Plural Component System Comprising A - Group I To Iv Metal Hydride Or Organometallic Compound - And B - Group Iv To Viii Metal, Lanthanide Or Actinde Compound - (i.e., Alkali Metal, Ag, Au, Cu, Alkaline Earth Metal, Be, Mg, Zn, Cd, Hg, Sc, Y, Al, Ga, In, Tl, Ti, Zn, Hf, Ge, Sn Or Pb Hydride Or Organometallic Compound And Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, As, Sb, Bi, Cr, Mo, W, Po, Mn, Tc, Re, Iron Group, Platinum Group, Atomic Number 57 To 71 Inclusive Or Atomic Number 89 Or Higher Compound) Patents (Class 502/102)
  • Publication number: 20010031697
    Abstract: This invention relates to an olefin polymerization catalyst composition comprising the product of the combination of an activator, an additive and a transition metal compound which is represented by the formulae:
    Type: Application
    Filed: May 29, 2001
    Publication date: October 18, 2001
    Inventors: Rex E. Murray, Simon Mawson
  • Publication number: 20010031695
    Abstract: The present invention relates to mixed catalyst compositions of a Group 15 containing hafnium catalyst compound and a bulky ligand metallocene-type catalyst compound, a unsupported and supported catalyst systems thereof and to a process for polymerizing olefin(s) utilizing them.
    Type: Application
    Filed: April 6, 2001
    Publication date: October 18, 2001
    Inventors: Donald R. Loveday, David H. McConville
  • Patent number: 6303532
    Abstract: In the invention a catalyst composition intended for the polymerization of olefins has been provided, which has been prepared by bringing together magnesium chloride, a lower alcohol, a titanium compound and an ester of phthalic acid. The procatalyst composition is active and stereospecific and it simultaneously has a titanium and phthalic acid content as low as possible. These good properties have been achieved by carrying out a transesterification between the lower alcohol and the ester of the phthalic acid, whereby the alkoxy group of the phthalic acid comprises at least five carbon atoms.
    Type: Grant
    Filed: April 18, 1995
    Date of Patent: October 16, 2001
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Timo Leinonen, Eero Iiskola
  • Publication number: 20010029232
    Abstract: A process for the polymerization of one or more alpha-olefins having at least 3 carbon atoms, which comprises contacting the monomer or monomers in a polar or non-polar solvent under polymerization conditions with a homogeneous catalyst system including (a) a cationic form of a racemic mixture of a chiral octahedral transition metal complex or of a non chiral octahedral transition metal complex, comprising 1, 2 or 3 bidentate chelating ligands and no cyclopentadienyl ligands and having C1, C2, or C3 symmetry; and (b) an anion of a Lewis acid or a Brönsted acid; and adjusting the pressure so as to obtain either a highly stereoregular polymer or copolymer or an elastomer.
    Type: Application
    Filed: May 31, 2001
    Publication date: October 11, 2001
    Inventors: Moris Eisen, Victoria Volkis, Michal Shmulinson, Claudia Averbuj, Edith Tish
  • Patent number: 6300271
    Abstract: This invention provides a compositions that are useful for polymerizing at least one monomer into at least one polymer.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: October 9, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Shirley J. Martin, Kathy S. Collins, James L. Smith, Gil R. Hawley, Christopher E. Wittner, Michael D. Jensen
  • Publication number: 20010025005
    Abstract: There are described solid procatalysts, catalyst systems incorporating the solid procatalysts, and the use of the catalyst systems in olefin polymerization and interpolymerization.
    Type: Application
    Filed: January 3, 2001
    Publication date: September 27, 2001
    Inventor: Darryl Stephen Williams
  • Publication number: 20010025006
    Abstract: The present invention relates to a catalyst system for the (co)polymerization of propylene consisting of the following components:(A) a solid catalyst component comprising titanium, magnesium, halogen and a 1,3-diether; (B) an organic aluminum compound; and optionally (C) an organic silicon compound. In comparison with the prior art, stereospecificity of the polymer prepared by using the catalyst system of this invention even containing no external electron-donor is greater than 99%. Also, the activity of the catalyst system and hydrogen gas adjustability on the molecular weight of the polymer do not significantly decrease.
    Type: Application
    Filed: December 6, 2000
    Publication date: September 27, 2001
    Inventors: Mingzhi Gao, Jian Zhou, Yun Zhao, Zhulan Li, Yantao Yang, Juxiu Yang, Weihua Feng
  • Patent number: 6294497
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising a titanium compound, having at least a Ti-halogen bond and an electron donor compound supported on a Mg halide, in which said electron donor compound is selected from esters of malonic acids of formula (I): wherein R1 is H or a C1-C20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group; R2 is a C1-C20 linear or branched alkyl, alkenyl, cycloalkyl, aryl, arylalkyl or alkylaryl group; R3 and R4 the same or different are C4-C20 linear or branched alkyl, alkylcycloalkyl, primary arylalkyl or primary alkylaryl. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give high yields and polymers having high insolubility in xylene.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: September 25, 2001
    Assignee: Montell Technology Company bv
    Inventors: Giampiero Morini, Giulio Balbontin, John Chadwick, Antonio Cristofori, Enrico Albizzati
  • Patent number: 6291609
    Abstract: The invention is directed to olefin polymerization processes using bridged hafnocene catalyst complexes comprising highly substituted noncoordinating anions that are surprisingly stable under high temperature olefin polymerization processes such that olefin copolymers having significant amount of incorporated comonomer can be prepared with high molecular weights. More specifically, the invention is a polymerization process for ethylene copolymers having a melt index of about 0.87 to about 0.930 comprising contacting, under homogeneous polymerization conditions at a reaction temperature at or above 140° C. to 225° C.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: September 18, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Bernard J. Folie, John F. Walzer, Jr., Rinaldo S. Schiffino
  • Patent number: 6291695
    Abstract: The organo-Lewis acids are novel triarylboranes which are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: September 18, 2001
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, You-Xian Chen
  • Publication number: 20010021687
    Abstract: A solid catalyst component for olefin polymerization obtained by contacting a titanium compound having a titanium-halogen bond and an ester compound simultaneously, or a mixture of a titanium compound (A) having a titanium-halogen bond and an ester compound (B), with a solid catalyst component precursor (C) containing a magnesium atom, a titanium atom and a hydrocarbyloxy group.
    Type: Application
    Filed: May 10, 2001
    Publication date: September 13, 2001
    Inventors: Shin-Ichi Kumamoto, Eiji Nakaishi, Makato Satoh
  • Patent number: 6284698
    Abstract: Catalyst compositions comprising 1) one or more bimetallic Group 3-6 or Lanthanide metal complexes corresponding to the formula:  wherein: M and M′ are independently Group 3, 4, 5, 6, or Lanthanide metals; L is a divalent group (or trivalent group if bound to Q) having up to 50 nonhydrogen atoms and containing an aromatic &pgr;-system through which the group is bound to M, said L also being bound to Z; L′ is a monovalent group or a divalent group (if bound to L″ or Q), or a trivalent group (if bound to both L″ and Q) having up to 50 nonhydrogen atoms and containing an aromatic &pgr;-system through which the group is bound to M′; L″ is a monovalent group or a divalent group (if bound to L′ or Q), or a trivalent group (if bound to both L′ and Q) having up to 50 nonhydrogen atoms and containing an aromatic &pgr;-system through which the group is bound to M′, or L″ is a moiety comprising boron or a member of Group 14 of the Pe
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: September 4, 2001
    Assignee: The Dow Chemical Company
    Inventors: Eugene Y. Chen, Shaoguang S. Feng, David D. Graf, Jasson T. Patton, David R. Wilson
  • Patent number: 6284697
    Abstract: The present invention relates to a new catalyst based on allyl complexes of the rare earths, of general formula [(C3R15)rM1(X)2−r(D)n]+[M2(X)p(C6H5−qR2q)4−p]−  (I), to the preparation of this new catalyst, and to its use for the polymerization of unsaturated compounds, particularly of conjugated dienes, in solution and in the gas phase.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: September 4, 2001
    Assignee: Bayer AG
    Inventors: Heike Windisch, Gerd Sylvester, Rudolf Taube, Steffen Maiwald
  • Publication number: 20010018394
    Abstract: A composition comprising (i) a supported or unsupported magnesium/titanium based catalyst precursor including an electron donor and (ii) a lanthanide catalyst precursor represented by the following formula: CpaLnRbbLc wherein Cp is a cyclopentadienyl or substituted cyclopentadienyl ligand; Ln is a lanthanide metal; Rb is a hydride, alkyl, silyl, halide, or aryl group; L is an electron donor; a+b is the valence of the lanthanide metal; and c is a sufficient amount of electron donor to stabilize the lanthanide metal.
    Type: Application
    Filed: April 9, 2001
    Publication date: August 30, 2001
    Inventor: Donna Marie Brown
  • Patent number: 6281153
    Abstract: This invention relates to a catalyst system based on fulvene metal complexes as well as their use for the polymerization of unsaturated compounds, in particular for the polymerization and copolymerization of olefins and/or dienes.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: August 28, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Sigurd Becke, RĂ¼diger Beckhaus
  • Patent number: 6281301
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising a titanium compound, having at least a Ti-halogen bond and an electron donor compound supported on a Mg halide, in which said electron donor compound is selected from esters of malonic acids of formula (I): wherein R1 is a C1-C20 linear or branched alkyl, C3-C20 alkenyl, C3-C20 cycloalkyl, C6-C20 aryl, arylalkyl or alkylaryl group; R2 is a C1-C20 linear alkyl, C3-C20 linear alkenyl, C6-C20 aryl, arylalkyl or alkylaryl group; R3 and R4 are independently selected from the group consisting of C1-C3 alky, cyclopropyl, with the proviso that when R1 is C1-C4 linear or branched alkyl or alkenyl, R2 is different from R1. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give high yields and polymers having high insolubility in xylene.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: August 28, 2001
    Assignee: Montell Technology Company bv
    Inventors: Giampiero Morini, Giulio Balbontin, John Chadwick, Antonio Cristofori, Enrico Albizzati
  • Patent number: 6281155
    Abstract: Supported heterometallocene catalysts wherein the support is a particulate polymeric material are provided. The catalysts have a transition metal complex containing at least one anionic, polymerization stable heteroatomic ligand associated with the transition metal and a boron activator compound deposited on the support. Polymeric supports used for the heterometallocene catalysts of the invention are homopolymers of ethylene and copolymers of ethylene and C3-8 &agr;-olefins.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: August 28, 2001
    Assignee: Equistar Chemicals, L.P.
    Inventors: Karen E. Meyer, Mark K. Reinking
  • Patent number: 6281164
    Abstract: The useful life of SOx additives having a SO2→SO3 oxidation catalyst component and a SO3 absorption component can be extended by employing each of these components as separate and distinct physical particles, pellets, etc.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: August 28, 2001
    Assignee: Intercat-Savannah, Inc.
    Inventors: Edward J. Demmel, Albert A. Vierheilig, Regis B. Lippert
  • Patent number: 6274752
    Abstract: Organo-Lewis acids of the formula BR′R″2 wherein B is boron, R′ is fluorinated biphenyl, and R″ is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: August 14, 2001
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, You-Xian Chen
  • Patent number: 6262200
    Abstract: The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: July 17, 2001
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, You-Xian Chen
  • Patent number: 6255244
    Abstract: A catalyst for polymerization of olefins or styrenes, which is prepared by contacting (A) a transition metal compound, (B) at least one material selected from the group consisting of oxygen-containing compounds and compounds which react with a transition metal compound to form an ionic complex, and optionally (C) an alkylating agent with each other, and contacting these materials (A), (B) and (C) with an adsorbing substance (D), during or after the contact of materials (A), (B) and (C) with each other, followed by removing the adsorbing substance (D) from the contacted materials (A), (B) and (C).
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: July 3, 2001
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventor: Nobuhiro Yabunouchi
  • Patent number: 6248540
    Abstract: The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometailic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large niumbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: June 19, 2001
    Assignee: Symyx Technologies, Inc.
    Inventors: W. Henry Weinberg, Eric McFarland, Isy Goldwasser, Thomas Boussie, Howard Turner, Johannes A. M. Van Beek, Vince Murphy, Timothy Powers
  • Patent number: 6239239
    Abstract: An improved catalyst for polymerizing olefins is disclosed. The catalyst comprises a Group 4 transition metal, at least one quinolinoxy or pyridinoxy ligand, and at least one benzyl ligand. Particularly when used with an activator, the benzyl-containing catalysts have exceptional activities for polymerizing olefins.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: May 29, 2001
    Assignee: Equistar Chemicals, L.P.
    Inventor: Jia-Chu Liu
  • Patent number: 6228790
    Abstract: A novel dinuclear metallocene complex is disclosed, which is represented by the following formula (I): wherein M1 and M2 are the same or different and are independently selected from the group consisting of Group IIIB, Group IVB and Group VB transition metals; each X is the same or different and is indepedently an anionic ligand with −1 valence, which is selected from the group consisting H, C1-20 hydrocarbyl, halogen, C1-20 alkoxy, C1-20 aryloxy, NH2, NHR11, NR11R12, —(C═O)NH2, —(C═O)NHR13, and —(C═O)NR13R14, wherein R11, R12, R13 and R14 are C1-20 alkyl; i is an integer from 1 to 3; j is an integer from 1 to 3, R1, R2, R3, R4, R5, R6, R7, and R8 are the same or different and are independently H, a C1-20 linear, branched or cyclic hydrocarbyl group, or a C2-4 cyclic hydrocarbylene group which forms a C4-6 fused ring system; Y1 and Y2 are the same or different and each is an electron-donating group independently selected from a Group 15 or Group 16 elem
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: May 8, 2001
    Assignees: Industrial Technology Research Institute, Chinese Petroleum Corp., Taiwan Synthetic Rubber Corporation
    Inventors: Ching Ting, Sung-Song Hua, Jing-Cherng Tsai, Bor-Ping Wang
  • Patent number: 6221802
    Abstract: The invention comprises a catalyst support containing an &agr;-olefin polymer which is in the form of particles of mean size from 5 to 350 &mgr;m in which the pore volume generated by the pores of radius from 1,000 to 75,000 Å is at least 0.2 cm3/g. A catalyst usable for the polymerization of &agr;-olefins, including a compound containing at least one transition metal belonging to groups IIIb, IVb, IVb and VIb of the Periodic Table, bound in or on this support, is also described.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: April 24, 2001
    Assignee: Solvay Polyolefins Europe-Belgium
    Inventors: Jean-Louis Costa, Vincent Laurent, Philippe Francois, Dirk Vercammen
  • Patent number: 6207606
    Abstract: The present invention relates to a mixed catalyst system of at least one bridged, bulky ligand metallocene-type compound, and at least one bridged, asymmetrically substituted, bulky ligand metallocene-type compound, a method of making the mixed catalyst system and to its use in a polymerization process to produce olefin polymers having an unexpected improvement in processability.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: March 27, 2001
    Assignee: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Donna J. Crowther
  • Patent number: 6197713
    Abstract: The present invention is directed to a process for the preparation of a gel-free hydrocarbon solution containing a lanthanide rare earth series compound by dissolving or synthesizing a lanthanide compound in an inert hydrocarbon solvent with a Lewis acid in an amount sufficient to prevent formation of highly viscous solutions. The present invention is also directed to the use of the gel-free Ln solutions formed by the recited process as co-catalysts for the polymerization of dienes. The Lewis acid is a group 2, 12, 13, 14 or 15 halide or organohalide, or a transition metal halide, excluding aluminum trialkyls.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: March 6, 2001
    Assignee: Bridgestone Corporation
    Inventor: Thomas J. Lynch
  • Patent number: 6190430
    Abstract: An efficient method for producing a hydrogen-containing gas for a fuel cell by using a gas produced by reforming reaction of an organic compound is disclosed. The method comprises the following steps: adding an oxygen-containing gas to a hydrogen-containing gas containing carbon monoxide to form a mixed gas, and bringing the mixed gas into contact with a catalyst comprising a ruthenium metal as a main component and having a carbon monoxide adsorption of not less than 1 mmol/g-ruthenium and a carbon monoxide adsorption index of not less than 0.5, to thereby oxidize and remove carbon monoxide.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: February 20, 2001
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Yohei Fukuoka, Keizo Tomokuni, Hitoshi Nakajima
  • Patent number: 6184318
    Abstract: A C1 symmetric metallocene compound of general formula R″(CpRn)(Cp′R″m) MQp for use as a catalyst component in the production of short sequence syndiotactic/isotactic block polyolefins, wherein Cp is a substituted cyclopentadienyl; each R is independently aryl or hydrocarbyl having 1 to 20 carbon atoms, at least position 3 of Cp is substituted with aryl, at least one other position of Cp is substituted with a non-bulky substituent, and n is an integer in the range from 2 to 4; Cp′ is substituted or unsubstituted fluorenyl; each R′ is independently hydrocarbyl having 1 to 20 carbon atoms and m is O or an integer in the range from 1 to 8; R″ is a structural bridge to impart stereorigidity between Cp and Cp′; M is a metal from Group IIIB, IVB, VB or VIB; Q is a hydrocarbyl radical having 1 to 20 carbon atoms or a halogen; and p is the valence of M minus 2.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: February 6, 2001
    Assignee: Fina Research, S.A.
    Inventors: Abbas Razavi, Kai Hortmann
  • Patent number: 6184168
    Abstract: The invention provides a catalyst composition, comprising: (a) an organolithium compound; and, (b) an organic acid salt of lanthanide series element; wherein: (1) only components (a) and (b) are required to promote the synthesis of 1,4-trans-polybutadiene; (2) the ratio of component (a) to component (b) is selected to maximize formation of the trans structure of said 1,4-trans-polybutadiene; and, (3) components (a) and (b) are selected for enabling further diblock synthesis. The invention further contemplates a process for using the catalyst to synthesize 1,4-trans-polybutadiene and other polymers and copolymers having trans configuration in the conjugated diene monomer contributed units.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: February 6, 2001
    Assignee: Bridgestone Corporation
    Inventor: Thomas J. Lynch
  • Patent number: 6180552
    Abstract: Neutral, multidentate azacyclic ligands and Group 3-10 transition metal complexes that contain them are disclosed. The ligands have the general formula: Ra—A—(L)b where R is hydrogen or hydrocarbyl, A is silicon, tin, germanium, or lead, each L is a pyrazolyl, triazolyl, or tetraazolyl group, a=0 to 2, b=2 to 4, and a+b=4. When used with common activators, the transition metal complexes provide excellent single-site catalysts for olefin polymerization.
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: January 30, 2001
    Assignee: Equistar Chemicals, L.P.
    Inventor: Gregory G. Hlatky
  • Patent number: 6177528
    Abstract: Novel aminomethylphosphine ligands have particular substituents on the central carbon atom. Such ligands form coordination complexes that may be catalysts for the polymerization of monomers or other catalytic induced reactions.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: January 23, 2001
    Assignee: Symyx Technologies, Inc.
    Inventors: Anne Marie LaPointe, Anil Guram, Timothy S. Powers, Bernd Jandeleit, Thomas Boussie, Cheryl Lund
  • Patent number: 6171522
    Abstract: The invention relates to ionic compounds in which the anionic load has been displaced, and the uses of these compounds. A compound disclosed by the invention comprises an anionic portion combined with at least one cationic portion M+m in sufficient numbers to ensure overall electronic neutrality. The anionic portion is comprised of one of the groups (A) and (B): wherein Y1, Y2, Y3, Y4 and Y5 represent a carbonyl group, a sulfonyl group, a thiocarbonyl group, a thionyl group, a —C(═NCN)— or a —C(═C(CN)2)— group; Z represents an electroattractive radical; each of the substituents, RA, RB, RC and RD represents independently of one another a monovalent or divalent organic radical or is part of a polymer chain, with at least one of the substituents RC and RD being a perfluorinated radical. The compounds can be used especially for ionic conducting materials, electronic conducting materials, colorants, and the catalysis of various chemical reactions.
    Type: Grant
    Filed: November 19, 1998
    Date of Patent: January 9, 2001
    Assignees: Hydro-Qu{acute over (e)}bec, Centre National de la Recherche Scientifique
    Inventors: Christophe Michot, Michel Armand, Michel Gauthier, Yves Choquette
  • Patent number: 6165929
    Abstract: A process is provided to produce a composition of matter. The process comprises contacting at least one organometal compound, at least one solid mixed oxide compound, and at least one organoaluminum compound to produce the composition.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: December 26, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Shirley J. Martin, Kathy S. Collins, Marvin M. Johnson
  • Patent number: 6165930
    Abstract: Organosilane compounds having the structural formula ##STR1## wherein R is a linear or branched C.sub.1-4 alkyl, 4-methylpiperidyl, C.sub.6-12 aryl or C.sub.5-7 cycloalkyl; R.sup.1 is hydrogen, methyl or ethyl, R.sup.2 is methyl or ethyl and; n is 4 to 7.These organosilane compounds are useful as electron donors in Ziegler-Natta type catalyst systems.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: December 26, 2000
    Assignee: Montell North America Inc.
    Inventor: Constantine A. Stewart
  • Patent number: 6166170
    Abstract: A catalyst composition is disclosed. The composition comprises a titanium compound, a complexing agent, hypophosphorous acid or its metal salt, water and optionally a solvent. The complexing agent can be hydroxycarboxylic acid, alkanolamines, aminocarboxylic acids, or combinations of two or more thereof. The solvent can be water, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, isopropylene glycol, butylene glycol, 1-methyl propylene glycol, pentylene glycol, or combinations of two or more thereof. The titanium compound can be combined with a zirconium compound. Also disclosed is a process for using the composition for producing an ester or a polyester. The process comprises contacting a carbonyl compound, in the presence of the composition, with an alcohol under a condition suitable for esterification, transesterification, polymerization, or combinations of two or more thereof.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: December 26, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Donald Edward Putzig
  • Patent number: 6156867
    Abstract: The present invention relates to a polyester polymerization catalyst, comprising a solution containing an aluminum compound and an alkali compound, with water or an organic solvent or a mixture consisting of water and an organic solvent as the medium, a production method thereof, and a polyester production method, in which the product obtained by the esterification reaction or ester interchange reaction between an aromatic dicarboxylic acid or any of its ester forming derivative and a diol is polycondensed, to produce a polyester, comprising the use of said polymerization catalyst containing an aluminum compound.The present invention can provide a polyester excellent in processability and can overcome such problems as spinneret contamination, filtration pressure rise, filament breaking, film breaking and foreign matter production in the production process of products such as fibers, films, resins and bottles.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: December 5, 2000
    Assignee: Toray Industries, Inc.
    Inventors: Masatoshi Aoyama, Kenichi Tsutsumi, Minoru Uchida
  • Patent number: 6130302
    Abstract: Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: October 10, 2000
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, You-Xian Chen
  • Patent number: 6124414
    Abstract: A catalyst system comprising an organoaluminoxane cocatalyst and a polymeric fluorenyl-containing metallocene prepared from a polymer resulting from the polymerization of a 2-vinylfluorene compound or the alkylation of a fluorene compound.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: September 26, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Bernd Peifer, Syriac J. Palackal, M. Bruce Welch, Helmut G. Alt, Peter Schertl
  • Patent number: 6124229
    Abstract: Disclosed is a process for preparing a supported metallocene catalyst by introducing, in a first stage, a gas stream comprising an organoaluminum compound, an inert support material and water, into a first gas phase reactor; allowing the mixture to react under conditions effective to form an aluminoxane supported on said inert support material; metering a second gas stream comprising a metallocene into said gas phase reactor; allowing said mixture to react under conditions effective to form a supported metallocene catalyst; and drying, in a second stage, said supported metallocene catalyst, wherein said drying is carried out in a gas phase reactor.
    Type: Grant
    Filed: August 22, 1996
    Date of Patent: September 26, 2000
    Assignee: Witco GmbH
    Inventors: Ralf-Jurgen Becker, Rainer Rieger
  • Patent number: 6117956
    Abstract: The instant invention teaches a method for forming a syndiotactic 1,2-polybutadiene product having a higher syndiotacticity and a higher melting temperature than syndiotactic 1,2-polybutadiene produced using chromium catalysts known in the prior art. The method includes polymerizing 1,3-butadiene in solution with a solvent, in the presence of catalytically effective amounts of: (a) a chromium compound; (b) an organomagnesium compound; and, (c) a cyclic hydrogen phosphite.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: September 12, 2000
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6114571
    Abstract: A catalyst for preparing vinyl acetate in the gas phase from ethylene, acetic acid and oxygen or oxygen-containing gases with, at the same time, low-high boiler formation which catalyst comprises palladium and/or its compounds, gold and/or its compounds, moron or boron compounds and alkali metal compounds on a particular support.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: September 5, 2000
    Assignee: Celanese GmbH
    Inventors: Roland Abel, Ioan Nicolau, Erich Hopf, Rainer Kiemel
  • Patent number: 6111082
    Abstract: Stable Rare Earth carboxylate liquids having high concentrations of Rare Earths and suitable for use in forming active Ziegler Natta catalysts, are prepared with stabilizing agents such as water and/or acid. The liquids comprise from about 4.5% to about 20% Rare Earth element(s). A novel process for making is disclosed.
    Type: Grant
    Filed: April 17, 1998
    Date of Patent: August 29, 2000
    Assignee: Rhodia Rare Earths Inc.
    Inventors: Kenan Yunlu, Min He, Jean-Pierre Cuif, Michel Alas
  • Patent number: 6107230
    Abstract: This invention provides compositions for polymerizing at least one monomer to produce a polymer. The compositions are produced by a process comprising contacting at least one organometal compound, at least one organoaluminum compound, and at least one treated solid oxide compound. The treated solid oxide compound is produced by a process comprising contacting at least one solid oxide compound with at least one electron-withdrawing anion source compound and at least one metal salt compound.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: August 22, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Marvin M. Johnson, James L. Smith, Elizabeth A. Benham, Gil R. Hawley, Christopher E. Wittner, Michael D. Jensen
  • Patent number: 6077919
    Abstract: There is disclosed a method for synthesizing polyolefins having a silyl group at one terminus, the method comprising reacting a monomer of an a-olefin (C.ltoreq.3.ltoreq.10) and a tetrasubstituted silyl radical in the presence of a metallocene catalyst.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: June 20, 2000
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Kwangmo Koo
  • Patent number: 6074984
    Abstract: The useful life of SO.sub.X additives having a SO.sub.2 .fwdarw.SO.sub.3 oxidation catalyst component and a SO.sub.3 absorption component can be extended by employing each of these components as separate and distinct physical particles, pellets, etc.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: June 13, 2000
    Assignee: Bulldog Technologies U.S.A., Inc.
    Inventors: Edward J. Demmel, deceased, Albert A. Vierheilig, Regis B. Lippert
  • Patent number: 6069237
    Abstract: New metallocene ligand systems and catalysts/catalyst precursors are described where the ligand system contains at least one open-pentadienyl ligand characterized by an acyclic six .pi. electron delocalized, five atomic center structure. The open pentadienyl ligand is bonded to either another pentadienyl ligand or a Cp ligand by a bridging group. The metal is from group 3-5 or the Lanthanides. These metallocene catalysts/catalyst precursors optionally in combination with co-catalysts can be used to generate a wide variety of different polymer types including HDPE, LLDPE, LHDPE, ethylene/propylene elastomers, tactiospecific C3+ .alpha.-olefins, intimate mixture thereof and the like.
    Type: Grant
    Filed: September 11, 1995
    Date of Patent: May 30, 2000
    Assignee: Montell Technology Company BV
    Inventors: John A. Ewen, Robert W. Strozier
  • Patent number: 6066714
    Abstract: A catalyst composition is disclosed. The composition comprises a titanium compound, a phosphorus compound, an amine, a solvent and optionally a cocatalyst in which the phosphorus compound has a formula selected from the group consisting of (R.sup.1 O).sub.x (PO)(OH).sub.3-x, (R.sup.1 O).sub.y (P.sub.2 O.sub.3)(OH).sub.4-y, and combinations thereof; the amine is a tertiary amine; each R.sup.1 is independently a linear or branched alkyl radical containing from 1 to about 20 carbon atoms per radical; x is 1 or 2; and y is 1, 2, or 3; and the cocatalyst can be a cobalt/aluminum catalyst, an antimony compound, or combinations thereof. Also disclosed is a process for producing the composition. The process comprises combining a titanium compound, a phosphorus compound, a solvent, an amine, a solvent, and optionally a cocatalyst. The phosphorus compound, amie, and solvent are the same as those disclosed above.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: May 23, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Donald Edward Putzig, Edward Francis McBride, Hiep Quang Do, James Arthur Trainham, Hermann Ludwig Jaeger, Heiner Schulte
  • Patent number: 6060418
    Abstract: Catalysts deposited on a support are described. The catalyst itself is formed by combining (i) a metallocene of a transition, lanthanide or actinide metal and (ii) a siloxy-aluminoxane composition which comprises an aluminoxane which contains hydrocarbyl-siloxane moieties which are free of Si-OH groups, wherein the molar ratio of aluminum to hydrocarbylsiloxane is from about 1:1 to 1000:1. The siloxy-aluminoxane composition used is free of Si-OH groups, and the aluminoxane of the siloxy-aluminoxane composition was formed by partial hydrolysis of trialkylaluminum. Supports for the catalysts are particulate inorganic oxides, preferably silica, alumina, silica-alumina, or a mixture thereof, or resinous polyolefin support materials.
    Type: Grant
    Filed: April 28, 1999
    Date of Patent: May 9, 2000
    Assignee: Albemarle Corporation
    Inventor: Samuel A. Sangokoya
  • Patent number: 6054405
    Abstract: A catalyst composition for the polymerization of olefins is provided, which comprises the reaction product of a fulvene, a complex of an atom selected from Groups 3-14 and the Lanthanides, and an activating cocatalyst.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: April 25, 2000
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Timothy Todd Wenzel