And Divalent Metal Oxide (e.g., Oxides Of Zinc, Cadmium, Beryllium, Alkaline Earth Metal, Magnesium, Etc.) Patents (Class 501/72)
  • Publication number: 20120207995
    Abstract: A vehicle roof window includes an uncoated glass transparency having an Lta in the range of greater than 0% to 10%, and a solar factor in the range of equal to or less than 30%, measured at a thickness in the range of 3.6-4.1 millimeters (‘mm”), e.g. at a thickness of 3.6 mm, 3.9 mm or 4.1 mm. The solar factor is determined in accordance to International Organization for Standardization (“ISO”) No. 13837.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Larry J. Shelestak, James P. Thiel
  • Publication number: 20120132269
    Abstract: A glass substrate may be processed at high temperatures without substantially losing its thermal-strengthening characteristics or deforming. In some examples, the glass substrate exhibits an increased annealing point and/or softening point as compared to standard glass substrates. In some examples, the glass substrate includes a relatively high amount of CaO and/or MgO, and/or a relatively low amount of Na2O, as compared to traditional soda-lime-silica-based glass. Depending on the composition, the glass substrate may be useful, for example, to fabricate a glass-based solar cell that mates two substantially flat glass substrates together.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 31, 2012
    Applicant: CARDINAL FG COMPANY
    Inventors: Brad Hickman, Patrick D. Watson, Kelly J. Busch
  • Publication number: 20120132282
    Abstract: A compositional range of high strain point alkali metal free, silicate, aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates for photovoltaic devices, for example, thin film photovoltaic devices such as CIGS photovoltaic devices. These glasses can be characterized as having strain points ?570° C., thermal expansion coefficient of from 5 to 9 ppm/° C.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, JR.
  • Patent number: 8187987
    Abstract: The invention relates to glass articles suitable for use as electronic device housing/enclosure or protective cover which comprise a glass material. Particularly, a housing/enclosure/cover comprising an ion-exchanged glass exhibiting the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa·m1/2; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf, (6) a Young's Modulus ranging between about 50 to 100 GPa; (7) a thermal conductivity of less than 2.0 W/m° C., and (9) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: May 29, 2012
    Assignee: Corning Incorporated
    Inventors: Jaymin Amin, Matthew John Dejneka, Linda Ruth Pinckney, Katherine Rose Rossington, Robert Sabia
  • Patent number: 8178451
    Abstract: The glass-metal bond for a tube collector includes a glass tube and metal part bonded to the glass tube. In order to match the thermal expansion properties, the glass tube has the following composition: SiO2, 73-77 wt. %; B2O3, 6-<8 wt. %; Al2O3, 6-6.5 wt. %; Na2O, 5.5-7 wt. %; K2O, 1-3 wt. %; CaO, 0.5-3.2 wt. %; MgO, 0-2 wt. %; Fe2O3, 50-150 ppm; and TiO2 0-<100 ppm. The ratio of the sum of the alkaline-earth metal oxides (in mol %) to the sum of the alkali metal oxides (in mol %) is ?0.6. The metal part is preferably made of metal material no. 1.3981 according to DIN 17745. The glass composition itself is also part of the invention.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 15, 2012
    Assignee: Schott AG
    Inventors: Erhard Dick, Johann Collignon, Wolfgang Zettl, Stephan Tratzky
  • Patent number: 8168693
    Abstract: Zirconium-containing BaO- and PbO-free X-ray opaque glasses having a refractive index nd of about 1.54 to about 1.58 and a high X-ray opacity with an aluminum equivalent thickness of at least about 500% are provided. Such glasses are based on a SiO2—B2O3—Al2O3—R2O—RO—La2O3—ZrO2 system with optional additions of SnO2. Such glasses may be used, in particular, as dental glasses or as optical glasses.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: May 1, 2012
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Oliver Hochrein, Sabine Pichler-Wilhelm
  • Patent number: 8162664
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: April 24, 2012
    Assignee: Ivoclar Vivadent AG
    Inventors: Elke Apel, Wolfram Holland, Marcel Schweiger, Christian Ritzberger, Harald Burke, Volker Rheinberger
  • Publication number: 20120053044
    Abstract: A device including a glass substrate made of a soda lime silica glass composition of: SiO2 (50˜75 wt %); Na2O (1˜8 wt %); K2O (1˜12 wt %); CaO (1˜12 wt %); ZrO2 (0˜8 wt %); SrO (0˜15 wt %); BaO (0˜12 wt %); MgO (0˜10 wt %); Al2O3 (0˜12 wt %); B2O3 (0˜3 wt %), wherein the total amount of Na2O and K2O is in the range of 5˜15 wt %, the total amount of CaO, MgO, SrO and BaO is in the range of 10˜25 wt %.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: SAINT GOBAIN GLASS FRANCE
    Inventors: Jun-Young Lee, Sei-Woong Yoo, Doo-Sang Ko, Marc Maurer
  • Patent number: 8124551
    Abstract: There is provided a glass member for optical parts that represents a greater absolute value |?n| of refractive index difference ?n of visual light between base glass and heterogeneous phase region. In the glass member for optical parts, the heterogeneous phase region distinguishable by a different refractive index is formed at an intended location inside a glass by focused irradiation of a pulsed laser. When a multicomponent optical glass of SiO2, Rn2+RO, and TiO2 is used, |?n| of no less than 0.005 can be attained under a lower irradiation intensity. It is suitable for optical parts such as optical low-pass filters, diffractive optical parts, optical diffusion parts, optical filters, lenses and microlens arrays.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: February 28, 2012
    Assignee: Ohara Inc.
