Aluminum Compound Patents (Class 502/132)
  • Patent number: 7256150
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Gp 2 metal being selectively sorbed on a carrier to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: August 14, 2007
    Assignee: Borealis Polymers Oy
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 7241903
    Abstract: A metallocene compound of formula (I): wherein M is zirconium, titanium and hafnium; X is a hydrogen atom, a halogen atom or a hydrocarbon radical; R1 is a linear C1-C20-alkyl radical; R2 is a hydrogen atom or hydrocarbon R3, R4, R5, R6, R7, and R8, are hydrogen atoms or hydrocarbon radicals, A is a sulphur (S) atom or an oxygen (O) atom; Q is a radical of formula (II), (III) or (IV) being bonded to the indenyl at the position indicated by the symbol *; (II), (III), (IV) wherein T1 is a sulphur atom, an oxygen (O) atom or a NR; R9, R10 and R11 are hydrogen atoms or hydrocarbon radicals; T2, T3, T4, T5, and T6 are carbon atoms (C) or nitrogen atoms (N); m1, m2, m3, m4 and m5 are 0 or 1; R12, R13, R14, R15 and R16 are hydrogen atoms or hydrocarbon radicals with the provisos that at least one of R12, R13, R14, R15 and R16 is different from hydrogen atoms, and that no more than two of T2, T3, T4, T5 and T6 are nitrogen atoms.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: July 10, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Cornelia Fritze, Luigi Resconi, Jörg Schulte, Simona Guidotti
  • Patent number: 7238757
    Abstract: Disclosed are compounds of formula (I) which compounds are useful as cocatalysts in olefinic polymerisation reactions, e.g., as Ziegler-Natta catalysts.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: July 3, 2007
    Assignee: Merck Patent Gesellschaft
    Inventors: Katrin Koehler, Eike Poetsch, Jens Eichhorn, Herbert Schumann, Birgit Wassermann, Sebastiain Dechert, Markus Hummert, Stefan Schutte, Walter Kaminsky, Andrea Eisenhardt, Manfred Arnold
  • Patent number: 7220696
    Abstract: Disclosed is a catalyst for olefin polymerization comprising [I] a solid titanium catalyst component [S] comprising titanium, magnesium, halogen and an electron donor (b), which is obtained by bringing a solid adduct consisting of a magnesium compound and an electron donor (a) into contact with an electron donor (b) and a liquid titanium compound by at least one method selected from (A) a method of contacting the materials in a suspended state in the coexistence of an inert hydrocarbon solvent and (B) a method of contacting the material plural times individed portions and [II] an organometallic compound catalyst component [M] containing a metal selected from the groups I to III in the periodic table.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: May 22, 2007
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Masao Nagano, Masaaki Ohgizawa, Toshiyuki Tsutsui
  • Patent number: 7214744
    Abstract: A catalyst system comprising (i) a bulky ligand catalyst compound; and (ii) a novel borate activator is active for olefin polymerization. The novel borate contains at least one chelating (divalent) ligand and contains at least one fluorine atom. Preferred borate activators are provided as anilinium or carbonium salts. Highly preferred borate salts contain two perfluorinated alkoxy chelating ligands. The catalyst system may be used to produce polyethylene for “end use” applications such as polyethylene film and molded polyethylene goods.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: May 8, 2007
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Isam Jaber
  • Patent number: 7214638
    Abstract: Catalyst compositions that are highly tolerant of catalyst poisons for use in addition polymerizations comprising a catalytic derivative of a Group 4 metal complex, a cocatalyst, and a Group 13 metal amide compound.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: May 8, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: Duane R. Romer, James C. Stevens, Robert K. Rosen, Francis J. Timmers, Hendrik E. Tuinstra
  • Patent number: 7211537
    Abstract: A modified aluminum oxy compound (A) obtained by reacting an aluminum oxy compound (a), water (b) and a compound having a hydroxyl group (c); a polymerization catalyst component comprising the modified aluminum oxy compound; a polymerization catalyst obtained by contacting said modified aluminum oxy compound (A), a transition metal compound (B) and optionally an organoaluminum compound (C) and a specified boron compound; and a process for producing an olefin polymer or an alkenyl aromatic hydrocarbon polymer with the polymerization catalyst.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: May 1, 2007
    Assignee: Sumitomo Chemical Company Limited
    Inventors: Masayuki Fujita, Tatsuya Miyatake, Yoshinori Seki, Nobuo Oi
  • Patent number: 7211536
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers which contain three or more carbon atoms or which are substituted vinyl compounds, specifically alpha olefins, particularly the polymerization of propylene to produce syndiotactic or isotactic polypropylene. The supported metallocene catalyst comprises a stereospecific metallocene catalyst and a co-catalyst component comprising at least one of an alkyl alumoxane and an alkylaluminum compound. Both the metallocene catalyst and the co-catalyst are supported on a particulate silica support comprising silica particles having an average particle size of 5–40 microns and an average effective pore size of 50–200 angstroms. The silica support further has a differential pore size distribution of a pore volume of at least 0.01 cm3/g. within a range having a maximum pore width of no more than 300 angstroms.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 1, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Margarito Lopez, Edwar Shamshoum, Donald Gordon Campbell, Jr.
