Aluminum Compound Patents (Class 502/132)
  • Patent number: 6846885
    Abstract: The present invention provides a novel process for the preparation of isoolefin copolymers in the presence of zirconium halides or hafnium halides or mixtures thereof and organic nitro compounds, especially for the preparation of butyl rubbers, as well as isoolefin copolymers composed of isobutene, isoprene and, optionally, further monomers.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: January 25, 2005
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Langstein, Martin Bohnenpoll
  • Patent number: 6846887
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: January 25, 2005
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 6841506
    Abstract: A modified aluminoxane is disclosed. Aluminoxane compounds are modified with glycol ethers or polyethers. The modified aluminoxanes are effective activators for single-site catalysts. Catalyst activated with the modified aluminoxane produces polyolefin with increased melt flow index, broadened molecular weight distribution, and improved thermal processability.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: January 11, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shao-Hua Guo, Shaotian Wang
  • Patent number: 6835788
    Abstract: The catalyst for polymerizing vinyl compounds according to the present invention comprises (A) a complex of Group 4 to 10 transition metal of the Periodic Table, (B) a clay, clay mineral or ion-exchangeable layered compound, and (C) at least one aluminoxy compound represented by Formula (1): wherein a plurality of R groups are each independently C1-10 hydrocarbon group and at least one of the R groups is a hydrocarbon group having 2 or more carbon atoms; and x is an integer of 2 or more. By using the Group 4 to 10 transition metal complex and the clay, clay mineral or ion-exchangeable layered compound in combination with the specific aluminoxy compound, vinyl polymers are produced at a high efficiency.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: December 28, 2004
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
  • Publication number: 20040259722
    Abstract: A multi-catalyst system is disclosed. The catalyst system comprises catalyst A and catalyst B. Catalyst A comprises a supported bridged indenoindolyl transition metal complex. Catalyst B comprises a supported non-bridged indenoindolyl transition metal complex. The catalyst system of the invention produces polyolefins which have bi- or multi-modal molecular weight distribution.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventor: Shaotian Wang
  • Patent number: 6828269
    Abstract: A catalytic composition is obtained by mixing at least one chromium compound with at least one aryloxy compound of an element M selected from the group formed by magnesium, calcium, strontium and barium, with general formula M(RO)2-nXn, where RO is an aryloxy radical containing 6 to 80 carbon atoms, X is a halogen or a hydrocarbyl radical containing 1 to 30 carbon atoms and n is a whole number that can take values of 0 to 2, and with at least one aluminum compound selected from hydrocarbylaluminum compounds (tris(hydrocarbyl)-aluminum, chlorinated or brominated hydrocarbylaluminum compounds) and aluminoxanes. The catalytic composition can be used in an ethylene oligomerization process, in particular to produce 1-hexene.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: December 7, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Dominique Commereuc, Sébastien Drochon, Lucien Saussine
  • Patent number: 6828268
    Abstract: A catalyst system composition comprising a chromium compound supported on a silica-titania support, wherein said catalyst system has been reduced with carbon monoxide, and a cocatalyst selected from the group consisting of i) alkyl lithium compounds, ii) dialkyl aluminum alkoxides in combination with at least one metal alkyl selected from the group consisting of alkyl zinc compounds, alkyl aluminum compounds, alkyl boron compounds, and mixtures thereof and iii) mixtures thereof can be used to polymerize olefins to produce a low density polymer with a decreased melt index and/or high load melt index. This catalyst system also can be used with a Ziegler-Natta catalyst system to polymerize olefins. Polymerization processes using these catalyst system compositions are also provided.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: December 7, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Joseph S. Shveima, Elizabeth A. Benham, Rolf L. Geerts, James L. Smith
  • Patent number: 6825294
    Abstract: Provided are catalysts for styrene polymerization capable of efficiently and inexpensively producing styrenic polymers having a syndiotactic structure; and a method for producing styrenic polymers. The catalysts comprise (A) a transition metal compound, (B) an oxygen-containing compound and/or a compound capable of reacting with a transition metal compound to form an ionic complex, (C) a specific metal compound, preferably a specific organoaluminium compound of a general formula: ((R1)3—CO)n-Al—(R2)3−n wherein R1 represents an aliphatic hydrocarbon group having from 1 to 30 carbon atoms, an aromatic hydrocarbon group having from 6 to 30 carbon atoms or the like; R2 represents a hydrocarbon group; n is 1 or 2, and optionally (D) an alkylating agent. In the method for producing styrenic polymers, used is the catalyst.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: November 30, 2004
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Nobuhiro Yabunouchi, Norio Tomotsu
  • Patent number: 6818584
    Abstract: Especially homogeneous supported Ziegler-Natta catalysts may be prepared in a simple one reaction vessel process from a magnesium hydrocarbyloxy starting material which is soluble in a hydrocarbon solvent. The process comprises: (I) reacting a magnesium hydrocarbyloxy compound with a chlorine-containing compound in a non-polar hydrocarbon solvent in which said magnesium hydrocarbyloxy compound is soluble whereby to produce a solution (A); and then either: (II) contacting the solution (A) with a chlorine containing tetravalent titanium compound to produce a solution (B); (III) impregnating solution (B) into a porous particulate support; or (II) impregnating solution (A) into a porous particulate support; and (III) contacting the solid support with a chlorine containing tetravalent titanium compound; or (II) impregnating solution (A) into a porous particulate support pretreated with a chlorine containing tetravalent titanium compound.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: November 16, 2004
    Assignee: Borealis Technology OY
    Inventors: Thomas Garoff, Solveig Johansson, Paivi Waldvogel
  • Publication number: 20040224838
    Abstract: A modified aluminum oxy compound (A) obtained by reacting an aluminum oxy compound (a), water (b) and a compound having a hydroxyl group (c); a polymerization catalyst component comprising the modified aluminum oxy compound; a polymerization catalyst obtained by contacting said modified aluminum oxy compound (A), a transition metal compound (B) and optionally an organoaluminum compound (C) and a specified boron compound; and a process for producing an olefin polymer or an alkenyl aromatic hydrocarbon polymer with the polymerization catalyst.
    Type: Application
    Filed: December 15, 2003
    Publication date: November 11, 2004
    Inventors: Masayuki Fujita, Masaaki Nabika, Tatsuya Miyatake, Tsuyoshi Watanabe, Yoshinori Seki, Nobuo Oi
  • Patent number: 6809056
    Abstract: The present invention relates to a process for manufacturing polyolefin polymerization catalysts and provides a process for manufacturing polyolefin polymerization catalysts, wherein after manufacturing a homogeneous solution of magnesium compounds using magnesium compounds and alcohols along with hydrocarbon solvents and contacting with titanium compounds by adding organic aluminum, the mixture is treated again with organic aluminum or alcohols having 5 or less carbon atoms, then contacted with titanium compounds. Polyolefin polymerization catalysts prepared by the preparation process of the present invention have superior polyolefin polymerization activities, they prepare polymers having high Melt Flow Ratios, and produce a lesser amount of fine particle polymers.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: October 26, 2004
    Assignee: LG Chemical Ltd
    Inventors: Hong-Ki Choi, Joo-Kee Yoon, Churl-Young Park, Jae-Seung Oh
  • Publication number: 20040204311
    Abstract: A modified aluminoxane is disclosed. Aluminoxane compounds are modified with glycol ethers or polyethers. The modified aluminoxanes are effective activators for single-site catalysts. Catalyst activated with the modified aluminoxane produces polyolefin with increased melt flow index, broadened molecular weight distribution, and improved thermal processability.
