And Vanadium Containing Patents (Class 502/209)
  • Publication number: 20110172483
    Abstract: The present invention relates to an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking, method for preparing the same and a method for preparing olefin by using the same. More precisely, the present invention relates to an oxide catalyst for hydrocarbon steam cracking represented by formula 1 and a phosphoric oxide catalyst for hydrocarbon steam cracking represented by formula 3 which would be used for the production of olefin such as ethylene and propylene by hydrocarbon steam cracking, and a method for preparing the same. The present invention provides an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking that has excellent thermo-stability at high temperature and improved olefin yield. CrZrjAkOx ??[Formula 1] CrZrjAkPlOx ??[Formula 3] Wherein, j, k, l and x are as indicated in the description.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 14, 2011
    Inventors: Jun-seon CHOI, Jun-Han Kang, Jong-hun Song, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Publication number: 20110165043
    Abstract: Provided are a catalyst for removing mercury metal, which has high activity for a long time even in an exhaust gas containing SO2, and a method for oxidizing mercury metal using the catalyst. A method for purifying exhaust gas, including bringing an exhaust gas containing mercury metal into contact with a catalyst containing titanium oxide as a first component and a sulfate or phosphate of nickel (Ni), manganese (Mn) or vanadium as a second component, at a temperature of from 100° C. to 200° C., and thereby oxidizing the mercury metal.
    Type: Application
    Filed: July 29, 2009
    Publication date: July 7, 2011
    Inventor: Yasuyoshi Kato
  • Publication number: 20110165049
    Abstract: The present invention relates to a catalyst for removal of nitrogen oxides from exhaust gas, a method of preparing the same and a method of removing nitrogen oxide in an exhaust gas using the same, and more particularly, to a catalyst for removal of nitrogen oxides from exhaust gas in which a ceramic fiber carrier is hydrothermal-treated prior to washcoating to improve the hydrothermal stability of catalyst, a method of preparing the same and a method of removing nitrogen oxide in an exhaust gas using the same. The catalyst prepared according to the present invention has excellent hydrothermal stability and an activity of the catalyst remains for a long time. Further, by using this catalyst to remove nitrogen oxides in an exhaust gas, a removal ratio of the nitrogen oxides is improved more.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 7, 2011
    Inventors: Ju-Hyung Lee, In-sik Nam, Seong-moon Jung, Jong-sik Choi, Sun-joo Kim, Hyuk-Jae Kwon, Young-jin Kim, Joon-hyun Baik
  • Patent number: 7968491
    Abstract: The present invention relates to a catalyst for preparing phthalic anhydride by gas phase oxidation of o-xylene and/or naphthalene, comprising at least three catalyst zones which have different compositions and, from the gas inlet side toward the gas outlet side, are referred to as first, second and third catalyst zone, the catalyst zones having in each case an active composition comprising TiO2 with a content of Na of less than 0.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: June 28, 2011
    Assignee: Sud-Chemie AG
    Inventors: Christian Guckel, Markus Niedermeier, Marvin Estenfelder
  • Patent number: 7964526
    Abstract: A method for preparing a bulk multi-metallic suitable for hydrotreating heavy oil feeds is provided. In the process of preparing the catalyst precursor which is subsequently sulfided to form the bulk catalyst, a catalyst precursor filter cake is treated with at least a chelating agent, resulting in a catalyst precursor with optimum porosity with at least 90% of the pores being macropores, and having a total pore volume of at least 0.12 g/cc.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra, Soy Uckung, Darren Fong
  • Patent number: 7964524
