45%, Li2O 1-15%, Li2O+Na2O+K2O 2-25% and others, and which comprises ZnO 0-15%. Provided is a nonlead glass for covering an electrode, which comprises, in mol %, B2O3 25-65%, SiO2 2-38%, MgO 2-30%, MgO+CaO+SrO+BaO 5-45%, Li2O+Na2O+K2O 2-25%, Al2O3 0-30, TiO 0-10% and ZnO 0-15%.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: November 18, 2008
    Assignee: Asahi Glass Company, Limited
    Inventors: Hitoshi Onoda, Yu Goshima, Yumiko Aoki
  • Publication number: 20080269038
    Abstract: The colorless transparent colloid-former-containing glass that is convertible into a colorless transparent glass ceramic or a metal colloid-colored glass ceramic via respective heat treatments contains a combination of one or more metal colloid formers and one or more redox partners. The metal colloid formers are compounds containing Au, Ag, As, Bi, Nb, Cu, Fe, Pd, Pt, Sb and/or Sn. The redox partners are compounds containing As, Ce, Fe, Mn, Sb, Sn and/or W, with the proviso that the redox partner must be different from the metal colloid former.
    Type: Application
    Filed: April 23, 2008
    Publication date: October 30, 2008
    Inventors: Meike SCHNEIDER, Thilo ZACHAU, Friedrich SIEBERS, Wolfgang SCHMIDBAUER
  • Publication number: 20080269039
    Abstract: The subject of the invention is a method of refining glass for which the temperature (T log 2) corresponding to a viscosity of 100 poise (10 Pa·s) is greater than or equal to 1480° C., characterized in that sulfides are used as a refining agent. It also relates to the glass article capable of being obtained by this method.
    Type: Application
    Filed: October 9, 2006
    Publication date: October 30, 2008
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Laurent Joubaud, Dorothee Martin
  • Publication number: 20080269037
    Abstract: The present invention is to provide glass exhibiting both of a low thermal expansion and a low-temperature melting property and to provide glass which is able to be manufactured under the condition where an average linear thermal expantion coefficient at 0° C. to 50° C. is preferably not less than 40×10?7° C.?1, more preferably 35×10?7° C.?1 and, most preferably, 33×10?7° C.?1 and a fusing temperature is preferably not higher than 1550° C., more preferably not higher than 1540° C. and, most preferably, not higher than 1530° C. The means therefor is the glass, characterized in that, where an average linear thermal expantion coefficient at 0° C. to 50° C. is not more than 40×10?7° C.?1, an Al2O3 component and a B2O3 component on the basis of oxides are contained and the ratio of B2O3/Al2O3 in terms of % by mass is not less than 0.8.
    Type: Application
    Filed: April 22, 2008
    Publication date: October 30, 2008
    Applicant: OHARA INC.
    Inventor: Hisashi Murozumi
  • Publication number: 20080261797
    Abstract: The optical glass for press molding of the present invention contains 35 to 45% by weight of SiO2, 15 to 30% by weight of B2O3, and 18 to 33% by weight of CaO so that the total amount is 75 to 96% by weight. Also, the glass has an index of refraction (nd) of 1.55 to 1.63, an optical constant value ranging from 55 to 63 by the Abbe number (?d), a specific gravity of not more than 2.75, and a glass transition temperature (Tg) of not more than 550° C. According to the present invention, it is possible to provide inexpensive optical glass for press molding which exerts intended optical performance while realizing further reduction in size and weight of optical devices.
    Type: Application
    Filed: December 28, 2007
    Publication date: October 23, 2008
    Inventors: Takashi Tsutsumi, Risa Suzuki
  • Patent number: 7439676
    Abstract: A cold cathode fluorescent lamp (1) has feedthrough pins (5) made from molybdenum or a molybdenum alloy that form a glass-metal seal (6) with a glass composed of 55-75 wt. % SiO2, 13-25 wt. % B2O3, 0-10 wt. % Al2O3, 5-12 wt. % alkali oxides, 0-3 wt. % alkali earth oxides, 0-5 wt. % ZrO2, 0-10 wt. % TiO2 und 0-5 wt. % remaining oxides. The lamp has hollow cathodes (4) made from a material of the group molybdenum, molybdenum alloys, niobium, niobium alloys, and the lamp is manufactured in a compact form using conventional manufacturing parameters, and the resulting lamp has crack free, long-term vacuum-tight glass-metal seals.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: October 21, 2008
    Assignees: Plansee SE, Schott AG
    Inventors: Herman Walser, Wolfram Knabl, Gerhard Leichtfried, Jörg Hinrich Fechner, Franz Ott, Ralf Diezel, Brigitte Hueber
  • Publication number: 20080254301
    Abstract: The PbO-free UV-absorbing glass is made under oxidative conditions and has a composition, in % by weight, of: SiO2, 55-79; B2O3, 3-25; Al2O3, 0-10; Li2O, 0-10; Na2O, 0-10; K2O, 0-10; MgO, 0-2; CaO, 0-3; SrO, 0-3; BaO, 0-3; ZnO, 0-3; ZrO2, 0-3; CeO2, 0-1; Fe2O3, 0-1; WO3, 0-3; Bi2O3, 0-3; MoO3, 0-3; ?LiO+Na2O+K2O=0.5 to 16 and ?MgO+CaO+SrO+BaO+ZnO=0-10. It also contains from 0.1 to 10% TiO2 with at least 95% of the titanium as Ti+4 so that it has a high visible transmission, reduced color centers, and a sharp UV absorption edge. It is especially useful in lamps display devices and glass-to-metal seals.
    Type: Application
    Filed: April 8, 2008
    Publication date: October 16, 2008
    Inventors: Joerg Fechner, Andreas Reisse, Franz Ott, Brigitte Hueber
  • Publication number: 20080206494
    Abstract: A glass substrate for a display, which is formed of a glass having a light weight and having high refinability with decreasing environmental burdens, the glass comprising, by mass %, 50 to 70% of SiO2, 5 to 18% of B2O3, 10 to 25% of Al2O3, 0 to 10% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 10% of BaO, 5 to 20% of RO (in which R is at least one member selected from the group consisting of Mg, Ca, Sr and Ba), and over 0.20% but not more than 2.0% of R?2O (in which R? is at least one member selected from the group consisting of Li, Na and K), and containing, by mass %, 0.05 to 1.5% of oxide of metal that changes in valence number in a molten glass, and substantially containing none of As2O3, Sb2O3 and PbO.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 28, 2008
    Applicants: NH TECHNO GLASS CORPORATION, NIPPON SHEET GLASS CO., LTD., HOYA CORPORATION
    Inventors: Junji Kurachi, Akihiro Koyama, Yoichi Hachitani
  • Publication number: 20080194394
    Abstract: The invention relates to a glass substrate whose chemical composition comprises the following components within limits defined thereafter and expressed in percentages by weight: 58-72% by weight SiO2, 0.8-3 by weight TiO2, 2-15 by weight B2O3, 10-25 by weight Al2O3, 5-12 by weight CaO, 0-3 by weight MgO, 0-6 by weight BaO, 0-4 by weight SrO, 0-3 by weight ZnO, and 0-1 by weight R2O.