    Type: Application
    Filed: March 5, 2004
    Publication date: October 14, 2004
    Applicant: Equistar Chemicals, LP
    Inventors: Shao-Hua Guo, Shaotian Wang
  • Patent number: 6800580
    Abstract: The present invention relates to a solid complex titanium catalyst for homo-polymerization and co-polymerization of &agr;-olefin, obtained by (i) producing a solution of a magnesium compound by dissolving a magnesium compound and a compound of IIIA Group of the Periodic Table in a solvent mixed with cyclic ether, one or more types of alcohol, a phosphorous compound, and an organosilane, (ii) precipitating the solid particles by reacting said magnesium solution with a compound of a transition metal, a silicon compound, or the mixture thereof, and (iii) reacting said precipitated solid particles with a titanium compound and an electron donor. The catalyst of the present invention is of large particle size, narrow particle distribution, and high catalytic activity, while the polymers obtained with the use of this catalyst are of excellent stereoregularity.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: October 5, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun Byung Yang, Mie Ock Kim
  • Patent number: 6787619
    Abstract: Ethylene based polymers having high molecular weights can be obtained in high yields at temperatures of industrial interest, by carrying out the polymerization reaction in the presence of catalysts comprising silicon bridged metallocenes having a particular ligand system containing a heteroatom.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: September 7, 2004
    Assignee: Basell Polyolefine GmbH
    Inventors: Tiziano Dall'Occo, Ofelia Fusco, Maurizio Galimberti, Ilya Nifant'ev, Ilya Laishevtsev
  • Patent number: 6787616
    Abstract: A solid catalyst for olefin polymerization, which comprises a silica carrier (A) having a specific surface area of from 600 to 850 m2/g, a pore volume of from 0.1 to 0.8 ml/g and an average particle size of from 2 to 12 &mgr;m, and an organoaluminum-oxy compound (B) and a Group IVB transition metal compound (C) containing a ligand having a cyclopentadienyl skeleton, supported on the carrier (A).
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: September 7, 2004
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Toshifumi Takemori, Masashi Iida, Minoru Iijima, Yoshihisa Hayashida, Masao Kawahara
  • Patent number: 6780948
    Abstract: The neodymium catalyst system prepared by the technique of this invention can be used in the polymerization of isoprene monomer into polyisoprene rubber that is clear (transparent) and of high purity. This invention more specifically discloses a process for the synthesis of polyisoprene rubber which comprises polymerizing isoprene monomer in the presence of a neodymium catalyst system, wherein the neodymium catalyst system is prepared by (1) reacting a neodymium carboxylate with an organoaluminum compound in the presence of isoprene for a period of about 10 minutes to about 30 minutes to produce neodymium-aluminum catalyst component, and (2) subsequently reacting the neodymium-aluminum catalyst component with a dialkyl aluminum chloride for a period of at least 30 minutes to produce the neodymium catalyst system.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: August 24, 2004
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Michael Joseph Rachita, Zhengfang Xu, Tang Wong
  • Patent number: 6777371
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 17, 2004
    Inventor: Yumin Liu
  • Patent number: 6762145
    Abstract: The present invention relates to a catalyst for polymerization and co-polymerization of ethylene. More particularly, the present invention relates to a solid titanium catalyst containing magnesium, wherein said catalyst is produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with alcohol; reacting said solution with an ester compound having at least one hydroxy group, or a phosphorous compound and a silicon compound having alkoxy groups; producing a solid component with an adjusted particle morphology by adding a mixture of a titanium compound and a silicon compound; reacting the same with an aluminum compound; and then reacting the same with a titanium compound, or a titanium compound and a vanadium compound. As a result, the catalyst of the present invention has high catalytic activity with excellent catalyst morphology.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: July 13, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Weon Lee, Sang-Yull Kim
  • Patent number: 6759361
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6750302
    Abstract: A polymerization catalyst is disclosed, wherein the catalyst comprises: (a) a metallocene of Ti, Zr or Hf, (b) an organoaluminum compound, and (c) a treated solid oxide support which comprises fluorine and chromium.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: June 15, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley, Eric T. Hsieh
  • Patent number: 6740617
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: May 25, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Patent number: 6734134
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with two halogenating/titanating agents, the second stronger than the first, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: May 11, 2004
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6730755
    Abstract: A supported catalyst for olefin polymerization comprises a combination of a novel metal oxide support and an activator which is an aluminoxane or a boron activator. The novel metal oxide support of this invention is a conventional particulate metal oxide support material (such as silica or alumina) which has been treated with a halosulfonic acid. A catalyst system which contains this novel catalyst support and a transition metal catalyst is highly active for olefin polymerization (in comparison to prior art catalyst systems which use a conventional metal oxide support).