    Inventor: Tomohiro Hashimoto
  • Publication number: 20120021185
    Abstract: The subject of the invention is a glass sheet, the light transmission of which is greater than or equal to 89% for a thickness of 3.2 mm and the chemical composition of which comprises bismuth oxide in a weight content between 0.05 and 1%.
    Type: Application
    Filed: February 22, 2010
    Publication date: January 26, 2012
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Dominique Sachot, Octavio Cintora, Olivier Mario
  • Patent number: 8097341
    Abstract: A process for producing a wipe-proof anti-reflection layer on a borosilicate glass body is described, in which the borosilicate glass body is coated with a coating solution having a composition of 1-6% by weight of HCl, 0.5-7% by weight of SiO2 sol (solids content), 0.5-5% by weight of H2O, and 85-98% by weight of a readily volatile water-soluble organic solvent. The borosilicate glass body that is to be coated contains, in % by weight based on oxide content: 63-76 of SiO2, >11-20 of B2O3, 1-9 of Al2O3, 3-12 of alkali metal oxide(s), 0-10 of alkaline earth metal oxide(s), 0-2 of ZnO, 0-5 of TiO2, 0-1 of ZrO2, 0-1 of Nb2O5, and 0-1 of WO3.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 17, 2012
    Assignee: Schott AG
    Inventors: Stephan Tratzky, Denise Trapp
  • Patent number: 8093166
    Abstract: A bioactive glass composition, a method and an implant. The glass composition comprising SiO2, Na2O, K2O, CaO, and P2O5, having the following composition: SiO2 48-52 wt-%, Na2O 9-15 wt-%, K2O 12-18 wt-%, CaO 10-16 wt-%, P2O5 1-7 wt-%, TiO2 0.2-2 wt-%, B2O3 0-4 wt-%, and MgO 0-6 wt-%, wherein Na2O+K2O>25 wt-%, MgO+CaO>14 wt-%, and B2O3/P2O5>0.3.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: January 10, 2012
    Assignee: Inion Oy
    Inventors: Loredana Moimas, Eija Pirhonen
  • Publication number: 20110297900
    Abstract: The present invention provides a dark green colored glass composition having a soda-lime-silica glass composition, wherein the coloring compounds comprises in weight percentage: from 0.71 to 1.50% of total iron expressed as Fe2O3; from 22 to 30% of ferrous-ferric ratio and from 0.15 to 0.50% of expressed as FeO; from 0.10 to 0.20% of SO3 without affecting the refining properties and ability of the SO3 to eliminate bubbles; about 0 to 1.0 wt. % TiO2; about 0.0004 to 0.03 wt. % Cr2O3; and also 0.0004 to 0.015 wt. % CuO.
    Type: Application
    Filed: June 2, 2010
    Publication date: December 8, 2011
    Inventors: Jos+e,acu e+ee Guadalupe CID-AGUILAR, Roberto Marcos Cabrera-Llanos, Miguel Angel KIYAMA-RODRIGUEZ
  • Patent number: 8062749
    Abstract: An aircraft transparency in a glass piece, wherein the glass piece includes a chemically tempered first major surface and a chemically tempered opposite second major surface, a first case depth begins at the first major surface, a second case depth begins at the second major surface, and a tensile stress zone is within the glass piece between the end points of the first and the second case depths. The glass between the end points of the first and second case depth has a glass composition including: Ingredient Percent by weight SiO2 60 to 75; Al2O3 18 to 28; and Li2O 3 to 9, and the glass has at least one of the following properties (a) a log 10 viscosity temperature of at least 1413° F. and (b) a liquidus temperature of at least 2436° F.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 22, 2011
    Assignee: PPG Industries Ohio, Inc
    Inventors: Larry J. Shelestak, George B. Goodwin, Amarendra Mishra, James M. Baldauff
  • Patent number: 8039410
    Abstract: A core glass and a fiber-optic light guide made from it and a cladding glass are described. The core glass is in the alkali-zinc-silicate system and contains, in Mol % on an oxide basis: 54.5-65, SiO2; 18.5-30, ZnO; 8-20, ? alkali metal oxides; 0.5-3, La2O3; 2-5, ZrO2; 0.02-5, HfO2; 2.02-5, ? ZrO2+HfO2; 0.4-6, BaO; 0-6, SrO; 0-2, MgO; 0-2, CaO; 0.4-6, ? alkaline earth metal oxides; 0.5-3, Li2O, but no more Li2O than 25% of the ? alkali metal oxides; >58.5, ? SiO2+ZrO2+HfO2. A molar ratio of Na2O/K2O is from 1/1.1 to 1/0.3. A molar ratio of ZnO to BaO is greater than 3.5.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 18, 2011
    Assignee: Schott AG
    Inventors: Uwe Kolberg, Axel Curdt, Monika Gierke, Magdalena Winkler-Trudewig, Guenther Kron, Doris Ehrt
  • Patent number: 7993137
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: August 9, 2011
    Assignee: Ivoclar Vivadent AG
    Inventors: Elke Apel, Wolfram Holland, Marcel Schweiger, Christian Ritzberger, Harald Burke, Volker Rheinberger
  • Patent number: 7977262
    Abstract: A glass composition which contains Ce ions as a component substantially comprises, in terms of oxides, SiO2: 55 to 75 wt %, B2O3: 6 to 25 wt %, CeO2: 0.01 to 5 wt %, SnO: 0.01 to 5 wt %, Al2O3: 0 to 10 wt %, Li2O: 0 to 10 wt %, Na2O: 0 to 10 wt %, K2O: 0 to 10 wt %, MgO: 0 to 5 wt %, CaO: 0 to 10 wt %, SrO: 0 to 10 wt %, BaO 0 to 10 wt %, TiO2: 0 to 1.0 wt %, Fe2O3: 0.01 to 0.2 wt %, Sb2O3: 0 to 5 wt %, ZrO2: 0.01 to 5 wt %. By having such constituents, the glass composition is capable of suppressing transmission of ultraviolet light and solarization, and thus the glass composition hardly suffers from initial coloring or coloring during lamp production.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 12, 2011
    Assignee: Panasonic Corporation
    Inventors: Atsushi Motoya, Yasurou Niguma
  • Publication number: 20110159219
    Abstract: The present invention relates to a silicate glass article, such as a glass container, with a modified surface region. The modified surface has, among other advantageous properties, an improved chemical durability, an increased hardness, and/or an increased thermal stability, such as thermal shock resistance. In particular the present invention relates to a process for modifying a surface region of a silicate glass article by heat-treatment at Tg in a reducing gas atmosphere such as H2/N2 (1/99). The concentration of network-modifying cations (NMC) in the surface region of the silicate glass article is lower than in the bulk part, and the composition in the surface region of the network-modifying cations is a consequence of an inward diffusion.
    Type: Application
    Filed: September 3, 2009
    Publication date: June 30, 2011
    Applicant: AALBORG UNIVERSITET
    Inventors: Yuanzheng Yue, Morten Mattrup Smedskjaer
  • Publication number: 20110135938
    Abstract: The object of the invention is a continuous method for obtaining glass, comprising steps consisting of: charging raw materials upstream of a furnace, along which a plurality of burners is disposed, obtaining a mass of molten glass, and then leading said mass of molten glass to a zone of the furnace situated further downstream, at least one burner disposed in the region of this zone being fed with an over-stoichiometric quantity of oxidant, and then, forming a glass sheet, said glass sheet having a chemical composition that comprises the following constituents in an amount varying within the weight limits defined below: SiO2 60-75%? Al2O3 0-10% B2O3 0-5%, preferably 0? CaO 5-15% MgO 0-10% Na2O 5-20% K2O 0-10% BaO 0-5%, preferably 0, SO3 0.1-0.4%? Fe2O3 (total iron) 0 to 0.015%,?? Redox 0.1-0.3.
    Type: Application
    Filed: September 1, 2009
    Publication date: June 9, 2011
    Applicant: Saint-Gobain Glass France
    Inventors: Byoung-Ouk Kim, Kidong Moon, Junbo Choi, Pedro Silva
  • Publication number: 20110129752
    Abstract: The invention relates to the connection of one or more thermal and/or chemical reactors, particularly fuel cells, to an adjacent component or between two reactors or between two components, the reactors having a preferred operating temperature range, particularly between 400 and 1100° C., characterized in that said connection is provided by a connecting element that hardens at room temperature (normal state, normal conditions) and becomes plastic at the operating temperature.
    Type: Application
    Filed: June 23, 2008
    Publication date: June 2, 2011
    Inventor: Dirk Peter Claassen
  • Patent number: 7951312
    Abstract: The borosilicate glass for pharmaceutical packaging has a transmission ? in the visible range of more than 80% at a wavelength of 400 nm, a transmission ? in the UV range of at most 0.1% at wavelengths under 260 nm (each at a sample thickness of 1 mm), a transformation temperature Tg of 550° C. to 590° C. and a processing temperature VA of 1100° C. to 1200° C. The glass has a composition, in wt. % on an oxide basis, of SiO2, 60-80; B2O3, 5-15; Al2O3, 2-10; TiO2, 0.5-7; ? Li2O+K2O+Na2O, 3-10; ? alkaline earth oxides, 0.5-10; ZrO2, 0-3; and Fe2O3, 0-0.2. The glass is suitable for packaging UV-sensitive substances but nevertheless permits optical quality control.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 31, 2011
    Assignee: Schott AG
    Inventors: Franz Ott, Joerg Hinrich Fechner, Max Raster, Reinhard Maennl
  • Publication number: 20110123832
    Abstract: An aspect of the present invention relates to glass for a magnetic recording medium substrate, which comprises, denoted as molar percentages, 50 to 75 percent of SiO2, 0 to 5 percent of Al2O3, 0 to 3 percent of Li2O, 0 to 5 percent of ZnO, a total of Na2O and K2O of 3 to 15 percent, a total of MgO, CaO, SrO, and BaO of 14 to 35 percent, a total of ZrO2, TiO2, La2O3, Y2O3, Yb2O3, Ta2O5, Nb2O5, and HfO2 of 2 to 9 percent, with a molar ratio of {(MgO+CaO)/(MgO+CaO+SrO+BaO)} falling within a range of 0.85 to 1, and a molar ratio of {Al2O3/(MgO+CaO)} falling within a range of 0 to 0.30.
    Type: Application
    Filed: August 10, 2010
    Publication date: May 26, 2011
    Applicant: HOYA CORPORATION
    Inventors: Naomi Matsumoto, Yoichi HACHITANI, Kinobu OSAKABE
  • Patent number: 7946128
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: May 24, 2011
    Assignee: Corning Incorporated
    Inventors: Lauren Kay Cornelius, Adam James Ellison, Shari Elizabeth Koval
  • Publication number: 20110118101
    Abstract: A grey glass composition employing in its colorant portion at least iron (Fe2O3/FeO), cobalt and selenium is provided. The glass allows high visible transmission, and good IR absorption, while at the same time achieving desired grey color. In certain example embodiments, the colorant portion includes, or may consist essentially of: total iron (expressed as Fe2O3) 0.20 to 0.35% selenium 0.0002 to 0.0020% cobalt oxide 0.0025 to 0.0060% titanium oxide 0 to 1.0% glass redox: <=.27; or 0.10 to 0.25.
    Type: Application
    Filed: December 7, 2010
    Publication date: May 19, 2011
    Inventors: Anna Broughton, Richard Hulme, Scott V. Thomsen
  • Publication number: 20110091704
    Abstract: A process for producing a plate glass for a display device having a thickness of at most 1.5 mm by a float process, wherein the plate glass comprises, as represented by mole percentage based on the following oxides, from 67 to 75% of SiO2, from 0 to 4% of Al2O3, from 7 to 15% of Na2O, from 1 to 9% of K2O, from 6 to 14% of MgO and from 0 to 1.5% of ZrO2, has a total content of SiO2 and Al2O3 of from 71 to 75%, has a total content Na2O+K2O of Na2O and K2O of from 12 to 20%, and has a content of CaO of less than 1% if contained.
    Type: Application
    Filed: September 22, 2010
    Publication date: April 21, 2011
    Applicant: Asahi Glass Company, Limited
    Inventors: Shusaku AKIBA, Kazutaka Hayashi
  • Publication number: 20110073182
    Abstract: A solar unit glass plate having a composition comprising the following constituents, the amounts of which are expressed as percentages by weight: SiO2 60-75%; Al2O3 0-5%; Na2O 10-18%; K2O 0-5%; CaO 0-11%; MgO 0-5%; SO3 0-1%; Fe2O3<0.15%; and one or both of: SrO 0-15% and BaO 0-15%, with the proviso that the summed amount of SrO and BaO is greater than 1%. Also a glass plate for use as a cover plate or backing plate for a solar unit, the plate having a composition comprising the following constituents, similarly expressed: SiO2 65-74%; Al2O3 0-3%; Na2O 12-15%; K2O 0-2%; CaO 0-11%; MgO 0-2%; SO3 0-1%; Fe2O3 (total iron)<0.1%; and one or both of: SrO 2-10% and BaO 1.5-10%, with the proviso that the summed amount of SrO and BaO is greater than 2%.
    Type: Application
    Filed: June 9, 2009
    Publication date: March 31, 2011
    Inventors: Shona Taylor, Neil McSporran
  • Patent number: 7892999
    Abstract: A float glass for a display substrate, characterized in that its composition consists essentially of, as represented by mass % based on oxide, from 52 to 62% of SiO2, from 5 to 15% of Al2O3, from more than 0% to 9% of MgO, from 3 to 12% of CaO, from 9 to 18% of SrO, from 0 to 13% of BaO, from 25 to 30% of MgO+CaO+SrO+BaO, from 6 to 14% of Na2O+K2O+Li2O, from 0 to 6% of ZrO2 and from 0 to 1% of SO3, the temperature of glass melt corresponding to the viscosity of 102 dPa·s is at most 1,520° C., the temperature of glass melt corresponding to the viscosity of 104 dPa·s is at most 1,120° C., the glass transition temperature is at least 610° C., and the specific gravity is at most 2.9.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: February 22, 2011
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Tetsuya Nakashima, Kei Maeda
  • Patent number: 7875566
    Abstract: A method of making refractory alkaline earth silicate fibers from a melt, including the use as an intended component of alkali metal to improve the mechanical properties of the fiber in comparison with a fiber free of alkali metal.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: January 25, 2011
    Assignee: The Morgan Crucible Company PLC
    Inventors: Craig John Freeman, Gary Anthony Jubb
  • Patent number: 7871703
    Abstract: A glass composition for chemical tempering includes oxides in wt % ranges of: SiO2 60 to 75; Al2O3 18 to 28; Li2O 3 to 9; Na2O 0 to 3; K2O 0 to 0.5; CaO 0 to 3; MgO 0 to 3; ZrO2 0 to 3; where MgO+CaO is 0 to 6 wt %; Al2O3+ZrO2 is 18 to 28 wt %, and Na2O+K2O is 0.05 to 3.00 wt %. The glass has a log 10 viscosity temperature in the temperature range of 1328° F. (720° C.) to 1499° F. (815° C.); a liquidus temperature in the temperature range of 2437° F. (1336° C.) to 2575° F. (1413° C.), and a log 7.6 softening point temperature in the temperature range of 1544° F. (840° C.) to 1724° F. (940° C.). The chemically tempered glass has, among other properties, an abraded modulus of rupture of 72 to 78 KPSI, and a modulus of rupture of 76 to 112 KPSI.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 18, 2011
    Assignee: Schott AG
    Inventors: Larry J. Shelestak, George B. Goodwin, Amarendra Mishra, James M. Baldauff
  • Publication number: 20110009511
    Abstract: The present invention relates to glass compositions for use in formation of polycarboxylate cements and polycarboxylate cements comprising these glasses, wherein the glasses comprise SiO2 and MgO, with a molar percentage of SiO2 not exceeding 60% and a molar percentage of MgO being greater than 20%.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 13, 2011
    Applicant: IMPERIAL INNOVATIONS LIMITED
    Inventors: Robert Graham Hill, Molly Morag Stevens
  • Patent number: 7858546
    Abstract: The present invention provides a mother glass composition for gradient-index lens, from which a lead-free Li-based gradient-index lens that is excellent in weather resistance, in particular weather resistance in the presence of water, can be manufactured. The mother glass composition includes the following components, indicated by mol %: 40?SiO2?65; 1?TiO2?10; 0.1?MgO?22; 0.15?ZnO?15; 2?Li2O?18; 2?Na2O?20; 0?B2O3?20; 0?Al2O3?10; 0?K2O?3; 0?Cs2?O?3; 0?Y2O3?5; 0?ZrO2?2; 0?Nb2O5?5; 0?In2O3?5; 0?La2O3?5; and 0?Ta2O5?5. The mother glass composition further includes at least two oxides selected from CaO, SrO, and BaO each in a range of 0.1 mol % to 15 mol %. The total of MgO+ZnO is greater than or equal to 2 mol %. The molar ratio of ZnO/(MgO+ZnO) is in a range of 0.07 to 0.93. The total of Li2O+Na2O is in a range of 6 mol % to 38 mol %. The total of Y2O3+ZrO2+Nb2O5+In2O3+La2O3+Ta2O5 is in a range of 0 mol % to 11 mol %.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: December 28, 2010