    Type: Application
    Filed: May 18, 2006
    Publication date: August 14, 2008
    Applicant: Saint-Gobain Glass France
    Inventor: Emmanuel Lecomte
  • Patent number: 7399721
    Abstract: A glass for laser processing of the present invention can be laser-processed by causing ablation or evaporation by laser beam energy absorbed therein, wherein the glass for laser processing has a composition that satisfies the following conditions: 60?SiO2+B2O3?79 mol %; 5?Al2O3+TiO2?20 mol %; and 5?Li2O+Na2O+K2O+Rb2O+Cs2O+MgO+CaO+SrO+BaO?20 mol %, where 5?TiO2?20 mol %. The present invention can provide a glass for laser processing that has a low laser processing threshold value as well as a low thermal expansion coefficient.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: July 15, 2008
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Hirotaka Koyo, Keiji Tsunetomo
  • Patent number: 7396788
    Abstract: A glass substrate for use as the substrate of an information recording medium such as a magnetic disk, magneto-optical disk, DVD, or MD or of an optical communication device, and a glass composition for making such a glass substrate, contains the following glass ingredients: 45 to 75% by weight of SiO2; 1 to 20% by weight of Al2O3; 0 to 15% by weight, zero inclusive, of B2O3; SiO2+Al2O3+B2O3 accounting for 65 to 90% by weight; a total of 7 to 20% by weight of R2O compounds, where R=Li, Na, and K; and a total of 0 to 12% by weight, zero inclusive, of R?O compounds, where R?=Mg, Ca, Sr, Ba, and Zn. Moreover, the following conditions are fulfilled: B2O3=0% by weight, or Al2O3/B2O3?1.0; and (SiO2+Al2O3+B2O3)/(the total of R2O compounds+the total of R2O compounds)?3.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: July 8, 2008
    Assignee: Minolta Co., Ltd.
    Inventors: Hideki Kawai, Toshiharu Mori
  • Publication number: 20080160221
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Application
    Filed: March 10, 2008
    Publication date: July 3, 2008
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Publication number: 20080161177
    Abstract: Provided is a range of glass compositions and glass fiber products made therefrom that show a unique combination of properties for both discontinuous fiber manufacturing and end use service. The glass compositions are particularly useful in high volume, high throughput, economical processes such as rotary spinning.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: Jon Frederick Bauer, Jeffrey M. Shock
  • Patent number: 7390761
    Abstract: The invention relates to an alkaline-earth aluminosilicate glass with the following composition (in wt. %, based on oxide content): SiO2 >58-62; B2O3 0 5.5; Al2O3 13.5 17.5; MgO 0-7; CaO 5.5-14; SrO 0-8, BaO 6-14; ZrO2 0-2; CeO2 0.001 0.5; TiO2 0.01-2. The glass is particularly suitable for use as a bulb material for halogen light bulbs.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: June 24, 2008
    Assignee: Schott AG
    Inventors: Joery Hinrich Fechner, Peter Brix, Franz Ott
  • Publication number: 20080146430
    Abstract: Glass compositions are provided that are useful in electronic applications, e.g., as reinforcements in printed circuit board substrates. Reduced dielectric constants are provided relative to E-glass, and fiber forming properties are provided that are more commercially practical than D-glass.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Inventors: Hong Li, Cheryl A. Richards
  • Publication number: 20080139375
    Abstract: Decorative paints are typically burned in at relatively high temperatures, preferably in connection with the thermal ceramicizing process. In order to provide a glass ceramic panel having a cooking surface with a pleasing deep black, very smooth decoration by a burned-in decorative paint, the glass ceramic panel is formed from a melt that is black and the decorative paint on the black glass ceramic panel contains a colorless glass flux and from 0 to 10 percent by weight of at least one black pigment. The decorative paint can consist of the colorless melted-on glass flux. The glass flux preferably has a composition in percent by weight of Li2O, 0-5; Na2O, 0-5; K2O, <2; ?Li2O+Na2O+K2O, 1-10; MgO, 0-3; CaO, 0-4; SrO, 0-4; BaO, 0-4; ZnO, 0-4; B2O3, 15-27; Al2O3, 10-20; SiO2, 43-58; TiO2, 0-3; ZrO2, Sb2O3, 0-2; F, 0-3.
    Type: Application
    Filed: August 18, 2004
    Publication date: June 12, 2008
    Inventors: Dietmar Wennemann, Harald Striegler
  • Publication number: 20080128923
    Abstract: An object of the invention is to provide glass for semiconductor encapsulation and an outer tube for semiconductor encapsulation which are friendly to environment and allow semiconductor electronic parts to have a heat resistance of 700° C. or higher as normal maximum temperature, and semiconductor electronic parts. The glass for semiconductor encapsulation according to the invention contains essentially no lead and the temperature at which viscosity reaches 1010 dPa·s is 700° C. or higher. According to such a constitution, since the glass contains essentially no lead, no harmful ingredients are discharged in the production of the outer tube for semiconductor encapsulation and in the production of the semiconductor electronic parts and thus the glass is friendly to environment. Moreover, since the temperature at which viscosity reaches 1010 dPa·s is 700° C. or higher, semiconductor electronic parts such as a bead thermistor using the same has a heat resistance of 700° C.
    Type: Application
    Filed: September 29, 2005
    Publication date: June 5, 2008
    Inventors: Kazuya Saito, Hajime Hikata
  • Publication number: 20080130171
    Abstract: A glass substrate, and a information recording medium comprised of a glass substrate, comprising an a alkali-containing calcium aluminosilicate glass comprising SiO2, Al2O3, CaO, and alkali oxides (Li2O+Na2O+K2O) as essential components, specifically comprising the following components, expressed in terms of mole percent (mol %): 55-70% SiO2, 4-15% Al2O3, 0-8% B2O3, 8-20% CaO, 3-12% Na2O+K2O+Li2O, 0-5% MgO, up to 5% BaO and 13-35% MgO+CaO+BaO.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: Francis Martin Behan, Linda Ruth Pinckney
  • Patent number: 7381258
    Abstract: The invention relates to an opaque dental ceramic for burning on a rack or implant of dental restoration at least comprising SiO2, Al2O3, B2O3, Na2O, K2O as well as TiO2. To cover the non-dental-coloured implant material sufficiently the invention provides that the opaque dental ceramic is clouded by precipitation of one or more crystalline TiO2 phases.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: June 3, 2008
    Assignee: Degudent GmbH
    Inventor: Klaus Krumbholz
  • Patent number: 7375043
    Abstract: The method for making UV-absorbing glass, which transmits in a visible range, includes melting raw materials to form a melt and producing the melt under oxidative conditions. The UV-absorbing glass is free of PbO and has the following composition (in % by weight): SiO2, 55-79; B2O3, 3-25; Al2O3, 0-10; Li2O, 0-10; Na2O, 0-10; K2O, 0-10; MgO, 0-2; CaO, 0-3; SrO, 0-3; BaO, 0-3; ZnO, 0-3; ZrO2, 0-3; CeO2, 0-1; Fe2O3, 0-1; WO3, 0-3; Bi2O3, 0-3; MoO3, 0-3; with ? Li2O+Na2O+K2O=0.5 to 16 and ? MgO+CaO+SrO+BaO+ZnO=0-10. The melt composition is characterized by including 0.1 to 10 % TiO2 and from 0.01-10 % As2O3. The glass made by the method and its properties are also disclosed. The glass is useful in lamps, LCD displays, monitors and glass-to-metal seals with molybdenum, tungsten and Fe—Co—Ni alloys.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: May 20, 2008
    Assignee: Schott AG
    Inventors: Joerg Fechner, Andreas Reisse, Franz Ott, Brigitte Hueber
  • Publication number: 20080110208
    Abstract: Alkali-free glasses are disclosed which can be used to produce substrates for flat panel display devices, e.g., active matrix liquid crystal displays (AMLCDs). The glasses contain iron and tin as fining agents, and preferably are substantially free of arsenic and antimony. In certain embodiments, the glasses are also substantially free of barium. Methods for producing alkali-free glass sheets using a downdraw process (e.g., a fusion process) are also disclosed.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Inventor: Adam James Gillmar Ellison
  • Publication number: 20080103036