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: May 4, 2004
    Assignee: Nova Chemicals (Internation) S.A
    Inventors: Xiaoliang Gao, P. Scott Chisholm, Matthew Gerald Kowalchuk, Robert D. Donaldson
  • Publication number: 20040077489
    Abstract: A catalyst for the polymerisation of 1-olefins is disclosed, which comprises (1) a compound of Formula B wherein M is Fe[II], Fe[III], Co[I], Co[II], Co[III], Mn[I], Mn[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; X represents an atom or group covalently or ionically bonded to the transition metal M; T is the oxidation state of the transition metal M and b is the valency of the atom or group X; R1, R2, R3, R4, R5, R6 and R7 are independently selected from hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; and when any two or more of R1-R7 are hydrocarbyl, substituted hydrocarbyl, htctrohydrocarbyl or substituted heterohydrocarbyl, said two or more can be linked to form one or more cyclic substituents; and (2) a further catalyst. Copolymers made using the catalyst having specific physical properties are also disclosed.
    Type: Application
    Filed: September 23, 2003
    Publication date: April 22, 2004
    Applicant: BP Chemicals Limited
    Inventors: Brian Stephen Kimberley, Peter James Maddox, Stephen Roy Partington
  • Patent number: 6723808
    Abstract: Disclosed are polymerization catalyst activator compositions which include a carbonium cation and an aluminum containing anion. These activator compositions are prepared by combining a carbonium or trityl source and with an aluminum containing complex, preferably a perfluorophenylaluminum compound. Also disclosed are polymerization catalyst systems including the activator composition of the invention, and processes for polymerizing olefins utilizing same.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: April 20, 2004
    Assignee: Univation Technologies, LLC
    Inventor: Matthew W. Holtcamp
  • Patent number: 6720394
    Abstract: Alumoxanes having C2-C12 alkyl groups can conveniently be used in supported olefin polymerization catalyst compositions prepared by contacting, either previous to or immediately before the beginning of the olefin polymerization, a support comprising a porous carrier with (a) an organometallic compound of the general formula R1MXv−1, (b) a metallocene of the general formula (CpY)mM′X′nZo and an alumoxane of the following general formula in any order.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: April 13, 2004
    Assignee: Borealis Technology Oy
    Inventors: Kalle Kallio, Marja Mustonen, Hilkka Knuuttila
  • Patent number: 6716940
    Abstract: Catalyst system for the polymerization of olefins CH2═CHR, wherein R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, comprising the product of the reaction between (a) a solid catalyst component comprising Mg, Ti, and halogen, (b) dimethylaluminium chloride (DMAC) and (c) an alkylaluinium compound, in which the molar ratio between (b) and (c) is lower than 10. This kind of catalyst system is particularly suitable for the preparation of copolymers of ethylene with &agr;-olefins due to its high capacity for incorporating the comonomer while at the same time maintaining high yields.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: April 6, 2004
    Assignee: Basell Polyolefine GmbH
    Inventors: Tiziano Dall'Occo, Giovanni Baruzzi, Diego Brita, Mario Sacchetti
  • Patent number: 6713575
    Abstract: A process for the production of an ionic transition metal catalyst in supported form than is highly productive under gas phase olefin polymerization conditions. In the process a an aluminum alkyl is added to a suitable solvent after which a neutral metallocene compound is added to the solution under stirring in a quantity that provides for a ratio of Al to transition metal of at least 25:1. To this metallocene-aluminum alkyl solution is next added an ionic compound the anionic portion of which is a non-coordinating anion under stirring until all materials are dissolve. The ionic compound is added in a quantity that provides for a ratio of NCA to transition metal of at least 1:1. Next the support particles are added to the solution and thereafter the solution is heated to at least 40° C. and held at this elevated temperature for at least 0.5 hour. Thereafter the solvent is removed and the supported catalyst is dried under vacuum.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: March 30, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Xinmin Yang, Michael D. Awe, Natarajan Anand Muruganandam
  • Patent number: 6710005
    Abstract: A modified aluminoxane is disclosed. Aluminoxane compounds are modified with glycol ethers or polyethers. The modified aluminoxanes are effective activators for single-site catalysts. Catalyst activated with the modified aluminoxane produces polyolefin with increased melt flow index, broadened molecular weight distribution, and improved thermal processability.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: March 23, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Shao-Hua Guo, Shaotian Wang
  • Patent number: 6703340