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Taro Miyauchi, Tatsufumi Shiba
  • Patent number: 7846859
    Abstract: A colored glass has a formula of R?20—RO—SiO2, wherein R? is an alkali metal element and R is an alkaline earth metal element. The colored glass comprises between 0.01 and 1% by weight of molybdenum expressed as MoO3 and between 0.01 and 2.5% by weight of sulfur expressed as SO3. The colored glass further comprises between 7.8 and 14% by weight of potassium expressed as K2O and between 0.68 and 5.42% by weight of sodium expressed as Na2O. The sum of the concentrations of potassium and sodium expressed as K2O and Na2O is between 11 and 17% by weight.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: December 7, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jean-Sebastien Straetmans, Simon Flink, Theodorus Herman Ketelaar, Raoul Hendrinkus Elisabeth Maria Martens
  • Publication number: 20100300536
    Abstract: A compositional range of fusion-formable, high strain point sodium free, silicate, aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates for photovoltaic devices, for example, thin film photovoltaic devices such as CIGS photovoltaic devices. These glasses can be characterized as having strain points?540° C., thermal expansion coefficient of from 6.5 to 10.5 ppm/° C., as well as liquidus viscosities in excess of 50,000 poise. As such they are ideally suited for being formed into sheet by the fusion process.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, JR., Timothy J. Kiczenski, Michelle Diane Pierson-Stull
  • Publication number: 20100273631
    Abstract: The present invention relates to a process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66%? MgO 3-8% Na2O 7-15%? K2O 0-3% Li2O 0-12%? CaO 0-10%? BaO 0-15%? Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The invention also relates to the reinforced glass-ceramics obtained.
    Type: Application
    Filed: January 16, 2009
    Publication date: October 28, 2010
    Applicant: EUROKERA S.N.C.
    Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
  • Publication number: 20100209685
    Abstract: The invention relates to a low-radiation cover glass for radiation-sensitive sensors, with low intrinsic ?-radiation, in particular for use with semiconductor technology. The glass includes a glass composition, selected from the following: aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, in particular borosilicate glass that is devoid of alkali, with a TiO2 content of >0.1-10% by weight, in particular 1-8% by weight.
    Type: Application
    Filed: October 2, 2006
    Publication date: August 19, 2010
    Applicant: Schott AG
    Inventors: Andreas Weber, Holger Wegener, Reinhard Kassner, Peter Brix
  • Patent number: 7772144
    Abstract: A soda-lime-silica based glass composition for manufacturing on a float line that has a faster refining rate due to the introduction of alkali earth oxides such as BaO, ZnO and/or SrO in the amount of from about 1-4% in total. These oxides replace part or all of the MgO in the base glass composition thereby decreasing the overall MgO content in the glass composition to about 2% or less. The glass can realize a lower viscosity at high temperatures so that refining of the melt may occur faster.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: August 10, 2010
    Assignee: Guardian Industries Corp.
    Inventors: Leonid M. Landa, Ksenia A. Landa, Richard Hulme, Scott V. Thomsen, Anthony V. Longobardo
  • Patent number: 7763558
    Abstract: Provided is a range of glass compositions and glass fiber products made therefrom that show a unique combination of properties for both discontinuous fiber manufacturing and end use service. The glass compositions are particularly useful in high volume, high throughput, economical processes such as rotary spinning.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: July 27, 2010
    Assignee: Johns Manville
    Inventors: Jon Frederick Bauer, Jeffrey M. Shock
  • Publication number: 20100179048
    Abstract: The invention relates to a glass sheet, the composition of which is of the soda-lime-silica type and comprises the following constituents in contents varying within the weight limits defined below: Fe2O3 (total iron) 0 to 0.02%; and WO3 0.1 to 2%.
    Type: Application
    Filed: September 19, 2008
    Publication date: July 15, 2010
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Dominique Sachot, Octavio Cintora
  • Patent number: 7754631
    Abstract: To provide an alkali-free glass substrate, which has a high Young's modulus, a low linear expansion coefficient, a high strain point and a low density, does not devitrify in the float forming process and is excellent in acid resistance. An alkali-free glass substrate, which contains neither alkali component nor BaO and consists essentially of, as represented by mol % based on oxide, from 57.0 to 65.0% of SiO2, from 10.0 to 12.0% of Al2O3, from 6.0 to 9.0% of B2O3, from 5.0 to 10.0% of MgO, from 5.0 to 10.0% of CaO and from 2.5 to 5.5% of SrO, provided that MgO+CaO+SrO is from 16.0 to 19.0%, MgO/(MgO+CaO+SrO)?0.40, and B2O3/(SiO2+Al2O3+B2O3)?0.12; wherein Young's modulus ?75 GPa; the linear expansion coefficient at from 50 to 350° C. is from 30×10?7/° C. to 40×10?7/° C.; the strain point ?640° C.; the temperature T2 (the viscosity ? satisfies log ?=2)?1,620° C.; the temperature T4 (the viscosity ? satisfies log ?=4)?1,245° C.; the devitrification temperature ?T4; and weight loss per unit area is at most 0.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 13, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Terutaka Maehara, Manabu Nishizawa, Junichiro Kase, Syuji Matsumoto
  • Patent number: 7754628
    Abstract: The invention relates to a mixture for the production of a vat-dyed amber glass; an amber glass formed from the vitrifiable mixture, based on a silico-sodo-calcic composition; and a method for the production of tubes and blanks (2) for bulbs (1) using said glass. The mixture contains 100% by weight of the following ingredients: 0.01%-1% by weight molybdenum bisulphur and 0.01%-7% strontium sulphur by weight. The glass thus obtained is devoid of harmful products such as cadmium and no additional heat treatment is required in order to obtain the desired colour thereof.
    Type: Grant
    Filed: December 24, 2004
    Date of Patent: July 13, 2010
    Assignee: Vermont
    Inventors: Christian Lefevre, François Lepesqueux
  • Patent number: 7732049
    Abstract: Pellets encapsulating selenium or a compound of selenium comprise one hollow cavity filled with the selenium surrounded by a matrix which is able to form an eutectic with at least one of the constituents of a batch of molten raw materials for the manufacture of glass.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: June 8, 2010
    Assignee: AGC Glass Europe
    Inventors: Olivier Collart, Benoit Cherdon, Pierre Carleer
  • Publication number: 20100126218
    Abstract: A soda-lime-silica glass for solar collector cover plates and solar mirrors has less than 0.010 weight percent total iron as Fe2O3, a redox ratio of less than 0.350, less than 0.0025 weight percent CeO2, and spectral properties that include a visible transmission, and a total solar infrared transmittance, of greater than 90% at a thickness of 5.5 millimeters, and reduced solarization. In one non-limiting embodiment of invention, the glass is made by heating a pool of molten soda-lime-silica with a mixture of combustion air and fuel gas having an air firing ratio of greater than 11, or an oxygen firing ratio of greater than 2.31. In another non-limiting embodiment of the invention, streams of oxygen bubbles are moved through a pool of molten glass. In both embodiments, the oxygen oxidizes ferrous iron to ferric iron to reduce the redox ratio.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Larry J. Shelestak, Ronald L. Shewenninger
  • Patent number: 7709406
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions possess numerous properties that are compatible with the downdraw process, particularly fusion drawing.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 4, 2010
    Assignee: Corning Incorporation
    Inventors: Lauren Kay Cornelius, Adam James Ellison, Shari Elizabeth Koval
  • Patent number: 7700682
    Abstract: A glass filler for a polycarbonate resin, whereby the refractive index of the glass filler can be improved to the same level as a polycarbonate resin, and the transparency of a molded product after reinforced with such a filler can be maintained without coloration, and a polycarbonate resin composition employing such a filler, are provided.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: April 20, 2010
    Assignee: Asahi Fiber Glass Company, Limited
    Inventor: Keiji Sekine
  • Patent number: 7687418
    Abstract: The X-ray opaque glass is characterized by a composition, in mol %, of SiO2, 75-98; Yb2O3, 0.1 to 40; and ZrO2, 0 to 40. Preferred embodiments of the glass are free of Al2O3 and B2O3. The glass is produced from the glass batch by melting at a temperature of at least 1500° C. in an iridium or iridium alloy vessel with the assistance of high-frequency radiation. In preferred embodiments of the glass production process at least one raw material ingredient is present in the batch as a nanoscale powder. The glass is useful in dental applications, optical applications, and biomedical applications, or for photovoltaics, or as a target material in PVD processes.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: March 30, 2010