    Abstract: A catalyst and a process for making a catalyst from a precursor composition containing rework materials are disclosed. The catalyst is made by sulfiding a catalyst precursor containing 5-95 wt. % rework material. The catalyst precursor employing rework materials can be a hydroxide or oxide material. Rework can be materials generated in the forming or shaping of the catalyst precursor, or formed upon the breakage or handling of the shaped catalyst precursor. Rework can also be in the form of catalyst precursor feed material to the shaping process, e.g., extrusion process, or catalyst precursor material generated as reject or scrap in the shaping process. In some embodiment, rework may be of the consistency of shapeable dough. In another embodiment, rework is in the form of small pieces or particles, e.g., fines, powder.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Patent number: 7964525
    Abstract: A stable catalyst with low volumetric shrinkage and a process for making the stable catalyst with low volumetric shrinkage is disclosed. The catalyst is made by sulfiding a catalyst precursor containing at least a Group VIB metal compound; at least a promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, having an oxidation state of either +2 or +4; optionally at least a ligating agent; optionally at least a diluent. In the process of making the catalyst, the catalyst precursor is first shaped then heat treated at a temperature of 50° C. to 200° C. for about 15 minutes to 12 hours, wherein the catalyst precursor still has a low (less than 12%) volumetric shrinkage after exposure to a temperature of at least 100° C. for at least 30 minutes, e.g., in sulfidation or in a hydrotreating reactor.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis Dykstra, Theodorus Maesen, Alexander E. Kuperman, Soy Uckung, Darren Fong
  • Patent number: 7947621
    Abstract: This invention provides a process for manufacturing a catalyst with a desired attrition index, comprising the steps of selecting at least one molecular sieve having a morphology and size index (MSI) of from 1 to about 1000 to secure said desired attrition index of said catalyst.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: May 24, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Machteld Maria Mertens, Stephen N. Vaughn
  • Publication number: 20110116999
    Abstract: An exhaust gas purification catalyst is provided which contains titanium oxide as a main component and an oxide of one element or two or more elements selected from the group consisting of tungsten (W), molybdenum (Mo), and vanadium (V) as an active component, wherein the exhaust gas purification catalyst contains phosphoric acid or a water soluble phosphoric acid compound so that the atomic ratio of phosphorus (P) to a catalytically active component represented by the following formula is more than 0 and 1.0 or less; P/catalytically active component (atomic ratio)=number of moles of P/(number of moles of W+number of moles of Mo+number of moles of V).
    Type: Application
    Filed: March 25, 2009
    Publication date: May 19, 2011
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai
  • Publication number: 20110105789
    Abstract: A method for producing a catalyst for the preparation of methacrylic acid comprising a heteropolyacid compound containing phosphorus, molybdenum and an element X selected from the group consisting of potassium, rubidium, cesium and thallium and having an atomic ratio of the element X to molybdenum of 0.5:12 to 2:12, which method comprises the steps of mixing aqueous slurry A containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 2:12 to 4:12, and aqueous slurry B containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 0:12 to 0.5:12 to form a slurry mixture; heat-treating the slurry mixture at a temperature of 100° C. or higher; drying the slurry mixture; and calcining the dried mixture.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Toshiaki MIYATAKE, Junji SHIBATA, Eiichi SHIRAISHI
  • Patent number: 7923404
    Abstract: Methods of making catalysts for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo) and phosphorus (P), where the catalyst has a pore size distribution including at least 50% medium pores and if bismuth is present, a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: April 12, 2011
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
  • Publication number: 20100323882
    Abstract: Methods of making catalysts for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo) and phosphorus (P), where the catalyst has a pore size distribution including at least 50% medium pores and if bismuth is present, a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12.
    Type: Application
    Filed: May 31, 2010
    Publication date: December 23, 2010
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
  • Patent number: 7851397
    Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehydes to unsaturated acids is disclosed where the catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), or mixtures or combinations thereof, where the bismuth component was dissolved in an organic acid solution prior to adding the bismuth containing solution to a solution of the other components. Methods for making and using the catalysts are also disclosed.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: December 14, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, Angie McGuffey
  • Patent number: 7851398
    Abstract: Catalytic titanium dioxide mixtures comprising: a first anatase titanium dioxide having a BET surface area greater than 15 m2/g and a hydrogen uptake for the reduction of Ti4+ to Ti3+ of from 5 to 20 ?mol/m2; and a second anatase titanium dioxide having a BET surface area less than or equal to 15 m2/g and a hydrogen uptake for the reduction of Ti4+ to Ti3+ of from 0.6 to 7 ?mol/m2, processes for preparing catalysts containing the same, catalysts containing active compositions including such titanium dioxide mixtures on support materials, and catalyst systems using the same.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: December 14, 2010
    Assignee: BASF SE
    Inventors: Samuel Neto, Sebastian Storck, Jürgen Zühlke, Frank Rosowski
  • Publication number: 20100311573
    Abstract: A method for applying a washcoat suspension to a support structure. To provide coatings with largely uniform thickness starting from washcoat suspensions, the method uses a device (10) set up to produce, by means of a process gas (40), a fluid bed of support structures in which the support structures circulate elliptically or toroidally, the method comprising the steps of: a) charging the device (10) with support structures and producing a support-structure fluid bed by means of a process gas (40), wherein the support structures circulate in the fluid bed elliptically or toroidally, preferably toroidally; b) impregnating the support structures with a washcoat suspension by spraying the support structures circulating elliptically or toroidally in the fluid bed with the washcoat suspension; c) drying the support structures sprayed with the washcoat suspension; and d) optionally calcining the support structures loaded with the solids contents of the washcoat suspension.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 9, 2010
    Applicant: SÜD-CHEMIE AG
    Inventors: Gerhard Mestl, Christian Gückel, Marvin Estenfelder, Bastian Kading
  • Publication number: 20100311574
    Abstract: An improved process to produce high surface area nanoparticle vanadium phosphorus oxide catalysts comprises the steps of reducing vanadium-containing compounds in an alcohol solution selected from the group consisting of isobutanol and benzyl alcohol and any combination derives thereof under reflux for 4 to 6 hours to form a suspended mixture; reacting dopants and phosphorus-containing compounds to the suspended mixture under reflux for 30 minutes to 3 hours to form precursors of the vanadium phosphorus oxide catalysts; drying the formed precursors; and calcining the dried precursors in a flow of gaseous n-butane/air mixture at 400 to 460° C. to form activated vanadium phosphorus oxide catalysts.
    Type: Application
    Filed: April 14, 2008
    Publication date: December 9, 2010
    Applicant: UNIVERSITY PUTRA MALAYSIA
    Inventors: Yun Hin Taufiq-Yap, Ali Asghar Rownaghi
  • Patent number: 7842641
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: November 30, 2010
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7825061
    Abstract: The object of the present invention is to provide a catalyst for producing methacrylic acid in high yield and highly selectively by subjecting methacrolein, isobutylaldehyde or isobutyric acid to gas phase catalytic oxidation, and the preparation method thereof. The catalyst contains Mo, V, P, Cu, Cs and NH4 as the essential, active components, and the feature is to use for preparing the catalyst a cesium weak acid salt or cesium hydroxide as the Cs raw material and ammonium acetate as the NH4 raw material. A coated catalyst of the present invention is obtainable by supporting the active component on an inert carrier of alumina or the like.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: November 2, 2010
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Atsushi Sudo, Yoshimasa Seo, Hideki Sugi
  • Publication number: 20100269403
    Abstract: Described are catalyst compositions and methods for their preparation and use. Certain catalyst compositions can include at least one reduction catalyst and at least one oxidation catalyst. A catalyst composition as described herein is useful in providing certain benefits to a combustible fuel, such as, for example, reducing harmful emissions and/or improving overall fuel economy.
    Type: Application
    Filed: December 15, 2009
    Publication date: October 28, 2010
    Inventors: S. Deborah Oyler, Edward Carroll Hale, III
  • Patent number: 7820583
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: October 26, 2010
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7816298
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. The catalyst precursor comprises at least one of a Group IIB metal compound, a Group IVA metal compound, a Group IIA metal compound, and combinations thereof, at least one Group VIB metal, at least one organic, oxygen-containing ligand, and optionally a cellulose-containing material. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 19, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 7807599
    Abstract: A process for making a catalyst precursor is disclosed. In one embodiment, the process comprises co-precipitating at reaction conditions forming a precipitate or cogel: at least a promoter metal compounds selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, at least one of Group VIB metal compounds, at least an organic oxygen-containing ligand L. The precursor is represented by the formula Av[(MP) (OH)x(L)ny]z(MVIBO4), wherein A comprises an alkali metal cation, an ammonium, an organic ammonium or a phosphonium cation, MP is at least one of Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, L is the organic, oxygen-containing co-ordinating ligand, MVIB is at least one of Group VIB metals, and the atomic ratio of MP:MVIB is between 100:1 and 1:100.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 7803735
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor are disclosed. The catalyst precursor comprises at least a metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, at least one Group VIB metal, at least one organic, oxygen-containing ligand, and a cellulose-containing material. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds. In one embodiment, the sulfidation is carried out by contacting the catalyst precursor with hydrogen and a sulfur containing compound in a “slow” process with the sulfidation taking place over a few days up to two weeks, e.g., for at least over 96 hours. In another embodiment, the sulfidation is in a “quick” process with the sulfidation taking place in less than 72 hours. The catalyst prepared from the slow sulfidation process gives a 700° F.+ conversion rate of at least 25% higher than the 700° F.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: September 28, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman, Darren Fong
  • Patent number: 7795169
    Abstract: The invention relates to a method for the manufacture of cyanopyridines from methylpyridines by their conversion with ammonia and oxygen and catalysts suitable therefor which contain further transition metals in addition to vanadium and phosphorus.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: September 14, 2010
    Assignee: Vertellus Specialties Inc.
    Inventors: Achim Fischer, Andreas Martin, Bernhard Lucke, Venkata Kalevaru, Christoph Weckbecker, Klaus Huthmacher
  • Publication number: 20100210455
    Abstract: Provided is a catalyst for treating exhaust gas capable of reducing the amount of a highly corrosive mercury-chlorinating agent to be added while keeping the mercury oxidation efficiency high in an exhaust gas treatment. By the catalyst for treating exhaust gas, nitrogen oxide in the exhaust gas is removed upon contact with ammonia serving as a reducing agent, and mercury is oxidized using a halogen serving as an oxidant. The catalyst includes: TiO2 as a support; an oxide of at least one selected from the group consisting of V, W and Mo, which is supported as an active component on the support; and at least one selected from the group consisting of Bi, P, and compounds containing Bi and/or P, which is supported as a co-catalyst component on the support.
    Type: Application
    Filed: February 26, 2009
    Publication date: August 19, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsumi Nochi, Yoshiaki Obayashi, Masashi Kiyosawa
  • Publication number: 20100183492
    Abstract: To overcome the problem of a conventional catalyst and to provide an exhaust gas purifying catalyst that meets the requirement concerning Hg oxidation activity and SO2 oxidation activity; i.e., an exhaust gas purifying catalyst which specifically reduces percent SO2 oxidation, while maintaining percent Hg oxidation at a high level. The invention provides an exhaust gas purifying catalyst which comprises a composition containing oxides of (i) titanium (Ti), (ii) molybdenum (Mo) and/or tungsten (W), (iii) vanadium (V), and (iv) phosphorus (P), wherein the catalyst contains Ti, Mo and/or W, and V in atomic proportions of 85 to 97.5:2 to 10:0.5 to 10, and has an atomic ratio of P/(sum of V and Mo and/or W) of 0.5 to 1.
    Type: Application
    Filed: September 7, 2007
    Publication date: July 22, 2010
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada
  • Publication number: 20100184591
    Abstract: The present invention relates to a method of preparing a heteropoly acid catalyst used for the production of methacrylic acid by gas phase oxidation of methacrolein, more precisely a method of preparing a heteropoly acid catalyst comprising the steps of preparing a slurry by adding metal precursors and ammonium salt to protonic acid Keggin-type heteropoly acid aqueous solution and stirring thereof; and drying, molding and firing the slurry to give a catalyst. The present invention provides a method of preparing a heteropoly acid catalyst exhibiting high methacrolein conversion rate and methacrylic acid selectivity without pre-firing process by using high purity protonic acid Keggin-type heteropoly acid and ammonium salt.
    Type: Application
    Filed: June 13, 2008
    Publication date: July 22, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Hyun-Kuk Noh, Hyun-jong Shin, Won-ho Lee, Byung-yul Choi, Gyo-hyun Hwang, Ju-yeon Park, Duk-ki Kim, Young-hyun Choe, Min-ho Kil, Min-suk Kim, Young-jin Cho, Sung-chul Lim
  • Patent number: 7737071
    Abstract: There is provided a catalyst for hydrotreating a hydrocarbon oil, which comprises an inorganic oxide support containing a certain amount of phosphorus oxide having provided thereon: at least one selected from metals in the Group 6 of the periodic table, at least one selected from metals in the Group 8 of the periodic table, and carbon, and which has a certain specific surface area, pore volume, and mean pore diameter, a process for producing the same, and a method for hydrotreating a hydrocarbon oil using the same. Thereby, the catalyst can be produced in a simple and convenient manner and sulfur compounds in the hydrocarbon oil can be exceedingly highly desulfurized and simultaneously nitrogen compounds can be diminished without necessitating severe operating conditions.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: June 15, 2010
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Kazuyuki Kiriyama, Takashi Fujikawa, Masahiro Kato, Minoru Hashimoto
  • Patent number: 7732367
    Abstract: A catalyst for oxidation of unsaturated and/or saturated aldehyde to unsaturated acids is disclosed where the catalyst including at least molybdenum (Mo), phosphorus (P), vanadium (V), bismuth (Bi), and a first component selected from the group consisting of potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), or mixtures or combinations thereof, where the catalyst has at least 57% medium pores and a nitric acid to molybdenum mole ratio of at least 0.5:1 or at least 6.0:1 moles of HNO3 per mole of Mo12. Methods for making and using such catalysts are also disclosed.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: June 8, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Scott A. Stevenson, Wugeng Liang, James W. Kauffman, Lixia Cai, Angie McGuffey, Joseph R. Linzer
  • Publication number: 20100105926
    Abstract: A novel polynary metal oxide phosphate of the general formula I MaV4-aOb(PO4)c is described, in which M is one or more metals selected from Ti, Zr, Hf, Cr, Fe, Co, Ni, Ru, Rh, Pd, Cu, Zn, B, Al, Ga and In, a is from 0 to 2.0, b is from 2.0 to 4.0, c is from 2.0 to 4.0, having a crystal structure whose powder X-ray diffractogram is characterized by defined reflections. Preferred representatives are V4O3(PO4)3, CrV3O3(PO4)3, FeV3O3(PO4)3 and TiV3O3(PO4)3. The metal oxide phosphates are suitable as gas phase oxidation catalysts, for example for preparing maleic anhydride from a hydrocarbon having at least four carbon atoms.
    Type: Application
    Filed: March 12, 2008
    Publication date: April 29, 2010
    Applicant: BASF SE
    Inventors: Hartmut Hibst, Robert Glaum, Ernst Benser
  • Publication number: 20100105927
    Abstract: A novel polynary vanadyl pyrophosphate of the general formula I (VO)a(M1-bVb)2(P2O7)c is described, in which M is one or more metals selected from Ti, Zr, Hf, Cr, Fe, Co, Ni, Ru, Rh, Pd, Cu, Zn, B, Al, Ga and In, a is from 0.5 to 1.5, b is from 0 to 0.9, c is from 1.5 to 2.5, having a crystal structure whose powder X-ray diffractogram is characterized by defined reflections. A preferred representative is (VO)Fe2(P2O7)2. The vanadyl pyrophosphates are suitable as gas phase oxidation catalysts, for example for preparing maleic anhydride from a hydrocarbon having at least four carbon atoms.
    Type: Application
    Filed: March 12, 2008
    Publication date: April 29, 2010
    Applicant: BASF SE
    Inventors: Hartmut Hibst, Robert Glaum, Ernst Benser
  • Publication number: 20100099552
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNox catalyst applications.
    Type: Application
    Filed: August 24, 2006
    Publication date: April 22, 2010
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20100087663
    Abstract: A novel polynary metal oxide phosphate of the general formula I MaV2Ob(PO4)c is described, in which M is one or more metals selected from V, Cr, Fe, Co, Ni, Ru, Rh, Pd, Cu, Zn, Cd, Hg, Be, Mg, Ca, Sr and Ba, a is from 0.5 to 1.5, b is from 1.5 to 2.5, c is from 1.5 to 2.5, having a crystal structure whose powder X-ray diffractogram is characterized by defined reflections. Preferred representatives are CoV2O2(PO4)2, NiV2O2(PO4)2 or CuV2O2(PO4)2. The metal oxide phosphates are suitable as gas phase oxidation catalysts, for example for preparing maleic anhydride from a hydrocarbon having at least four carbon atoms.
    Type: Application
    Filed: March 12, 2008
    Publication date: April 8, 2010
    Applicant: Basf SE
    Inventors: Hartmut Hibst, Robert Glaum, Ernst Benser
  • Publication number: 20100069650
    Abstract: A novel polynary metal oxide phosphate of the general formula I Ma(VO)(P2O7)b(PO4)c is described, in which M is one or more metals selected from V, Ti, Zr, Hf, Cr, Fe, Co, Ni, Ru, Rh, Pd, Cu, Zn, Cd, Hg, B, Be, Mg, Ca, Sr and Ba, a is from 1.5 to 2.5, b is from 0.5 to 1.5, c is from 0.5 to 1.5, having a crystal structure whose powder X-ray diffractogram is characterized by defined reflections. A preferred representative is Fe2VO(P2O7)(PO4). The metal oxide phosphates are suitable as gas phase oxidation catalysts, for example for preparing maleic anhydride from a hydrocarbon having at least four carbon atoms.
    Type: Application
    Filed: March 12, 2008
    Publication date: March 18, 2010
    Applicant: BASF SE
    Inventors: Hartmut Hibst, Robert Glaum, Ernst Benser
  • Publication number: 20100069230
    Abstract: The present invention relates to a heteropoly acid catalyst which is used for the production of methacrylic acid by gas phase oxidation of methacrolein and a preparing method thereof. The present invention, thereby, provides a novel heteropoly acid catalyst having excellent methacrolein conversion rate, methacrylic acid selectivity and yield.
    Type: Application
    Filed: November 29, 2007
    Publication date: March 18, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Gyo-hyun Hwang, Min-Ho Kim, Hyun-kuk Noh, Won-ho Lee, Min-suk Kim
  • Patent number: 7662742
    Abstract: A method for producing a catalyst containing given atoms in a given atomic proportion for use in producing methacrylic acid through gas-phase catalytic oxidation of methacrolein with molecular oxygen comprising the steps of: (i) preparing a solution or slurry containing at least molybdenum, phosphorus, and vanadium (liquid I); (ii) preparing a solution or slurry containing ammonium radical (liquid II); (iii) preparing a mixture of the liquid I and the liquid II by introducing one liquid (liquid PR) of the liquid I and the liquid II into a tank (tank A) and pouring the other liquid (liquid LA) on a continuous region in the surface of the liquid PR, the continuous region occupying 0.01 to 10% of the whole area of the surface of the liquid PR; and (iv) drying and calcining the resultant solution or slurry containing a catalyst precursor comprising all the catalyst constituents.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 16, 2010
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroyuki Naitou, Takashi Karasuda, Tomoki Fukui
  • Publication number: 20100016644
    Abstract: The present invention provides a process for producing a vanadium/phosphorus oxide catalyst by (i) preparing a catalyst precursor powder containing vanadium, phosphorus and an optional promoter element; (ii) converting the catalyst precursor powder into an activated catalyst by heat treatment; (iii) and compressing the activated catalyst into a desired shape to form the vanadium/phosphorus oxide catalyst. The vanadium/phosphorus oxide catalyst may be used in the production of maleic anhydride by the catalytic oxidation of hydrocarbon feed streams.
    Type: Application
    Filed: August 24, 2007
    Publication date: January 21, 2010
    Applicant: Huntsman Petrochemical Corporation
    Inventor: Matthew W. Forkner
  • Patent number: 7649111
    Abstract: A heteropolyacid catalyst for oxidation of isobutyraldehyde, methacrolein or mixtures or combinations thereof to methacrylic acid is disclosed where the heteropolyacid catalyst includes at least molybdenum (Mo), phosphorus (P), vanadium (V), and a first component including bismuth (Bi) and/or boron (B). The heteropolyacid catalyst can also optionally include a second component including potassium (K), rubidium (Rb), cesium (Cs), and/or thallium (Tl) and optionally a third component including antimony (Sb), cerium (Ce), niobium (Nb), indium (In), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), arsenic (As), silver (Ag), zinc (Zn), germanium (Ge), gallium (Ga), zirconium (Zr), magnesium (Mg), barium (Ba), lead (Pb), tin (Sn), titanium (Ti), aluminum (Al), silicon (Si), tantalum (Ta), tungsten (W), and/or lanthanum (La). The heteropolyacid catalyst can also include an ammonium-containing compound designed to increase a value of medium pores in the final heteropolyacid catalyst.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: January 19, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, Angie McGuffey, Joseph R. Linzer
  • Patent number: 7638457
    Abstract: Disclosed is a process for the preparation of a modified vanadium/phosphorus mixed oxide catalyst for the partial oxidation of n-butane to maleic anhydride. The catalyst comprises vanadyl pyrophosphate as main component and niobium as a promoter element in an amount corresponding to an atomic ratio of vanadium to niobiurn in the range of 250:1 to 60:1. The catalyst exhibits improved activity, improved yield of maleic anhydride, and optimal performance from the very beginning of its catalytic lifetime.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: December 29, 2009
    Assignee: Lonza S.p.A.
    Inventors: Federico Ghelfi, Gianluca Mazzoni, Carlo Fumagalli, Fabrizio Cavani, Francesca Pierelli
  • Publication number: 20090306410
    Abstract: The invention relates to a shaped catalyst body for preparing maleic anhydride, which comprises mixed oxides of vanadium and of phosphorus as catalyst components. To develop a generic shaped catalyst body further so that it has improved properties, it is proposed that the basic geometric body enveloping the shaped catalyst body (100; 200) be a prism (180) having a first triangular face and a second triangular face and the shaped catalyst body (100; 200) be provided with three through openings (111, 121, 131; 211, 221, 231) which extend from a first face of the shaped body (100; 200) which contacts the first triangular face of the prism (180) to a second face of the shaped body (100; 200) which contacts the second triangular face of the prism (180).
    Type: Application
    Filed: October 31, 2006
    Publication date: December 10, 2009
    Inventors: Willi Brandstädter, Leopold Streifinger, Marvin Estenfelder
  • Patent number: 7629286
    Abstract: A process is disclosed for the improvement of fluid bed vanadium phosphorus mixed oxide catalyst performance in the manufacture of maleic anhydride from butane, which process comprises impregnating the VPO catalyst powder with a phosphorus compound, such as an alkyl ester of orthophosphoric acid and then using this impregnated catalyst powder to provide phosphorus to the maleic anhydride producing catalyst.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: December 8, 2009
    Assignee: INEOS USA LLC
    Inventors: Muin S. Haddad, Gary V. Goeden
  • Patent number: 7625834
    Abstract: In a method of producing a catalyst for the production of methacrylic acid, which has a composition of the following formula (1), when mixing 100 parts by mass of a solution or a slurry (liquid A) containing molybdenum atoms, phosphorous atoms and vanadium atoms in which the content of ammonium species is 0 to 1.5 mol relative to 12 mol of the molybdenum atoms, 5 to 300 parts by mass of a solution or a slurry (liquid B) containing 6 to 17 mol of ammonium species relative to 12 mol of the molybdenum atoms contained in the liquid A and a solution or a slurry (liquid C) containing an element Z such as cesium, the liquid B is mixed with the liquid A, the liquid C or a mixture of the liquid A and the liquid C over 0.1 to 15 minutes PaMobVcCudXeYfZgOh??(1).
    Type: Grant
    Filed: July 4, 2003
    Date of Patent: December 1, 2009
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroyuki Naitou, Takashi Karasuda
  • Publication number: 20090246111
    Abstract: The invention realizes a catalyst which is hardly deteriorated even when volatile catalyst-poisoning compounds such as P and As are accumulated and which can reduce the rate of oxidation of SO2 to a level as low as a fraction of that of the catalyst in the prior art, and provides an exhaust gas purification catalyst which can maintain a high activity and a low rate of oxidation of SO2 for a long time even with any diversified coal, a method of producing the same, and an exhaust gas purification method using the same. Disclosed is an exhaust gas purification catalyst having a composition comprising oxides of titanium (Ti), molybdenum (Mo) and/or tungsten (W), vanadium (V) and bismuth (Bi), wherein the atomic ratio of Ti:(Mo and/or W):V is 75 to 98.9:1 to 0.1 to 10 and the atomic ratio of Bi/(Mo and/or W) is 0.1 to 0.8.
    Type: Application
    Filed: January 30, 2008
    Publication date: October 1, 2009
    Applicant: BABACOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada
  • Patent number: 7576028
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 18, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Patent number: 7553794
    Abstract: A supported catalyst comprising a support having supported thereon at least one member selected from the group consisting of heteropolyacids and heteropolyacid salts, in which the heteropolyacid and/or heteropolyacid salt is substantially present in a surface layer region of the support to a depth of 30% from the support surface. The catalyst has a high performance when used for the production of compounds by various reactions.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: June 30, 2009
    Assignee: Showa Denko K.K.
    Inventor: Masaaki Sakai
  • Publication number: 20090163726
    Abstract: The present invention relates to a catalyst system for preparing carboxylic acids and/or carboxylic anhydrides which has at least four catalyst layers arranged one on top of another in the reaction tube, the ratio of the bed lengths of the more selective catalyst layers to the bed lengths of the more active catalyst layers being between 1.4 and 2. The present invention further relates to a process for gas phase oxidation in which a gaseous stream which comprises a hydrocarbon and molecular oxygen is passed through a plurality of catalyst layers, the ratio of the bed lengths of the more selective catalyst layers to the bed lengths of the more active catalyst layers being between 1.4 and 2.
    Type: Application
    Filed: May 14, 2007
    Publication date: June 25, 2009
    Applicant: BASF SE
    Inventors: Hagen Wilmer, Cornelia Dobner, Frank Rosowski, Sebastian Storck, Jürgen Zühlke
  • Patent number: 7547658
    Abstract: Syntheses of a new blue EC monomer (ProDOT-MePro), and a new red EC monomer (ProDOP-Et2) are described. Two additional new types of EC monomers based on 3,4-alkylenedioxythiophene include fluorinated EC monomers and an EC monomer including silicon. EC polymer devices having more than one different color EC polymer to enable additional colors to be provided using subtractive color mixing are also described, as well as EC polymer devices incorporating a logo, image, or text, are generally obscured when the device is colored, but become visible when the device is not colored. Also described are EC polymer devices that include a cathodic EC polymer layer, a gel electrolyte, a counter electrode, and a reference electrode. Working prototypes of such devices exhibit significant increases in the speed of transition of the EC device from a colored state to a transparent state.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 16, 2009
    Assignee: University of Washington
    Inventors: Lu Liu, Chunye Xu, Susan E. Legenski, Minoru Taya
  • Patent number: 7547655
    Abstract: The present invention provides a catalyst precursor for producing maleic anhydride by oxidizing butane. Said catalyst precursor is prepared by a process comprising partially reducing V+5 to V+4 in a mixture of alcohols consisting of isobutanol and benzyl alcohol in a volume ratio of 2.5-5.0, then adding a phosphoric oxy-acid and an alkylsilicon in turn. The catalyst precursor prepared according to said process has a small pore volume, a relatively high bulk density in an appropriate pore size distribution.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: June 16, 2009
    Assignee: New Tianjin T. & D. Co., Ltd.
    Inventor: Renshui Lan
  • Patent number: 7514476
    Abstract: Metal-containing colloids are manufactured by reacting a plurality of metal ions and a plurality of organic agent molecules to form metal complexes in a mixture having a pH greater than about 4.25. The metal complexes are reduced for at least 0.5 hour to form stable colloidal nanoparticles. The extended reduction time improves the stability of the colloidal particles as compared to shorter reduction times. The stability of the colloidal particles allows for colloids with higher concentrations of metal to be formed. The concentration of metal in the colloid is preferably at least about 150 ppm by weight.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 7, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Sukesh Parasher, Cheng Zhang, Michael A. Rueter, Bing Zhou
  • Patent number: 7485597
    Abstract: A method for improving the selectivity of a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, which method comprises contacting the catalyst, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.; and a process for the epoxidation of an olefin, which process comprises contacting a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: February 3, 2009
    Assignee: Shell Oil Company
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates, Donald Reinalda