    Abstract: A process for the production of an ionic transition metal catalyst in supported form than is highly productive under gas phase olefin polymerization conditions. In the process a an aluminum alkyl is added to a suitable solvent after which a neutral metallocene compound is added to the solution under stirring in a quantity that provides for a ratio of Al to transition metal of at least 25:1. To this metallocene-aluminum alkyl solution is next added an ionic compound the anionic portion of which is a non-coordinating anion under stirring until all materials are dissolve. The ionic compound is added in a quantity that provides for a ratio of NCA to transition metal of at least 1:1. Next the support particles are added to the solution and thereafter the solution is heated to at least 40° C. and held at this elevated temperature for at least 0.5 hour. Thereafter the solvent is removed and the supported catalyst is dried under vacuum.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: March 9, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Xinmin Yang, Michael D. Awe, Natarajan Anand Muruganandam
  • Patent number: 6699813
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) an lanthanide compound, (b) an alkylating agent, (c) a nickel-containing compound, and optionally (d) a halogen-containing compound, with the proviso that the halogen-containing compound must be present where none of the lanthanide compound, the alkylating agent, and the nickel-containing compound contain a labile halogen atom.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: March 2, 2004
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Yoichi Ozawa, Koji Masaki, David Lawson
  • Patent number: 6686306
    Abstract: A coordination catalyst system comprising at least one metallocene or constrained geometry pre-catalyst transition metal compound, (e.g., rac-ethylene bis(indenyl)zirconium dichloride), at least one non-metallocene, non-constrained geometry, bidentate transition metal compound or tridentate transition metal compound (e.g., tridentate 2,6-diacetylpyridine-bis(2,4,6-trimethylanaline)FeCl2), at least one support-activator (e.g., spray dried silica/clay agglomerate), and optionally at least one organometallic compound (e.g., triisobutyl aluminum), in controlled amounts, and methods for preparing the same. The resulting dual transition metal catalyst system is suitable for addition polymerization of ethylenically and acetylenically unsaturated monomers into polymers; for example, polymers having a broad molecular weight distribution, Mw/Mn, and good polymer morphology.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: February 3, 2004
    Assignee: W.R. Grace & Co.- Conn.
    Inventor: Keng-Yu Shih
  • Patent number: 6683018
    Abstract: A process for the preparation of a supported catalyst system, an inorganic carrier material being reacted with a metal compound of the formula M1(R1)r(R2)5(R3)t(R4)u  I in the presence of an inert solvent in a first step and, in a subsequent step, the suspension thus obtained being reacted with a metallocene complex and a compound forming metallocenium ions, in which process the solvent is not removed after the first step and the subsequent step is carried out without isolation of the pretreated carrier material thus obtained.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: January 27, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Laurent Deloux, Peter Kölle, Ulrich Moll, Ursula Rief
  • Publication number: 20040014909
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted fluorided silica-alumina.
    Type: Application
    Filed: May 23, 2003
    Publication date: January 22, 2004
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 6680276
    Abstract: The present invention relates to a composition of a carboxylate metal salt in combination with a heated polymerization catalyst to improve the flowability and operability of the catalyst. The invention also relates to methods for preparing the catalyst composition and to its use in a polymerization process.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 20, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Agapios K. Agapiou, Steven K. Ackerman, Simon X. Zhang
  • Patent number: 6667274
    Abstract: A process to produce a polymer is provided. The process comprising contacting a treated solid oxide compound, an organometal compound, and an organoaluminum compound in the presence of an alpha olefin under polymerization conditions to produce the polymer.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: December 23, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Gil R. Hawley, Max P. McDaniel, Christopher E. Wittner, Michael D. Jensen, Joel L. Martin, Elizabeth A. Benham, Anthony P. Eaton, Kathy S. Collins
  • Publication number: 20030232936
    Abstract: Polymerization of olefin monomers is conducted using at least one d- or f-block metal-containing olefin polymerization catalyst compound or complex and a novel methylaluminoxane composition (MAOC) which is a solid at 25° C. that has a total aluminum content of about 39 to 47 wt %. The MAOC is either free of aluminum as trimethylaluminum (TMA) or if TMA is present, not more than about 30 mole % of the total aluminum in the MAOC is TMA. In the solid state the MAOC contains no more than about 7500 ppm (wt/wt) of aromatic hydrocarbon. The cryoscopic number average molecular weight of MAOC as determined in benzene is at least about 1000 amu, and the MAOC has sufficient solubility in n-heptane at 25° C. to provide a solution containing 4 to as high as 7.5 wt % or more of dissolved aluminum. By vacuum distilling a solution of ordinary MAO in aromatic hydrocarbon long enough under proper conditions, MOAC is formed.
    Type: Application
    Filed: August 9, 2001
    Publication date: December 18, 2003
    Inventors: William R. Beard, Noel H. Brantley, Andrew Timothy Stoll
  • Patent number: 6664208
    Abstract: A modified aluminum oxy compound(A) obtained by reacting an aluminum oxy compound(a), water (b) and a compound having a hydroxyl group(c); a polymerization catalyst component comprising the modified aluminum oxy compound; a polymerization catalyst obtained by contacting said modified aluminum oxy compound(A), a transition metal compound(B) and optionally an organoaluminum compound(C) and a specified boron compound; and a process for producing an olefin polymer or an alkenyl aromatic hydrocarbon polymer with the polymerization catalyst.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: December 16, 2003
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masayuki Fujita, Masaaki Nabika, Tatsuya Miyatake, Tsuyoshi Watanabe, Yoshinori Seki, Nobuo Oi
  • Patent number: 6660815
    Abstract: The present invention relates to a composition of carboxylate metal salt and a flow improver useful in combination with a polymerization catalyst to improve the flowability and bulk density of the catalyst. The invention also relates to a polymerization process using the catalyst.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: December 9, 2003
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Chi-I Kuo
  • Patent number: 6657025
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: December 2, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Patent number: 6657026
    Abstract: A catalyst for the polymerization of 1-olefins which includes (1) a compound of Formula B wherein M is Fe[II], Fe[III], Co[I], Co[II], Co[III], Man[I], Man[II], Mn[III], Mn[IV], Ru[II], Ru[III] or Ru[IV]; X represents an atom or group covalently or ionically bonded to the transition metal M; T is the oxidation state of the transition metal M and b is the valency of the atom or group X; R1, R2, R3, R4, R5, R6 and R7 are independently selected form hydrogen, halogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; and when any two ore more of R1-R7 are hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl, said two or more can be linked to form one or more cyclic substituents; and (2) a further catalyst.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: December 2, 2003
    Assignee: BP Chemicals Limited
    Inventors: Brian Stephen Kimberley, Peter James Maddox, Stephen Roy Partington
  • Patent number: 6653254
    Abstract: Provided is a catalyst system for polymerization of monomers having at least one Ziegler-Natta polymerizable bond, comprising: a) a supported Ziegler-Natta transition metal catalyst having a magnesium component modified with a metallocene catalyst component, such that the ratio of magnesium component to metallocene component is within the range of about 1:1 to about 4:1, during its synthesis or production; and b) an effective co-catalyst.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: November 25, 2003
    Assignee: Fina Technology, INC
    Inventors: Edwar Shoukri Shamshoum, Hong Chen, Margarito Lopez
  • Publication number: 20030208011
    Abstract: The invention relates to an improved olefin catalyst, a method of in situ-activated catalyst preparation and a process for the polymerization of olefinic monomers via, for example, a titanium trichloride/magnesium dichloride/tetrahydrofuran reaction product catalyst precursor. The activated catalyst is prepared in situ in a polymerization reactor using an alumoxane based co-catalyst wherein the cumbersome traditional steps of catalyst activation and isolation, prior to polymerization are eliminated. An unexpected advantage of this invention is a significant increase in catalyst productivity while maintaining a relatively constant value of the bulk density of polymeric materials produced while concomitantly producing a polymeric product having a broad molecular weight distribution compared with typical alumoxane-activated metallocene catalysts.
    Type: Application
    Filed: April 17, 2003
    Publication date: November 6, 2003
    Applicant: Saudi Basic Industries Corporation
    Inventors: Atieh Abu-Raqabah, Abdul Wahab Al-Sadoun, Navin Nallaveerapan
  • Publication number: 20030207756
    Abstract: This invention provides compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted treated solid oxide compound.
    Type: Application
    Filed: May 19, 2003
    Publication date: November 6, 2003
    Inventors: Max P. McDaniel, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Publication number: 20030207757
    Abstract: A catalyst composition, suitable for polymerization of low-density and high-molecular weight polyolefin, comprising unsymmetrical unabridged metallocene compound and an aluminoxane is disclosed, wherein the metallocene compound and the aluminoxane are uniformly deposited on a porous support by using an oscillatory wave having the frequency of 20 to 500 kHz, and the activity of the catalyst composition increases when hydrogen is introduced in the polymerization of olefin.
    Type: Application
    Filed: April 29, 2003
    Publication date: November 6, 2003
    Applicant: Daelim Industries Co., Ltd.
    Inventors: Sah Mun Hong, Tae Soo Hwang, Young Jae Jun, Sung Woo Kang, Byoung Keel Sohn, Jin Sook Oh, Hyun Ki Youn
  • Patent number: 6642340
    Abstract: A process for preparing an ethylene/&agr;-olefin copolymer, which includes the steps of (A) copolymerizing ethylene and an &agr;-olefin of 3 to 20 carbon atoms by continuous vapor phase polymerization; (B) copolymerization is conducted in the presence of a prepolymerized catalyst obtained by prepolymerizing an olefin in the presence of (a) a transition metal compound, (b) an organoaluminum oxy-compound, (c) a fine particle carrier, and optionally (d) an organoaluminum compound; and (C) copolymerization is conducted under such condition that the partial pressure of sum total of ethylene and &agr;-olefin is 10 to 28 kg/cm2. The resulting ethylene/&agr;-olefin copolymer has the following properties: (i) the density is in the range of 0.880 to 0.960 g/cm3, (ii) the melt flow rate of 190° C. under a load of 2.16 kg is in the range of 0.1 to 100 g/10 min, (iii) the melt tension (MT (g)) at 190° C. and the melt flow rate (MFR (g/10 min)) satisfy the relation MT≦2.2×MFR−084.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: November 4, 2003
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Takahashi, Takasi Nakagawa, Masaaki Ohgizawa
  • Publication number: 20030203809
    Abstract: The present invention relates to a catalyst composition of an activator, a support, a catalyst compound and an ionizing activator and its use in a process for polymerizing olefin(s). The invention is also directed to a method for making the catalyst composition above.
    Type: Application
    Filed: May 7, 2003
    Publication date: October 30, 2003
    Inventors: Sun-Chueh Kao, Jaimes Sher, Parul A. Khokhani, Natarajan Muruganandam, Frederick J. Karol
  • Publication number: 20030199647
    Abstract: The present invention provides a novel process for the preparation of isoolefin copolymers in the presence of zirconium halides or hafnium halides or mixtures thereof and organic nitro compounds, especially for the preparation of butyl rubbers, as well as isoolefin copolymers composed of isobutene, isoprene and, optionally, further monomers.
    Type: Application
    Filed: March 21, 2003
    Publication date: October 23, 2003
    Inventors: Gerhard Langstein, Martin Bohnenpoll
  • Patent number: 6630544
    Abstract: A process for polymerizing propylene is disclosed. The process involves charging propylene and about 90 to 99% of an organoaluminum cocatalyst to a reactor and heating this mixture to at least about 50° C. This is followed by addition of a premix of 1 to 10% of the organoaluminum cocatalyst with a magnesium halide-supported Ziegler-Natta catalyst. The temperature of the reaction mixture is maintained to produce a propylene polymer. The process gives improved catalyst activity.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 7, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Douglas D. Klendworth, Mark K. Reinking, Edward D. Kist, Karen E. Meyer
  • Patent number: 6620758
    Abstract: A catalyst having high activity independent of the hydrogen concentration and low gel productivity in the polymerization of ethylene has been prepared.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: September 16, 2003
    Assignee: Borealis Technology Oy
    Inventors: Jarmo Lindroos, Solveig Johansson, Päivi Waldvogel