    Assignee: Schott AG
    Inventors: Ulrich Peuchert, Uwe Kolberg, Joern Besinger
  • Patent number: 7678722
    Abstract: A glass composition that includes a base glass composition including: SiO2 from 65 to 75 weight percent, Na2O from 10 to 20 weight percent, CaO from 5 to 15 weight percent, MgO from 0 to 5 weight percent, Al2O3 from 0 to 5 weight percent, K2O from 0 to 5 weight percent, and a colorant and property modifying portion including total iron ranging from of equal to or less than 0.6 weight percent; and TiO2 ranging from 0.1 to 1.0 weight percent, wherein the redox ratio ranges from 0.33 to 0.45 and the weight percents are based on the total weight of the composition.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: March 16, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Larry J. Shelestak
  • Patent number: 7670975
    Abstract: To provide an alkali free glass which is suitable as a glass substrate for LCD and has few defects of bubbles and an undissolved starting material, and a process for producing an alkali free glass which can readily lower the defects in bubbles and an undissolved starting material. An alkali free glass with a matrix composition comprising SiO2, Al2O3, B2O3, MgO, CaO, SrO and BaO and containing substantially no alkali metal oxide, of which the temperature at which the viscosity becomes 102 dPa·s, is at most 1,600° C. and which contains sulfur in an amount of from 0.001 to 0.1% as calculated as SO3, as represented by the mass percentage, per 100% of the total amount of the above matrix composition, and a process for producing a glass which comprises preparing a starting material and melting it so that a sulfate be incorporated to the starting material in an amount of from 0.01 to 5% as calculated as SO3, as represented by the mass percentage, per 100% of the total amount of the above matrix composition.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: March 2, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuhiro Suzuki, Manabu Nishizawa, Seiji Miyazaki, Junichiro Kase, Kei Maeda
  • Patent number: 7670976
    Abstract: The present invention relates to a glass substrate composition comprising SiO2 55˜70 wt %, Al2O3 0˜1 wt %, ZrO2 0.1˜5 wt %, Na2O 0.1˜5 wt %, K2O 7˜13 wt %, MgO 7˜14 wt %, CaO 0˜4 wt %, SrO 7˜12 wt % and SO3 0.01˜0.5 wt %. The glass substrate prepared by using the above composition shows less thermal deformation at a baking process under a high temperature since the strain point of the glass is at least 570° C., does not have such disadvantages as increase of fuel cost and short life cycle of refractories resulted from less than 1460° C. of melting point, and has 80˜95×10?7/° C. of thermal expansion coefficient in the temperature range of 50˜350° C. Therefore, the glass according to the present invention is suitable as a substrate.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 2, 2010
    Assignee: KCC Corporation
    Inventors: Jin Hyuk Lee, Si Moo Lee, Jae Wook Lee
  • Patent number: 7666511
    Abstract: An alkali aluminosilicate glass that is chemically strengthened and has a down-drawable composition. The glass has a melting temperature less than about 1650° C. and a liquidus viscosity of at least 130 kpoise and, in one embodiment, greater than 250 kpoise. The glass undergoes ion exchange at relatively low temperatures to a depth of at least 30 ?m.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: February 23, 2010
    Assignee: Corning Incorporated
    Inventors: Adam James Ellison, Sinue Gomez
  • Publication number: 20100040812
    Abstract: Flat glass composition comprising the following (expressed as percentages by weight): SiO2 60 75%; Al2O3 0 5%; Na2O 10 18%; K2O 0 5.5%; CaO 0 5%; MgO 0-2%; SO3 0 1%; Fe2O3 (total iron)>0.01%; TiO2 0-1% and one or both of: SrO 0-15%; BaO 0-15% with the proviso that the summed amount of SrO and BaO is greater than 4%. A preferred composition comprises: SiO2 65-74%; Al2O3 0-3%; Na2O 13 16%; K2O 0-2%; CaO 1-4.9%; MgO 0-2%; SO3 0-1%; Fe2O3 (total iron)>0.01%; TiO2 0 1%; BaO 4-10%; SrO 0-5%, wherein the summed amount of the alkaline earth metal constituents is in the range 10-13% and the summed amount of the alkali metal constituents is in the range 14-16%. The ferrous level of the glass may be greater than or equal to 28%, its performance in a thickness of 5 mm or less may be greater than or equal to 29 at LTA?70%, and greater than or equal to 27 at LTA?75%, and its liquidus temperature may be less than or equal to 980° C.
    Type: Application
    Filed: March 20, 2008
    Publication date: February 18, 2010
    Applicant: PILKINGTON GROUP LIMITED
    Inventors: John Buckett, Keith Haughey, Neil Mcsporran