    Abstract: A glass fiber having a low dielectric constant and low dielectric loss tangent consists essentially of by weight, as a glass composition, 52 to 60% of SiO2, 11 to 16% of Al2O3, 20 to 30% of B2O3, and 4 to 8% of CaO, and substantially no MgO, substantially no Li2O, substantially no Na2O, substantially no K2O, and substantially no Ti2O. The glass fiber also may contain up to 2% F2 by weight. The glass fiber is ideal for use as reinforcement for printed wiring boards, and has excellent dielectric properties at frequencies of about 18 GHz or higher.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 1, 2008
    Inventors: Douglas S. Boessneck, J. Ronald Gonterman, Oleg A. Prokhorenko
  • Patent number: 7365037
    Abstract: As a jig material to use under plasma reaction for producing semiconductors the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: April 29, 2008
    Assignee: Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Tatsuhiro Sato, Nobumasa Yoshida, Mamoru Endo
  • Patent number: 7365038
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65–75 SiO2, 7–13 Al2O3, 5–15 B2O3, 0–3 MgO, 5–15 CaO, 0–5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: April 29, 2008
    Assignee: Corning Incorporated
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Patent number: 7358206
    Abstract: The present invention relates to a boroaluminosilicate glass which exhibits excellent UV transmission. In particular, the present invention is directed at an alkali fluorine-doped boroaluminosilicate glass comprising, in mole percent on the oxide basis, of 30-80% SiO2, 1-20% Al2(O, F2)3, 5-35% B2O3, 5-20% R2O, where R is Li, Na, K, Rb or Cs, and an amount of up to 12% of F. The glass possesses an R/Al molar ratio of between 0.4 to 3 and an F/O molar ratio of no greater than 0.35. The alkali fluorine-doped boroaluminosilicate glass of the present invention exhibits a UV transmission at 300 nm, of greater than 80%/mm.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 15, 2008
    Assignee: Corning Incorporated
    Inventors: Lauren Kay Cornelius, Adam James Gillmar Ellison
  • Patent number: 7358205
    Abstract: An alkali-free glass substrate containing, by mass percent, 50-70% of SiO2, 10-25% of Al2O3, 5-20% of B2O3, 0-10% of MgO, 0-15% of CaO, 0-10% of BaO, 0-10% of SrO and 0-5% of ZnO, also containing SnO2 and/or Sb2O3 and having a ?-OH value of at least 0.485/mm.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: April 15, 2008
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Toshiharu Narita, Tatsuya Takaya, Masahiro Tomamoto
  • Patent number: 7341965
    Abstract: The invention relates to bismuth oxide glass, containing germanium oxide, a method for the production thereof, the use thereof and a glass fiber consisting of said inventive glass.
    Type: Grant
    Filed: September 7, 2002
    Date of Patent: March 11, 2008
    Assignee: Schott AG
    Inventors: Bianca Schreder, Ruediger Sprengard, Ulrich Peuchert, Martin Letz, Joseph S. Hayden, Sally Pucilowski
  • Patent number: 7341966
    Abstract: Glass, glass compositions, methods of preparing the glass compositions, microfluidic devices that include the glass composition, and methods of fabricating microfluidic devices that include the glass composition are disclosed. The borosilicate glass composition includes silicon dioxide (SiO2) in a range from about 60% to 74% by total composition weight; boric oxide (B2O3) in a range from about 9% to 25% by total composition weight; aluminum oxide (Al2O3) in a range from about 7% to 17% by total composition weight; and at least one alkali oxide in a range from about 2% to 7% by total composition weight. In addition, the borosilicate glass has a coefficient of thermal expansion (CTE) that is in a range between about 30×10?7/° C. and 55×10?7/° C. Furthermore, the borosilicate glass composition resists devitrification upon sintering without the addition of an inhibitor oxide.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: March 11, 2008
    Assignee: Corning Incorporated
    Inventor: Paulo Marques