  • Patent number: 7211534
    Abstract: A magnesium halide support material for a polyolefin catalysts is disclosed. The magnesium halide of present invention is prepared by reacting magnesium with an alkylhalide in a non-polar hydrocarbon solvent. Preparation of the support does not require the use electron donating solvents and therefore does not require extensive washing to remove the solvent from the support.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: May 1, 2007
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Honglan Lu, Gapgoung Kong, Zhongyang Liu, Chih-Jian Chen
  • Patent number: 7199201
    Abstract: The neodymium catalyst system prepared by the technique of this invention can be used in the polymerization of isoprene monomer into synthetic polyisoprene rubber having an extremely high cis-microstructure content and high stereo regularity. This polyisoprene rubber will crystallize under strain and can be compounded into rubber formulations in a manner similar to natural rubber. This invention more specifically discloses a process for the synthesis of polyisoprene rubber which comprises polymerizing isoprene monomer in the presence of a neodymium catalyst system, wherein the neodymium catalyst system is prepared by a process that comprises (1) reacting a neodymium carboxylate with an organoaluminum compound in an organic solvent to produce neodymium-aluminum catalyst component, and (2) subsequently reacting the neodymium-aluminum catalyst component with an elemental halogen to produce the neodymium catalyst system, wherein the neodymium catalyst system is void of nickel-containing compounds.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: April 3, 2007
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu, Aaron Michael Ryba, Jin-Ping Zhou, Chad Aaron Jasiunas, Paul Harry Sandstrom
  • Patent number: 7199212
    Abstract: A novel polymerization catalyst for polyesters, which does not contain any germanium or antimony compound as the main component; polyesters produced with the catalyst; and a process for producing polyesters. This polymerization catalyst is excellent in catalytic activity, little causes thermal degradation of polyesters in melt molding even when neither deactivated nor removed, and can give thermally stable polyesters which little generate foreign matter and are excellent in transparency and color. The polymerization catalyst is one which contains as the first metal-containing component at least one member selected from the group consisting of aluminum and aluminum compounds and which gives polyethylene terephthalate (PET) having a thermal stability parameter (TS) satisfying the relationship: (1) TS<0.3.
    Type: Grant
    Filed: December 25, 2000
    Date of Patent: April 3, 2007
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Kenichi Tsukamoto, Shoichi Gyobu, Maki Sato
  • Patent number: 7193022
    Abstract: Disclosed is a method of polymerization and copolymerization of ethylene, which is carried out in the presence of (a) a solid titanium complex catalyst prepared by the steps of (i) preparing a magnesium solution by contacting halogenated magnesium compounds with alcohol, (ii) reacting the magnesium solution with ester compound having at least one hydroxyl group and silicon compound having alkoxy group, (iii) preparing a solid titanium catalyst component by reacting mixture of titanium compound and haloalkane compound; and (iv) producing solid titanium complex catalyst by reacting the solid titanium catalyst component with mixture of aluminum compound and haloalkane compound, or with haloalkane; and (b) organometallic compounds in Group II or III of the Periodic Table.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: March 20, 2007
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Ho-Sik Chang
  • Patent number: 7176266
    Abstract: A catalyst for polymerizing vinyl compounds or ?-olefins according to the present invention includes (A) a transition metal complex, (B) a clay, clay mineral or ion-exchangeable layered compound, modified with at least one organic compound selected from the group consisting of quaternary ammonium salts, amine compounds, and adducts of amine and Brönsted acid, and (C) at least one aluminoxy compound. The transition metal in (A) is selected from Groups 4 to 10 or Groups 8 to 10 of the Periodic Table for catalysts for vinyl compounds or ?-olefins, respectively. The aluminoxy compound is represented by the general Formula wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and z is an integer of 2 or more for catalyst for vinyl compounds and 2 to 4 for catalysts for ?-olefins.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: February 13, 2007
    Assignee: Idemitsu Kosan Co. Ltd.
    Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
  • Patent number: 7172988
    Abstract: A catalyst component for ethylene polymerization, including an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difunctional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound, wherein the difunctional compound is a mono-, di- or multi-halogenated alcohol or phenol having from 2 to 20 carbon atoms; or a mono-, di- or multi-halogenated acyl halide having from 2 to 20 carbon atoms. Also, a process for preparing the catalyst component and use thereof.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: February 6, 2007
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Patent number: 7122498
    Abstract: Metallocenes and catalyst systems for olefin polymerization derived therefrom. The metallocenes may be represented by the formula: wherein M1 preferably is zirconium or hafnium; and R12 is different from hydrogen.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: October 17, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Hart, William T. Haygood, Terry J. Burkhardt, Robert T. Li
  • Patent number: 7119043
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra high molecular weight ethylene homopolymers and ultra high molecular weight ethylene copolymers. Catalyst systems used are selected from the group consisting of inorganic oxide supported titanium-containing catalyst systems, inorganic oxide supported organo-zirconium catalyst systems and inorganic oxide supported organo-hafnium catalyst systems.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: October 10, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Joel L. Martin, Joseph J. Bergmeister, Eric T. Hsieh, Max P. McDaniel, Elizabeth A. Benham, Steven J. Secora
  • Patent number: 7115539
    Abstract: A metal compound obtained by a process comprising the step of contacting, in a specific ratio, a compound represented by the formula M1L1r, a compound represented by the formula R1s?1TH, and a compound represented by the formula R24?nJ(OH)n; a catalyst component for addition polymerization comprising the metal compound; a catalyst for addition polymerization using the catalyst component; and a process for producing an addition polymer using the catalyst.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: October 3, 2006
    Assignee: Sumitomo Chemical Company Limited
    Inventors: Kazuo Takaoki, Hideki Oshima, Makoto Satoh
  • Patent number: 7109142
    Abstract: This invention concerns a solid catalyst component for olefin polymerization and the process for obtaining the catalyst component having titanium, halogen, magnesium, an organic acid ester and a relative surface area of 0.1–15 m2/g as measured according to a BET method and wherein the organic acid ester is contained in the solid catalyst component in an amount of 11% by weight or more.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: September 19, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shin-ichi Kumamoto, Makoto Satoh, Hideki Ohshima
  • Patent number: 7109277
    Abstract: A process to produce a polymer is provided. The process comprising contacting a treated solid oxide compound, an organometal compound, and an organoaluminum compound in the presence of an alpha olefin under polymerization conditions to produce the polymer.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: September 19, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Gil R. Hawley, Max P. McDaniel, Christopher E. Wittner, Michael D. Jensen, Joel L. Martin, Elizabeth A. Benham, Anthony P. Eaton, Kathy S. Collins
  • Patent number: 7105615
    Abstract: The invention concerns a cationic catalyst system comprising an initiator (I), a catalyst (K) and a cocatalyst (CoK). The cocatalyst (CoK) is an agent releasing the active polymerizing center of its counter anion generated by the reaction between the catalyst (K) and the initiator (I). Said cocatalyst is characterized by the existence of a double bond electron-depleted by an electroattractive group. It is selected, for example, from the group consisting of the following complexing agents including o-chloranyl (3,4,5,6-tetrachloro-1,2-benzoquinone), p-chloranyl (2,3,5,6-tetrachloro-1,4-benzoquinone), nitrobenzene, trinitrobenzene, or tetracyanoethylene.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: September 12, 2006
    Assignee: Arkema France
    Inventors: Reinhard Linemann, Guillaume Le
  • Patent number: 7094724
    Abstract: Catalyst solid for olefin polymerization comprising A) at least one calcined hydrotalcite and B) at least one organic transition metal compound, and also a catalyst system comprising the catalyst solid, the use of the catalyst solid for the polymerization or copolymerization of olefins and a process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of the catalyst solid.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: August 22, 2006
    Assignee: Bassell Polyelefine GmbH
    Inventors: Volker Fraaije, Markus Oberhoff, Nicola (Hüsgen) Paczkowski, Markus Schopf, Wolfgang Bidell, Joachim Wulff-Döring, Shahram Mihan
  • Patent number: 7091150
    Abstract: The neodymium catalyst system prepared by the technique of this invention can be used in the polymerization of isoprene monomer into synthetic polyisoprene rubber having an extremely high cis-microstructure content and high stereo regularity. This polyisoprene rubber will crystallize under strain and can be compounded into rubber formulations in a manner similar to natural rubber. This invention more specifically discloses a process for preparing a neodymium catalyst system which comprises (1) reacting a neodymium carboxylate with an organoaluminum compound in an organic solvent to produce neodymium-aluminum catalyst component, and (2) subsequently reacting the neodymium-aluminum catalyst component with an elemental halogen to produce the neodymium catalyst system. The present invention further discloses a synthetic polyisoprene rubber which is comprised of repeat units that are derived from isoprene, wherein the synthetic polyisoprene rubber has a cis-microstructure content which is within the range of 98.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: August 15, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Adel Farhan Halasa, Wen-Liang Hsu, Aaron Michael Ryba, Jin-Ping Zhou, Chad Aaron Jasiunas, Paul Harry Sandstrom
  • Patent number: 7091289
    Abstract: The present invention provides a catalyst component used for homopolymerization or co-polymerization of ethylene, comprising at least one suitable electron donor compound supported on a composition containing magnesium and titanium, wherein the electron donor compound is selected from the group consisting of aliphatic ethers, alicyclic ethers, aromatic ethers, aliphatic ketones and alicyclic ketones, and wherein the composition containing magnesium and titanium is prepared by dissolving a magnesium compound into a solvent system to form a homogeneous solution and then contacting the solution with a titanium compound in the presence of a precipitation aid to precipitate the composition. The present invention also relates to a method for the preparation of said catalyst component and a catalyst comprising thereof, and to use of the catalyst in homopolymerization of ethylene or co-polymerization of ethylene with at least one C3–C8 ?-olefin.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 15, 2006
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Zhiwu Wang, Zhong Tan, Tianyi Li, Xingbo Li, Kai Zhang, Peng Kou, Haixiang Cui, Zhengyang Guo, Liang Pan
  • Patent number: 7084217
    Abstract: An improved supported Ziegler-Natta catalyst especially useful for olefin polymerisation, the catalyst including a carrier, an organomagnesium compound, a borate compound, and one transition metal compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: B.P. Chemicals Ltd.
    Inventor: Stephen John Dossett
  • Patent number: 7084221
    Abstract: A modified aluminoxane is disclosed. Aluminoxane compounds are modified with glycol ethers or polyethers. The modified aluminoxanes are effective activators for single-site catalysts. Catalyst activated with the modified aluminoxane produces polyolefin with increased melt flow index, broadened molecular weight distribution, and improved thermal processability.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: August 1, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Shao-Hua Guo, Shaotian Wang
  • Patent number: 7056998
    Abstract: The present invention relates to a catalytic system usable for the preparation of polybutadienes by polymerisation, to a process for the preparation of said catalytic system and to a process for the preparation of polybutadienes by means of this catalytic system. A catalytic system according to the invention is based on at least: a conjugated diene monomer, an organic phosphoric acid salt of one or more rare earth metals, said salt being in suspension in at least one inert, saturated and aliphatic or alicyclic hydrocarbon solvent, an alkylating agent consisting of an alkylaluminium of formula AlR3 or HAlR2, the “alkylating agent:rare earth salt” molar ratio being greater than 5, and a halogen donor which belongs to the family of alkylaluminium halides with the exception of alkylaluminium sesquihalides, and, according to the invention, said catalytic system comprises said rare earth metal(s) in a concentration equal to or greater than 0.005 mol/l.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: June 6, 2006
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Philippe Laubry, Fanny Barbotin
  • Patent number: 7022793
    Abstract: A process for the preparation of heterophasic elastomeric polymer comprising the step of polymerizing ethylene, an alpha-olefin CH2?CHL, where L is an alkyl, cycloalkyl or aryl radical with 1–10 carbon atoms and a non-conjugated diene in the presence of a catalyst system comprising a transition metal catalyst component supported on a porous alpha-olefin polymer, characterized in that at least part of the diene is impregnated on the porous alpha-olefin polymer.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: April 4, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Maurizio Galimberti, Angelo Ferraro, Giovanni Baruzzi, Ofelia Fusco
  • Patent number: 7022473
    Abstract: Substrates for producing a DNA library are produced by immobilizing DNA onto a suitable substrate having excellent thermal conductivity. A surface of the substrate is chemically modified with a radical having a terminal polar radical. DNA can be amplified by the PCR method in a short period of time using substrates of the present invention onto which DNA is immobilized.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: April 4, 2006
    Assignee: Toyo Kohan Co., Ltd
    Inventors: Michifumi Tanga, Kojiro Takahashi
  • Patent number: 7015169
    Abstract: The present invention relates to catalyst systems of the Ziegler-Natta type, to a process for preparing them, to their use for the polymerization of olefins and to ethylene copolymers which can be prepared using this catalyst system.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: March 21, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Klaus Föttinger, Martin Schneider, Rainer Karer
  • Patent number: 7008898
    Abstract: The invention relates to a method for producing a poly-1-olefin by polymerisation of a 1-olefin of the formula R4CH?CH2, in which R4 is hydrogen or an alkyl radical having from 1 to 10 carbon atoms, in suspension, in solution or in the gas phase, at a temperature of from 20 to 200° C. and a pressure of from 0.5 to 50 bar, in the presence of a catalyst which consists of the product of the reaction of a magnesium alkoxide with a transition-metal compound (component a) and an organometallic compound (component b), whose component a has been produced by reacting a transition-metal compound of titanium, zirconium, vanadium or chromium with a gelatinous dispersion of the magnesium alkoxide in an inert hydrocarbon.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: March 7, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Frank Alt, Paul Schöneborn, Ludwig Böhm
  • Patent number: 7005399
    Abstract: An olefin polymerization catalyst comprising: (A) a solid catalyst component prepared by contacting (a) a dialkoxyl magnesium, (b) a tetra-valent titanium halide, and (c) a phthalic acid diester in (d) an aromatic hydrocarbon having a boiling point in the range of 50 to 150° C., (B) an organoaluminum compound of the formula R1pAlQ3?p, one or more compounds selected from the group consisting of (C) one or more halogen-containing organosilicon compounds selected from (C1) a halogen-containing organosilicon compound of the formula R21Si(OR3)4?l?mXm and (C2) a halogen-containing organosilicon compound of the formula R4qSi(OR5)4?q, and (D) an organosilicon compound of the formula R6sSi(OR7)4?s. The catalyst exhibits excellent activity to hydrogen and the same catalytic activity and yield performance as conventional catalysts, and possesses the capability of producing polymers with stereoregularity equivalent to conventional catalysts.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: February 28, 2006
    Assignee: Toho Titanium Co., Ltd.
    Inventor: Motoki Hosaka
  • Patent number: 6984603
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted fluorided silica-alumina.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: January 10, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 6972270
    Abstract: The present invention relates to the use of at least one acid and at least one base and/or at least one reductant and at least one oxidant that when used with a polymerization catalyst in a polymerization process results in the controllable generation of a catalyst inhibitor that renders the polymerization catalyst substantially or completely inactive.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: December 6, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Dick A. Nagaki, Simon Mawson, David James Schreck, Thomas H. Peterson
  • Patent number: 6936667
    Abstract: A process to produce a first catalyst composition is provided. The process comprises contacting at least one first organometal compound and at least one activator to produce the first catalyst composition. The activator is selected from the group consisting of aluminoxanes, fluoro-organo borates, and treated solid oxide components in combination with at least one organoaluminum compound. In another embodiment of this invention, a process to produce a second catalyst composition for producing bimodal polymers is provided. The process comprises contacting at least one first organometal compound, at least one activator, and at least one second organometal compound to produce the second catalyst composition. The first and second catalyst compositions are also provided as well as polymerization processes using these compositions to produce polymers.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: August 30, 2005
    Assignee: Phillips Petroleum Company
    Inventors: Michael D. Jensen, Max P. McDaniel, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Gil R. Hawley, Tony R. Crain, Martha J. Tanner
  • Patent number: 6933258
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition which comprises a polymerization catalyst and at least one gelling agent. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: August 23, 2005
    Assignee: Univation Technologies, L.L.C.
    Inventors: Agapios Kyriacos Agapiou, Chi-I Kuo, David M. Glowczwski, Steven K. Ackerman
  • Patent number: 6927261
    Abstract: The present invention is directed to a novel one-step method for forming a supported catalyst complex of high activity by substantially simultaneously contacting a bidentate or tridentate ligand forming compound, a transition metal compound and a Lewis acid support-activator agglomerate. The catalyst can be formed prior to polymerization of olefins or within the polymerization reaction zone.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: August 9, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Keng-Yu Shih
  • Patent number: 6924248
    Abstract: Catalyst system for olefin polymerization comprising A) at least one calcined hydrotalcite, B) at least one organic transition metal compound, C) optionally one or more cation-forming compounds and D) at least one organic magnesium compound.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: August 2, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Markus Schopf, Joachim Wulff-Döring, Wolfgang Bidell, Volker Fraaije, Nicola Paczkowski, Markus Oberhoff
  • Patent number: 6921800
    Abstract: A modified aluminum oxy compound (A) obtained by reacting an aluminum oxy compound (a), water (b) and a compound having a hydroxyl group (c); a polymerization catalyst component comprising the modified aluminum oxy compound; a polymerization catalyst obtained by contacting said modified aluminum oxy compound (A), a transition metal compound (B) and optionally an organoaluminum compound (C) and a specified boron compound; and a process for producing an olefin polymer or an alkenyl aromatic hydrocarbon polymer with the polymerization catalyst.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: July 26, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masayuki Fujita, Masaaki Nabika, Tatsuya Miyatake, Tsuyoshi Watanabe, Yoshinori Seki, Nobuo Oi
  • Patent number: 6916895
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with halogenating/titanating agents, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 12, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6908876
    Abstract: The present invention relates to a supported catalyst system for olefin polymerization which comprises at least one metallocene component and a support of an inorganic oxide of silica, aluminum or a polymer containing hydroxyl groups. The support is modified with an organogermane and/or organotin compound. The inventive catalyst system produces minimal reactor fouling, has excellent productivity and good hydrogen responsiveness. The present invention also relates to a process for preparing the catalyst system and to the slurry/suspension or gas-phase polymerization of olefins using the catalytic system, optionally with a small amount of aluminoxane cocatalyst.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: June 21, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Muhammad Atiqullah, Akhlaq Moman, Muhammad Naseem Akhtar, Atieh Abu-Raqabah, Syriac J. Palackal, Muhammad A. Al-Saleh, Faizur Rahman, Muhammad Ibrahim, Javaid H. Khan
  • Patent number: 6903041
    Abstract: There are provided; (i) a solid catalyst component obtained by contacting a trivalent titanium atom-containing solid catalyst component precursor (C) with a halogeno compound (A) of the 13 or 14 group of elements in the periodic table of the elements and an electron donor (B), or a solid catalyst component obtained by contacting an intermediate product with a titanium-halogen bond-carrying compound (D), the intermediate product being obtained by contacting the solid catalyst component precursor (C) with a halogeno compound (A?) of the 14 group of elements in the periodic table of the elements and the electron donor (B), or a solid catalyst component comprising a magnesium atom, a titanium atom, a halogen atom and an electron donor and having a relative surface area of not more than 30 m2/g, the catalyst component being superior in a particle form, and (ii) a catalyst comprising the solid catalyst component and an organoaluminum compound, the catalyst being high in polymerization activity.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: June 7, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shin-ichi Kumamoto, Makoto Satoh, Hideki Ohshima
  • Patent number: 6900152
    Abstract: A catalyst used for trimerization of ethylene into 1-hexene is descrobed, which comprises (i) a specific organometallic complex having a neutral multidentate ligand having a tripod structure, (ii) an alkylaluminoxane, and an optional ingredient selected from: (iii) a halogenated inorganic compound, (iv) a specific alkyl group-containing compound, (v) a combination of a halogenated inorganic compound with a specific alkyl group-containing compound, (vi) an amine compound and/or an amide compound, and (vii) a combination of an amine compound and/or an amide compound with a specific alkyl group-containing compound.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 31, 2005
    Assignee: Tosoh Corporation
    Inventors: Toru Yoshida, Toshihide Yamamoto, Hisanori Okada, Hideyuki Murakita
  • Patent number: 6887817
    Abstract: An olefin polymerization catalyst is described which includes: (A) a solid catalyst component being prepared by copulverizing a magnesium compound, an aluminum compound, an electron donor and a titanium compound, and (B) an organoaluminum compound. The present invention is also directed to a process for preparing polyolefins using the aforesaid catalyst system to polymerize olefins.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: May 3, 2005
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Bing Lu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6887818
    Abstract: A supported titanium catalyst system comprising a titanium catalyst bound via at least one heteroatom, a functionalized support, said heteroatom being connected to said support via an organic group.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: May 3, 2005
    Assignee: Borealis Technology Oy
    Inventors: Klaus Jens, Arild Follestad, Siw Bodil Fredriksen, Richard Blom, Ivar Martin Dahl
  • Patent number: 6887956
    Abstract: A catalyst system suitable for use in the production of high cis polybutadiene is disclosed. The catalyst system includes a cobalt salt of the formulaCoAx?, where A is a monovalent or divalent anion and x is 1 or 2; an alkyl aluminum chloride compound of the structure R2AlCl, where R is an alkyl group containing 2-8 carbon atoms; a trialkyl aluminum compound of the formula R3Al, where R is an alkyl group containing 2-8 carbon atoms; and a catalytic amount of water.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 3, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: Adriaan A. van der Huizen, Jean-Marc Potlet, Alain Sabatier, Patrick Le Roy
  • Patent number: 6878659
    Abstract: A solid catalyst component for olefin polymerization characterized by being formed from (a) a magnesium compound, (b) titanium tetrachloride, (c) a phthalic diester and a derivative thereof, and either (d1) a hydroxylated hydrocarbon compound (phenol, etc.) represented by a specific formula or (d2) a mercapto-containing hydrocarbon compound (thiophenol, etc.) represented by a specific formula. With a catalyst obtained from this solid catalyst component, an olefin polymer can be obtained in extremely high yield. In particular, a propylene polymer which retains high stereoregularity can be obtained in extremely high yield.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: April 12, 2005
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Kunihiko Tashino, Isa Nishiyama, Takuma Yoshida, Yukihiro Suzuki, Hayashi Ogawa, Maki Sato
  • Patent number: 6875719
    Abstract: A catalyst composition for preparing olefin polymers. The catalyst composition includes a metallocene compound and an activating cocatalyst. In the metallocene compound, two cyclopentadienyl groups are bridged by X (carbon) in a ring structure and the bridge X forms a three-, four-, or five-member ring structure. The bite angle ? formed by the two cyclopentadienyl rings and X is equal to or greater than 100 degrees. The obtained olefin polymer has high cycloolefin conversion and a high glass transition temperature. In addition, the catalyst composition can still maintain relatively high activity at high temperature reaction conditions. The metallocene compound is represented by formula (I) below.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: April 5, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Ming-Yuan Wu, Tung-Ying Hsieh, Yuh-Yuan Wei, Chao-Ying Yu
  • Patent number: 6869584
    Abstract: The present invention relates to a method of producing particles having a particle size of less than 100 nm and surface areas of at least 20 m2/g where the particles are free from agglomeration. The method involves synthesizing the particles within an emulsion having a 1-40% water content to form reverse micelles. In particular, the particles formed are metal oxide particles. The particles can be used to oxidize hydrocarbons, particularly methane.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: March 22, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Andrey Zarur
  • Patent number: 6867160
    Abstract: By controlling the hold up times and temperatures for mixing the components of aluminum, titanium and magnesium based catalyst for solution polymerization it is possible to prepare a catalyst having a high activity, which prepares high molecular weight polyolefins. Generally, catalyst loses activity and produces lower molecular weight polymer at higher temperatures. The catalyst of the present invention permits comparable polymers to be produced at higher reaction temperatures.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: March 15, 2005
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Jesus Vela Estrada, Vaclav George Zboril
  • Patent number: 6864207
    Abstract: A process for making a polyolefin catalyst component, catalyst and polymer resin is disclosed. Controlling the viscosity of a catalyst synthesis solution with the addition of aluminum alkyl alters the precipitation of the catalyst component from a catalyst synthesis solution. The average particle size of the catalyst component increases with an increased concentration of aluminum alkyl in the synthesis solution. The catalyst component can be produced by a process comprising contacting a magnesium alkyl compound with an alcohol and an aluminum alkyl to form a magnesium dialkoxide. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: March 8, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray