Silicon Containing Or Process Of Making Patents (Class 502/232)
  • Publication number: 20130336846
    Abstract: Provided is an inexpensive material having a photocatalytic action. A photocatalyst is obtained by halogenation-treating glass fibers containing silicon dioxide in its components. Fused quartz, soda-lime glass, non-alkali glass, and borosilicate glass may be used for the glass. Hydrofluoric acid, hydrochloric acid and hydrobromic acid may be used for the halogen acid, and hydrofluoric acid is most desirable. The glass can be particulate, fibrous or sheet form material. The glass exhibits a photocatalytic action even with visible light other than ultraviolet light, and also water repellent effect. The glass according to the invention is capable of decomposing organic substances, and therefore, it is used for window glass in buildings or in transportation such as automobiles, when formed in a plate shape, and for a filter in an air intake/exhaust apparatus, when formed in fibrous shape.
    Type: Application
    Filed: September 15, 2011
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL FRONTIER TECHNOLOGY LABORATORY, INC.
    Inventors: Nobuaki Komatsu, Tomoko Ito, Hiroki Nagai, Shin-ichiro Nanjo
  • Publication number: 20130331257
    Abstract: The invention relates to a method for producing micro-nano combined active systems in which nanoparticles of a first component are bonded to microparticles of a second component, comprising the following steps: (a) producing a low-ligand colloidal suspension containing nanoparticles of the first component, (b) adding microparticles to the colloidal suspension containing the nanoparticles or adding the colloidal suspension containing the nanoparticles to a dispersion containing the microparticles and intensively mixing so that the nanoparticles adsorb onto the microparticles, (c) separating the microparticles and the nanoparticles bonded thereto from the liquid and drying the microparticles and the nanoparticles bonded thereto.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 12, 2013
    Applicant: LASER ZENTRUM HANNOVER E.V.
    Inventors: Stephan Barcikowski, Philipp Wagener, Andreas Schwenke
  • Publication number: 20130318863
    Abstract: A core-shell magnetic composite is disclosed, which includes: a magnetic core; a shell containing a protective layer and a porous layer, wherein the protective layer is coated on a surface of the magnetic core and the porous layer is the outmost layer of the shell; and a hydrophobic functional group grafted to the shell. In addition, the core-shell magnetic composite can be bound to a lipase to act as a transesterification catalyst. The present invention also relates to a method for producing biodiesel.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Inventors: Jo-Shu CHANG, Dang-Thuan TRAN, Chien-Chang HUANG, Ching-Ling CHEN
  • Patent number: 8585908
    Abstract: A ceramic structure for water treatment, a water treatment apparatus and method are provided. Immersion efficiency of a photo catalyst and a specific surface area of the immersed photo catalyst can be improved using a ceramic medium including a ceramic paper prepared of a ceramic fiber. Accordingly, it is possible to provide the water treatment apparatus and method capable of increasing decomposition efficiency of contaminated materials due to irradiation of ultraviolet light, and so on, enabling continuous purification treatment, and remarkably reducing preparation, management and water treatment expenses.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 19, 2013
    Assignee: LG Hausys, Ltd.
    Inventors: Moonsuk Han, Ju-Hyung Lee, Seongmoon Jung
  • Patent number: 8575059
    Abstract: A metal compound catalyst is formed by vaporizing a quantity of catalyst material and a quantity of carrier thereby forming a vapor cloud, exposing the vapor cloud to a co-reactant and quenching the vapor cloud. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal compound catalysts comprises components for vaporizing a quantity of catalyst material and a quantity of carrier, quenching the resulting vapor cloud, forming precipitate nanoparticles comprising a portion of catalyst material and a portion of carrier, and subjecting the nanoparticles to a co-reactant. The system further comprises components for impregnating the supports with the nanoparticles.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: November 5, 2013
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Stephen Edward Lehman, Jr., Robert Matthew Kevwitch, Qinghua Yin, Jesudos J. Kingsley
  • Publication number: 20130267408
    Abstract: Provided are substantially spherical, porous oxide microparticles having a plurality of substantially spherical voids, substantially spherical, porous oxide-organic polymer composite microparticles having a plurality of substantially spherical organic polymer domains. The microparticles can be made using a microdispersive suspension polymerization step to make microparticles having an organic polymer shell and a plurality of discrete substantially spherical organic nanoparticles. The microparticles can be used as polymerization catalyst supports.
    Type: Application
    Filed: February 20, 2013
    Publication date: October 10, 2013
    Applicant: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Kyu Yong Choi, Carla Luciani, Laleh Emdadi, Sang Yool Lee
  • Publication number: 20130261355
    Abstract: Aspects of the invention relate to a catalyst system for the conversion of biomass material. In an exemplary embodiment, the catalyst system has a specific combined mesoporous and macroporous surface area in the range of from about 1 m2/g to about 100 m2/g. The catalyst system can be used in a two-stage reactor assembly unit for the catalytic thermoconversion of biomass material wherein the thermolysis process and the catalytic conversion process are optimally conducted separately.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 3, 2013
    Applicant: KIOR, INC.
    Inventor: Dennis Stamires
  • Patent number: 8541332
    Abstract: Disclosed is a catalyst for the polymerization of olefins comprising thienyl-substituted silanes, which comprises a solid titanium catalyst component containing titanium, magnesium and a halogen as the main components, an alkylaluminum compound, and a component of organosiloxane compound comprising two thienyl as substituents represented by general formula (I). The molar ratio of each catalyst component is 1:50-150:5-50 based on titanium:aluminum:silicon. When the catalyst is used in the polymerization of propylene, the polymerisate obtained has a very high degree of isotacticity, and the yield is high.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 24, 2013
    Assignee: PetroChina Company Limited
    Inventors: Zhifei Li, Kuilong Tan, Hao Wang, Jianjun Yi, Qinghong Xu, Weisong Cui, Wei Bai, Xinyuan Liu, Pu Xu, Wanqing Ju
  • Publication number: 20130245311
    Abstract: The invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises vanadium, titanium and tungsten. Preferably, the catalyst comprises vanadium to tungsten at a molar ratio of at least 0.02:1, in an active phase.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Dick Nagaki, Tianshu Pan, Craig J. Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller
  • Publication number: 20130245308
    Abstract: In one embodiment, the invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises a metal phosphate matrix containing vanadium and bismuth. Preferably, the catalyst comprises, in an active phase, vanadium to bismuth at a molar ratio of at least 0.02:1. Preferably, the catalyst composition is substantially free of titanium.
    Type: Application
    Filed: October 31, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Dick Nagaki, Craig J. Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller
  • Patent number: 8518850
    Abstract: Stable high strength porous metal oxide articles suitable, for example, for use as catalyst supports, are prepared by predisposing fine metal oxide particles in water followed by fine dispersion under high shear, and subjecting the dispersion to a change in pH to coagulate the metal oxide particles and form a moldable viscoelastic composition. The moldings are substantially free of impurity atoms.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: August 27, 2013
    Assignee: Wacker Chemie AG
    Inventor: Holger Szillat
  • Patent number: 8513154
    Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors, comprise one or more topography-enhancing additives, i.e., additives that are capable of at least marginally enhancing one or more of surface area, aspect ratio, pore volume, median pore diameter, surface morphology, etc. Downstream products need not necessarily comprise the topography-enhancing additives in order to exhibit the benefits of their inclusion in the porous body precursors.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: August 20, 2013
    Assignee: Dow Technology Investments, LLC
    Inventors: Timothy L. Allen, Todd R. Bryden, Kevin E. Howard, Steven R. Lakso, Peter C. Lebaron, Jamie L. Lovelace, Juliana G. Serafin, Sten A. Wallin
  • Patent number: 8507402
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: August 13, 2013
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Stephen Edward Lehman, Jr., Robert Matthew Kevwitch, Qinghua Yin, Jesudos J. Kingsley
  • Patent number: 8507401
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 13, 2013
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Stephen Edward Lehman, Jr., Robert Matthew Kevwitch, Qinghua Yin, Jesudos J. Kingsley
  • Publication number: 20130196845
    Abstract: A photo-catalytic composition, comprising nanoparticles of at least one photo-catalyst and an aqueous colloidal dispersion of SiO2 nanoparticles wherein the concentration of the photo-catalyst ranges from at least 20 to less than 50 parts by weight and the concentration of SiO2 provides the balance to 100 parts by weight.
    Type: Application
    Filed: June 14, 2011
    Publication date: August 1, 2013
    Applicant: EOXOLIT SPRL
    Inventors: Jaromir Jirkovsky, Frantisek Peterka, Jan Subrt, Marc Lambrecht
  • Patent number: 8492305
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Patent number: 8481452
    Abstract: An apparatus and method for treating diesel exhaust gases are described. The system consists of two functionalities, the first being a selective catalytic reduction (SCR) catalyst system and the second being a capture material for capturing catalyst components that have appreciable volatility under extreme exposure conditions. The SCR catalyst component is typically based on a majority phase of titania, with added minority-phase catalyst components comprising of one or more of the oxides of vanadium, silicon, tungsten, molybdenum, iron, cerium, phosphorous, copper and/or manganese vanadia. The capture material typically comprises a majority phase of high surface area oxides such as silica-stabilized titania, alumina, or stabilized alumina, for example, wherein the capture material maintains a low total fractional monolayer coverage of minority phase oxides for the duration of the extreme exposure.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: July 9, 2013
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: David M. Chapman
  • Patent number: 8481453
    Abstract: An apparatus and method for treating diesel exhaust gases are described. The system consists of two functionalities, the first being a selective catalytic reduction (SCR) catalyst system and the second being a capture material for capturing catalyst components such as vanadia that have appreciable volatility under extreme exposure conditions. The SCR catalyst component is typically based on a majority phase of titania, with added minority-phase catalyst components comprising of one or more of the oxides of vanadium, silicon, tungsten, molybdenum, iron, cerium, phosphorous, copper and/or manganese vanadia. The capture material typically comprises a majority phase of high surface area oxides such as silica-stabilized titania, alumina, or stabilized alumina, for example.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 9, 2013
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventor: David M. Chapman
  • Patent number: 8481449
    Abstract: An oxide catalyst is formed by vaporizing a quantity of at least one precursor material or catalyst material thereby forming a vapor cloud. The vapor cloud is quenches forming precipitate nanoparticles. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalyst systems. A system for forming oxide catalysts comprises components for vaporizing a quantity of at least one precursor material or at least one catalyst material, quenching the resulting vapor cloud and forming precipitate nanoparticles. The system further comprises components for supports with the nanoparticles.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: July 9, 2013
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Stephen Edward Lehman, Jr., Robert Matthew Kevwitch, Qinghua Yin
  • Patent number: 8475757
    Abstract: Amine stabilizing agents containing an azeotrope comprising water, an alcohol, and sodium hydride. Amine stabilizing agents containing water and a liquid silica hydroxide compound. Methods of making of amine stabilizing agents where solid silicon rock and sodium hydroxide are mixed with an ammonium/water solution to produce a green liquid in a first stage of the reaction. Alcohol is added and the alcohol fraction is separated from the non-alcohol fraction to produce an alcohol fraction product and a bottom fraction that is not soluble in alcohol or organics. The agents can be added to amines for stabilizing amines in anime processing of gases, in CO2 capture, in CO2 abatement systems and in other systems where amines are utilized to remove contaminants.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: July 2, 2013
    Assignee: Pro-Con International, LLC
    Inventor: Mark Owen Bublitz
  • Publication number: 20130164205
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen oxide (NO) with ammonia (NH3) or a nitrogen containing compound selected from ammonium salts, urea or a urea derivative or a solution thereof as reductant.
    Type: Application
    Filed: August 29, 2011
    Publication date: June 27, 2013
    Applicant: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Siva, Sankar, Reddy Putluru, Anders Riisager, Rasmus Fehrmann
  • Publication number: 20130165608
    Abstract: The present invention relates to spherical beads comprising at least one metal and/or semimetal oxide, having a mean diameter in the range from 10 to 120 ?m, a BET surface area in the range from 400 to 800 m2/g and a pore volume in the range from 0.3 to 3.0 cm3/g, wherein the diameter of a given bead at any one point of said bead deviates by less than 10% from the average diameter of said bead and the surface of said bead is substantially smooth, and also to a process for producing these spherical beads, to a particulate catalyst comprising the spherical beads and to the use of the spherical beads as catalysts or catalyst carriers.
    Type: Application
    Filed: February 19, 2013
    Publication date: June 27, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Publication number: 20130156679
    Abstract: A first layer of a catalyst material is formed on a substrate and heat treated to form a first plurality of nanoparticles. A second layer of a catalyst material is then formed over the substrate and the first plurality of nanoparticles and heat treated to form a second plurality of nanoparticles. The first layer of nanoparticles is advantageously not affected by the deposition or heat treatment of the second layer of catalyst material, for example being pinned or immobilised, optionally by oxidation, before formation of the second layer.
    Type: Application
    Filed: July 19, 2011
    Publication date: June 20, 2013
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: John Robertson, C. Santiago Esconjauregui
  • Publication number: 20130130889
    Abstract: The present invention provides an improved fluidized catalytic cracking process coupled with a two stage regeneration process in which the activity of the circulating catalyst is independently controlled for cracking hydrocarbon feedstocks or the vapors at low severity to produce maximum light cycle oil/distillate in one riser whilst cracking recycle streams comprising heavy cycle oil (HCO), light cracked naphtha (LCN) etc. in a second riser operating at high severity to produce LPG.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: Stone & Webster Process Technology, Inc.
    Inventors: Eusebius Gbordzoe, Marc Bories, Warren Stewart Letzsch, Patrick Leroy, Chris Santner, Joseph L. Ross, JR.
  • Patent number: 8426537
    Abstract: A solid catalyst component for olefin polymerization is produced by causing (a) a solid component that includes magnesium, titanium, a halogen, and an electron donor, (b) an aminosilane compound shown by the following general formula (1), and (c) at least one organosilicon compound selected from an organosilicon compound shown by the following general formula (2-A) and an organosilicon compound shown by the following general formula (2-B) to come in contact with each other. A polymer having high stereoregularity is produced in high yield while achieving a high melt flow rate due to hydrogen by polymerizing an olefin in the presence of a catalyst that includes the solid catalyst component.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 23, 2013
    Assignee: Toho Titanium Co., Ltd.
    Inventor: Motoki Hosaka
  • Publication number: 20130079216
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Application
    Filed: November 19, 2012
    Publication date: March 28, 2013
    Applicant: SDCmaterials, Inc.
    Inventor: SDCmaterials, Inc.
  • Patent number: 8404616
    Abstract: A photocatalyst produced from an easily available, relatively low-cost silicon oxide material is disclosed which is capable of decomposing environmental pollutants with improved efficiency. The photocatalyst is produced by pulverizing an artificial crystal, specifically machining waste thereof, into powder particles having a particle diameter of not more than 3.0 mm and then immersing the particles into a solution containing a hydrogen fluoride for activation. Environmental pollutants such as nitrogen oxides (NOx) and harmful organic compounds can be efficiently decomposed by coming into contact with this photocatalyst while being irradiated with activation light under oxidizing conditions.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: March 26, 2013
    Assignee: Patent Technology Development Inc.
    Inventors: Tetsuo Yazawa, Kaori Oki, Akira Agata
  • Publication number: 20130072652
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Application
    Filed: May 26, 2011
    Publication date: March 21, 2013
    Applicant: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Patent number: 8399580
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 19, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Patent number: 8394737
    Abstract: The present invention discloses a method for preparing an activating support and its use to activate metallocene or post-metallocene catalyst component for use in the oligomerization and polymerization of ethylene and alpha-olefins.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: March 12, 2013
    Assignees: Total Petrochemicals Research Feluy Seneffe, Centre National de la Recherche Scientifique
    Inventors: Abdelkrim El Kadib, Karine Molvinger, Daniel Brunel, Floran Prades, Sabine Sirol
  • Patent number: 8377840
    Abstract: Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 19, 2013
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Patent number: 8372368
    Abstract: The present invention is a method for synthesizing non-zeolitic molecular sieves which have a three dimensional microporous framework comprising [AlO2] and [PO2] units. In preparing the reaction mixture, a surfactant is used, coupled with non-aqueous impregnation to prevent acid sites from being destroyed by water during Pt impregnation. The superior SAPO exhibits higher activity and selectivity especially in catalytic hydroisomerization of waxy feeds, due to the presence of medium-sized silica islands distributed throughout the SAPO.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 8343335
    Abstract: In a method of forming a shaped body, a mixture is formed comprising a particulate silica-rich material, water and a potassium base or basic salt, wherein the total solids content of the mixture is from about 20 to about 90 weight percent. The mixture is extruded into extrudates and the extrudates are dried and heated to a temperature of from about 300° C. to about 800° C. to form the shaped body.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: January 1, 2013
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Theodore E. Datz, Glenn R. Sweeten, Jason Wu
  • Publication number: 20120318713
    Abstract: Processes described include reacting a fresh or spent catalyst, or sorbent, with a solution containing an extracting agent (such as an acid or a base). Preferably, the catalyst contains both alumina and a molecular sieve (or a sorbent), and the reaction is performed under relatively mild conditions such that the majority of the base material does not dissolve into the solution. Thus, the catalyst can be re-used, and in certain instances the catalyst performance even improves, with or without re-incorporating certain of the metals back into the catalyst. Additionally, metals contained in the catalyst, such as Na, Mg, Al, P, S, Cl, K, Ca, V, Fe, Ni, Cu, Zn, Sr, Zn Sb, Ba, La, Ce, Pr, Nd, Pb, or their equivalent oxides, can be removed from the catalyst. Some of the metals that are removed are relatively valuable (such as the rare earth elements of La, Ce, Pr and Nd).
    Type: Application
    Filed: August 13, 2012
    Publication date: December 20, 2012
    Inventor: Albert A. Vierheilig
  • Publication number: 20120322893
    Abstract: The present invention relates to novel granular silicas for use as support material, especially as support for catalysts for fixed bed reactors, and to the production and use thereof.
    Type: Application
    Filed: March 14, 2011
    Publication date: December 20, 2012
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Claus-Peter Drexel, Frank Haselhuhn, Frank Heindl, Ralf Rausch, Guenter Stein
  • Publication number: 20120321524
    Abstract: Disclosure relates to a slip catalyst for reducing a NO2 content in an exhaust train of an internal combustion engine flowed through by an exhaust gas flow, which has an oxidizing catalyst for the formation of NO2 and a particulate filter arranged downstream for binding carbon black particles and simultaneous and/or subsequent reaction of the same with NO2 formed on the oxidizing catalyst, having a substrate that is provided with a coating, which coating reduces a proportion of NO2 in the exhaust gas flow flowing through. The coating has at least two elements from the group of rare-earth metals, which are present in the coating in the form of a salt or an oxide or in an elementary form and in a concentration of more than 300.0 g/m3.
    Type: Application
    Filed: December 21, 2010
    Publication date: December 20, 2012
    Inventor: Bernhard Kahlert
  • Patent number: 8324440
    Abstract: Silica supports having a surface area from about 250 m2/g to about 600 m2/g and an average pore diameter from about 45 ? to about 170 ?, used for supported tungsten catalysts, improves the activity of the resulting catalyst (i.e., its conversion level at a given temperature) for the metathesis of olefins, without compromising its selectivity to the desired conversion product(s). Exemplary catalysts and processes include those for the production of valuable light olefins such as propylene from a hydrocarbon feedstock comprising ethylene and butylene.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: Kristoffer E. Popp, Mark A. Krawczyk, Christopher P. Nicholas, Jennifer F. Abrahamian
  • Publication number: 20120296124
    Abstract: Efficient and recyclable heterogeneous nanocatalysts and methods of synthesizing and using the same are provided.
    Type: Application
    Filed: February 14, 2012
    Publication date: November 22, 2012
    Inventors: Tewodros Asefa, Ankush V. Biradar, Yanfei Wang
  • Patent number: 8314045
    Abstract: A porous solid acid catalyst having high concentration of acidic sites and a large surface area includes a porous silica support and a sulfonated carbon layer disposed within the pores of the silica support. The catalyst, in certain embodiments, has a concentration of —SO3H groups of at least about 0.5 mmol/g and a predominant pore size of at least about 300 ?. The catalyst is used to catalyze a variety of acid-catalyzed reactions, including but not limited to alkylation, acylation, etherification, olefin hydration and alcohol dehydration, dimerization of olefin and bicyclic compounds, esterification and transesterification. For example, the catalyst can be used to catalyze esterification of free fatty acids (FFAs) and, in certain embodiments, to catalyze transesterification of triglycerides in fats and oils.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: November 20, 2012
    Assignee: Entreprises Sinoncelli S.A.R.L.
    Inventors: Jacques Sinoncelli, Sergey V. Gurevich
  • Patent number: 8309484
    Abstract: A photocatalyst system for volatile organic compounds with two parts that include a photocatalyst layer on a substrate and a porous overlayer. The photocatalyst layer is reactive with volatile organic compounds when UV light is projected on it. The overlayer is situated on the photocatalyst layer. The overlayer is UV transparent and has an interconnected pore network that allows contaminated air to pass through the overlayer. The size and the shape of the interconnected pores acts to selectively exclude certain contaminants that can deactivate the photocatalyst.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: November 13, 2012
    Assignee: Carrier Corporation
    Inventors: Treese Hugener-Campbell, Thomas Henry Vanderspurt, David F. Ollis, Stephen O. Hay, Timothy N. Obee, Wayde R. Schmidt, Michael A. Kryzman
  • Publication number: 20120283337
    Abstract: Sol-gel inorganic porous particles can be formed with two set of pores with different average sizes. These inorganic porous particles are composed of an inorganic compound that provides an inorganic solid phase including an external particle surface. They also have a first set of pores wherein the pores have an average diameter of less than 100 nm and a second set of pores wherein the pores have an average diameter of at least 100 nm. The second set of pores contains stabilizing organic microgel particles. The first and second sets of pores are isolated from each other within the inorganic solid phase.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Inventors: Mary Christine Brick, Joseph Salvatore Sedita, Mridula Nair
  • Publication number: 20120277466
    Abstract: In one embodiment, the invention is to a catalyst composition, comprising vanadium and titanium. Preferably, the molar ratio of vanadium to titanium in an active phase of the catalyst composition is greater than 0.5:1.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: Celanese International Corporation
    Inventors: Dick Nagaki, Heiko Weiner, Josefina T. Chapman, Mark O. Scates, Alexandra S. Locke, Craig J. Peterson
  • Publication number: 20120270727
    Abstract: Provided a compound catalyst allowing for substitution of a rare noble metal such as platinum, palladium and the like or reduction of costs associated with the use thereof. According to the present invention, the oxidation-reduction characteristics thereof may be controlled and catalytic effects similar to those of a noble metal or a transition metal complex may be exhibited by controlling the valence electron concentration of a compound to change the electronic occupation number of the d-band and maintaining the electronic state at the Fermi level of the electronic state identical to a noble metal or a transition metal complex.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 25, 2012
    Applicant: HITACHI, LTD.
    Inventor: Shin YABUUCHI
  • Publication number: 20120263777
    Abstract: An environment-friendly porous bead-satellite nanoparticles composite which has excellent recovery and repeated usage performance and can be used as a catalyst, an antiviral agent, or an antimicrobial, and a fabrication method thereof are provided. The porous bead-satellite nanoparticles composite includes a porous bead, a molecule having a first end coupled to the surface of the porous bead and including a functional group at a second end, and satellite nanoparticles coupled to the functional group, wherein the porous bead may have a core-shell structure including a cluster core of nanoparticles and a porous bead shell covering the cluster core.
    Type: Application
    Filed: August 4, 2011
    Publication date: October 18, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyoungja WOO, Hye Hun PARK, Wooyoung PARK
  • Patent number: 8288306
    Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
  • Publication number: 20120214957
    Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
    Type: Application
    Filed: October 13, 2010
    Publication date: August 23, 2012
    Inventors: Chuanfeng Li, Hongping Ren, Xiaoli Yao, Zhonglln Ma, Feng Guo, Kaixiu Wang, Jingwei Liu, Yaming Wang, Lijuan Yang
  • Patent number: 8247341
    Abstract: Disclosed are procatalyst compositions having an internal electron donor which includes a silyl glutarate and optionally an electron donor component. Ziegler-Natta catalyst compositions containing the present procatalyst compositions exhibit strong activity and produce propylene-based olefins with high isotacticity.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: August 21, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Kelly A. Gonzalez, Tao Tao, Tak W. Leung
  • Publication number: 20120208694
    Abstract: A process for the preparation of a chromium-type supported olefin polymerization catalyst. A fluidized bed of support particles in an inert carrier gas is established. A chromium (III) compound is added to the fluidized support particles to provide a supported catalyst component. The supported catalyst component is activated to convert at least a portion of the chromium (III) to Chromium (VI). The chromium (III) containing particles may be recovered from the fluidized bed and then activated or they may be activated in the fluidized bed. Also the support particles can be treated in the fluidized bed with other treatment agents. The support particles may be pretreated with a solution of a boron treating agent prior to incorporation of the support in the fluidized bed.
    Type: Application
    Filed: April 24, 2012
    Publication date: August 16, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Ricky McCormick, David Knoeppel
  • Publication number: 20120198769
    Abstract: A catalyst-coated support including a sheetlike support, a primer layer applied thereto and composed of nanoparticles composed of silicon oxide-comprising material, and at least one catalyst layer applied to the primer layer. The layers applied are notable for a particularly good adhesive bond strength and can be used particularly efficiently in heterogeneously catalyzed gas phase reactions, especially in microreactors.
    Type: Application
    Filed: June 23, 2010
    Publication date: August 9, 2012
    Inventors: Steffen Schirrmeister, Martin Schmitz-Niederau, Ingo Klüppel, Christoph Filthaut
  • Patent number: 8236726
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 7, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong