Of Group Vi (i.e., Cr, Mo, W Or Po) Patents (Class 502/254)
  • Patent number: 8288306
    Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
  • Patent number: 8278241
    Abstract: Described is a novel amorphous silica-alumina composition having a high ratio of pore volume contained in large pores to pore volume contained in medium to small pores. The amorphous silica-alumina composition also may have the characteristic of a strong aluminum-NMR penta-coordinated peak representing greater than 30% of the total aluminum and a method of making such novel amorphous silica-alumina composition using a pH swing preparation method.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 2, 2012
    Assignee: Shell Oil Company
    Inventors: Russell Craig Ackerman, Christian Gabriel Michel, John Anthony Smegal, Johannes Anthonius Robert Van Veen
  • Patent number: 8236726
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 7, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
  • Patent number: 8216961
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 10, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20120149551
    Abstract: A catalyst material for preparing nanotubes, especially carbon nanotubes, said material being in the form of solid particles, said particles including a porous substrate supporting two superposed catalytic layers, a first layer, directly positioned on the substrate, including at least one transition metal from column VIB of the Periodic Table, preferably molybdenum, and a second catalytic layer, positioned on the first layer, comprising iron. Also, a process for preparing same and to a process for the synthesis of nanotubes using this catalyst material.
    Type: Application
    Filed: August 16, 2010
    Publication date: June 14, 2012
    Applicants: INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE (INPT), ARKEMA FRANCE
    Inventors: Patrice Gaillard, Serge Bordere, Philippe Serp, Brigitte Caussat, Julien Beausoleil
  • Publication number: 20120122669
    Abstract: A method of selectively arraying ferritin and inorganic particles on a silicon oxide substrate having a chromium, niobium or tungsten portion. An aspect of the method includes steps of: preparing a solution which contains ferritin modified at an N-terminal part of a subunit with a peptide set out in SEQ ID NO: 1, and a nonionic surfactant; and a binding step of bringing the solution in contact with the silicon oxide substrate to selectively array peptide-modified ferritin to the chromium, niobium or, tungsten portion. Another aspect of the method includes selectively arraying ferritin modified with the peptide set out in SEQ ID NO: 1, and the inorganic particles contained in ferritin at the chromium, niobium, or tungsten portion by removing the solution.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 17, 2012
    Applicant: PANASONIC CORPORATION
    Inventor: Nozomu MATSUKAWA
  • Patent number: 8178468
    Abstract: A catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 315 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ?. The catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta. Methods of preparation of such catalyst are described herein. Methods of contacting a hydrocarbon feed with hydrogen in the presence of such catalyst to produce a crude product. Uses of crude products obtained. The crude product composition is also described herein.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 15, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 8158553
    Abstract: A photocatalyst dispersion element includes: a photocatalytic material; a solvent; and an ion additive. The ion additive generates a cation having a smaller ion radius than a tetramethylammonium ion in the solvent.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: April 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuaki Makino, Junsei Yamabe
  • Publication number: 20120088186
    Abstract: The invention relates to a catalyst, to the use thereof for the electrochemical conversion of methane to methanol and for the direct electrochemical conversion of methane to CO2. The invention also relates to an electrode, in particular for a fuel cell including such a catalyst, as well as to a method for manufacturing such an electrode. The invention further relates to a fuel cell including said catalyst or said electrode. The catalyst according to the invention includes a platinum precursor (II), and optionally a metal-ion precursor M supported by particles of a heteropolyanion (HPA). The invention can be used in particular in the field of the electrochemical oxidation of methane into methanol or CO2.
    Type: Application
    Filed: April 23, 2010
    Publication date: April 12, 2012
    Applicants: UNIVERSITE PARIS SUD XI, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventor: Yu-Wei Lu
  • Publication number: 20120058884
    Abstract: Techniques for coating a fiber with metal oxide include forming silica in the fiber to fix the metal oxide to the fiber. The coated fiber can be used to facilitate photocatalysis.
    Type: Application
    Filed: November 9, 2011
    Publication date: March 8, 2012
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventor: Kwangyeol Lee
  • Patent number: 8114806
    Abstract: A catalyst and a method of preparation of said catalyst is described herein. The catalyst includes one or more metals from Columns 6-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 6-10 of the Periodic Table, a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?. Methods of producing said catalyst are described herein. Crude products and products made from said crude products are described herein.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: February 14, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Publication number: 20120027666
    Abstract: Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
    Type: Application
    Filed: March 17, 2010
    Publication date: February 2, 2012
    Applicant: EMORY UNIVERSITY
    Inventors: Craig L Hill, Yurii V Gueletii, Djamaladdin G. Musaev, Qiushi Yin, Bogdan Botar
  • Publication number: 20120006724
    Abstract: Provided are hydrocracking catalysts comprising a cracking component and a hydrogenation component, wherein, for example: the cracking component comprises at least one molecular sieve present in an amount ranging from 0% to 20% by weight relative to the total weight of the catalyst and at least one amorphous silica-alumina present in an amount ranging from 20% to 60% by weight relative to the total weight of the catalyst; the hydrogenation component comprises at least one hydrogenation metal present in a total amount ranging from 34% to 75% by weight calculated by the mass of oxides, relative to the total weight of the catalyst; and the hydrocracking catalyst has a specific surface area ranging from 150 m2/g to 350 m2/g and a pore volume ranging from 0.20 cm3/g to 0.50 cm3/g, such as from 0.30 cm3/g to 0.45 cm3/g, and the product (M×S) of the percentage amount of the total mass of the hydrogenation metal (M) and the specific surface area (S) is equal to or more than 100 m2/g, i.e., M×S?100 m2/g.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 12, 2012
    Inventors: Yanze Du, Minghua Guan, Fenglai Wang, Chang Liu
  • Patent number: 8088706
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 3, 2012
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20110257443
    Abstract: A catalyst comprising a first metal, a silicaceous support, and at least one metasilicate support modifier, wherein at least 1 wt. % of the at least one metasilicate support modifier is crystalline in phase, as determined by x-ray diffraction. The invention also relates to processes for forming such catalysts, to supports used therein, and to processes for hydrogenating acetic acid in the presence of such catalysts.
    Type: Application
    Filed: February 1, 2011
    Publication date: October 20, 2011
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Victor J. Johnston
  • Publication number: 20110237758
    Abstract: The present invention provides a urethane-forming reaction catalyst which is useful for catalyzing a reaction between an isocyanate compound, in particular, an aliphatic isocyanate and a hydroxyl group-containing compound to form a urethane material, which does not affect the performance of the urethane material, and which can be easily removed from the resulting urethane material, and a method for producing a metal compound-free urethane material using the urethane-forming reaction catalyst. The catalyst of the present invention is a urethane-forming reaction catalyst for producing a urethane material by allowing a hydroxyl group-containing compound to react with an isocyanate compound, the catalyst being at least one solid acid catalyst selected from the group consisting of a (A) composite metal oxide in which a metal oxide (A-2) or a non-metal compound (A-3) is carried on a surface of a metal oxide carrier (A-1), (B) zeolite, and a (C) heteropoly acid.
    Type: Application
    Filed: September 16, 2009
    Publication date: September 29, 2011
    Applicant: DIC Corporation
    Inventors: Hironobu Oki, Yasuyuki Watanabe, Youichi Abe
  • Publication number: 20110230691
    Abstract: The invention describes a heteropolycompound constituted by a nickel salt of a lacunary Keggin type heteropolyanion comprising tungsten in its structure, with formula: Nix+y/2AW11-yO39-5/2y,zH2O wherein Ni is nickel, A is selected from phosphorus, silicon and boron, W is tungsten, O is oxygen, y=0 or 2, x=3.5 if A is phosphorus, x=4 if A is silicon, x=4.5 if A is boron, and x=m/2+2 for the rest, and z is a number in the range 0 to 36, in which said heteropolycompound has no nickel atom in substitution for a tungsten atom in its structure, said nickel atoms being placed in the counter-ion position in the structure of said compound.
    Type: Application
    Filed: July 29, 2009
    Publication date: September 22, 2011
    Inventors: Audrey Bonduelle, Fabrice Bertoncini, Karima Ben Tayeb, Carole Lamonier, Michel Fournier, Edmond Payen
  • Patent number: 8022254
    Abstract: The invention relates to a halide-containing alkali tungstate catalyst for the synthesis of alkylmercaptans from alkanols and hydrogen sulfide, and to a process for the preparation of this catalyst.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: September 20, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Hubert Redlingshöfer, Christoph Weckbecker, Andreas Dörflein
  • Publication number: 20110212829
    Abstract: A process for making a ceramic catalyst material includes mixing a catalyst precursor material with a mineral particulate to form a mixture; adding a binder, silicon carbide, and a parting agent to the mixture to form unfired spheroids; and heating the unfired spheroids at a temperature effective to oxidize the silicon carbide and the catalyst precursor material to form the ceramic catalyst material. In another embodiment, the process includes the addition of a catalyst metal oxide salt to an aluminosilicate hydrogel aggregate mixture. Once the mixture sets, the set mixture is heated to a temperature to effective to produce a high surface area ceramic catalyst material.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 1, 2011
    Inventor: Felice DiMascio
  • Publication number: 20110196185
    Abstract: Acid washing of silica supports, used for supported tungsten catalysts, improves the activity of the resulting catalyst (i.e., its conversion level at a given temperature) for the metathesis of olefins, without compromising its selectivity to the desired conversion product(s). Exemplary catalysts and processes include those for the production of valuable light olefins such as propylene from a hydrocarbon feedstock comprising ethylene and butylene.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 11, 2011
    Applicant: UOP LLC
    Inventors: Mark A. KRAWCZYK, Kristoffer E. POPP, Christopher P. NICHOLAS, Jennifer F. ABRAHAMIAN
  • Publication number: 20110196184
    Abstract: Silica supports having a surface area from about 250 m2/g to about 600 m2/g and an average pore diameter from about 45 ? to about 170 ?, used for supported tungsten catalysts, improves the activity of the resulting catalyst (i.e., its conversion level at a given temperature) for the metathesis of olefins, without compromising its selectivity to the desired conversion product(s). Exemplary catalysts and processes include those for the production of valuable light olefins such as propylene from a hydrocarbon feedstock comprising ethylene and butylene.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 11, 2011
    Applicant: UOP LLC
    Inventors: Kristoffer E. POPP, Mark A. KRAWCZYK, Christopher P. NICHOLAS, Jennifer F. ABRAHAMIAN
  • Publication number: 20110155641
    Abstract: The present invention concerns a catalyst comprising at least one crystalline material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said crystalline material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having microporous and crystalline walls with a thickness in the range 1.5 to 60 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Application
    Filed: May 13, 2009
    Publication date: June 30, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Publication number: 20110136658
    Abstract: A catalyst used in the reaction of oxidative bromination of methane is provided. The catalyst is prepared by the following procedures: mixing at least one of the precursors selected from the compounds of Rh, Ru, Cu, Zn, Ag, Ce, V, W, Cd, Mo, Mn, Cr and La which can dissolve in water with the Si precursor, hydrolyzing, drying and sintering. In the catalysis system, methane reacts with HBr, H2O and oxygen source (O2, air or oxygen-rich air), finally CH3Br and CH2Br2 are produced. Another catalyst used in the reaction of condensation of methane bromide to C3-C13 hydrocarbons is also provided. This catalyst is prepared by supporting compounds of Zn or Mg on molecular sieves such as HZSM-5, HY, Hb, 3A, 4A, 5A or 13X et al. With this catalyst, CH3Br and CH2Br2 produced in the former process can react further to give C3 to C13 hydrocarbons and HBr, and HBr can be recycled as a medium.
    Type: Application
    Filed: April 14, 2008
    Publication date: June 9, 2011
    Inventors: Zhen Liu, Hongmin Zhang, Wensheng Li, Yanqun Ren, Xiaoping Zhou
  • Publication number: 20110101265
    Abstract: A catalyst for producing a carbon nanofiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or the fluid dispersion, and then impregnating a particulate carrier with the solution or the fluid dispersion. A carbon nanofiber is obtained by bringing a carbon element-containing compound into contact with the catalyst in a vapor phase at a temperature of 300 degrees C. to 500 degrees C.
    Type: Application
    Filed: June 16, 2009
    Publication date: May 5, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Publication number: 20110098519
    Abstract: A catalyst composition for dehydration of an alcohol to prepare an alkene is provided. The catalyst composition comprises a catalyst and a modifying agent which is phosphoric acid, sulfuric acid or tungsten trioxide, or a derivative thereof. A process for preparing an alkene by dehydration of an alcohol is also provided. The process comprises mixing one or more alcohols and optionally water and the catalyst composition.
    Type: Application
    Filed: August 12, 2008
    Publication date: April 28, 2011
    Inventors: Kanaparthi Ramesh, Armando Borgna
  • Publication number: 20110086755
    Abstract: A catalyst for hydrocracking of heavy oil which comprises a support comprising crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate and an active metal supported on the support, wherein (a) the support comprises the crystalline aluminosilicate in an amount of 18% by mass or greater and smaller than 45% by mass and the porous inorganic oxide in an amount exceeding 55% by mass and of 82% by mass or smaller based on a sum of the amount of the crystalline aluminosilicate and the amount of the porous inorganic aluminosilicate, (b) the active metal is at least one metal selected from molybdenum, tungsten and nickel, and (c) the distribution of pores in the catalyst for hydrocracking of heavy oil is such that a volume of pores having a diameter of 500 to 10,000 ? is 10% or smaller and a volume of pores having a diameter of 100 to 200 ? is 60% or greater based on a volume of entire pores having a diameter of 50 to 10,000 ?.
    Type: Application
    Filed: March 17, 2009
    Publication date: April 14, 2011
    Inventors: Akira Iino, Kazuhiro Inamura
  • Publication number: 20110073522
    Abstract: The present invention concerns a catalyst comprising at least one amorphous material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said amorphous material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said spherical particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having amorphous and microporous walls with a thickness in the range 1.5 to 50 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Application
    Filed: May 13, 2009
    Publication date: March 31, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Publication number: 20110065017
    Abstract: In one embodiment, a composition for use in reforming is provided comprising a catalyst material comprising molybdenum dioxide and/or MO2 (where M=Mo, W, Ru, Re, Os, Ir) nanoparticles having an average particle size from about 2 nm to about 1,000 nm; and a substrate, wherein both the molybdenum dioxide and/or MO2 (where M=Mo, W, Ru, Re, Os, Ir) nanoparticles are substantially immobilized on the substrate. In another embodiment an anode for use in a fuel cell is provided comprising the forgoing composition. And in another embodiment a fuel cell is provided comprising the forgoing anode.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 17, 2011
    Inventors: Su Ha, M. Grant Norton
  • Publication number: 20110065572
    Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.
    Type: Application
    Filed: May 8, 2009
    Publication date: March 17, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Michael M. Olken, Edward M. Calverley
  • Patent number: 7902104
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignees: Arkema France, Institut National Polytechnique de Toulouse
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Patent number: 7888281
    Abstract: A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: February 15, 2011
    Assignee: Evernu Technology, LLC
    Inventors: Manhua Lin, Krishnan S. Pillai
  • Patent number: 7863216
    Abstract: The invention provides a discharge gas treatment catalyst which can effectively decreases NOx and SO3 contained in a discharge gas. The discharge gas treatment catalyst, for removing nitrogen oxide and sulfur trioxide from a discharge gas, includes a carrier which is formed of titania-tungsten oxide and which carries ruthenium, and a titania-tungsten oxide-based NOx removal catalyst serving as a substrate which is coated with the carrier. When a discharge gas to which ammonia has been added and which contains SO3 and NOx is brought into contact with the catalyst, decomposition of ammonia is suppressed by ruthenium, and reduction of SO3 and NOx contained in the discharge gas is promoted, whereby SO3 concentration and NOx concentration can be further decreased.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 4, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yoshiaki Obayashi, Toshiyuki Onishi, Kozo Iida
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Publication number: 20100298592
    Abstract: The present invention relates to a novel catalyst for producing N-substituted carbamates, the preparation of the catalyst and an improved method for producing N-substituted carbamates from these novel catalysts. The active component of the catalyst is a heteropoly acid and the catalyst support comprises a metal oxide or a metalloid oxide. The catalyst can be used to promote the reaction of carbamate and amine, thereby generating N-substituted carbamates with high yield. In the presence of the catalyst, the reaction conditions are relatively mild, the catalytic activity and selectivity of the reaction are high, and the reaction time is relatively short. Furthermore, the catalyst can be conveniently separated from the reaction system and recycled. therefore, the catalyst can be used to facilitate the further scale-up test and commercial application.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 25, 2010
    Applicant: Bayer MaterialScience AG
    Inventors: Stefan Wershofen, Stephan Klein, Hongchao Li, Xinkui Wang, Qifeng Li, Maoqing Kang
  • Publication number: 20100273645
    Abstract: A catalyst composition, useful for a diversity of chemical production processes, preferably comprises a glass substrate, with one or more functional surface active constituents integrated on and/or in the substrate surface. A substantially nonporous substrate has (i) a total surface area between about 0.01 m2/g and 10 m2/g; and (ii) a predetermined isoelectric point (IEP) obtained in a pH range greater than 0, preferably greater than or equal to 4.5, or more preferably greater than or equal to 6.0, but less than or equal to 14. At least one catalytically-active region may be contiguous or discontiguous and has a mean thickness less than or equal to about 30 nm, preferably less than or equal to 20 nm and more preferably less than or equal to 10 nm. Preferably, the substrate is a glass composition having a SARCNa less than or equal to about 0.5.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Inventors: Robert L. Bedard, Dean E. Rende, Ally S. Chan
  • Publication number: 20100267553
    Abstract: A tungsten-containing mesoporous silica thin film, which is a mesoporous silica thin film formed from a solution containing a silica precursor and a water-soluble tungsten compound, and has a molar ratio (W/Si) of tungsten content to silicon content of 0.001 to 0.04, a film thickness of 0.1 to 5 ?m, and an average pore diameter of 20 nm or less.
    Type: Application
    Filed: August 28, 2008
    Publication date: October 21, 2010
    Applicant: NIPPON OIL CORPORATION
    Inventors: Tadahiro Kaminade, Hiromi Yamashita, Kohsuke Mori, Shinichi Kawasaki, Yu Horiuchi, Yuki Miura, Norikazu Nishiyama
  • Patent number: 7799728
    Abstract: A photocatalyst dispersing element includes: a photocatalyst material; and a solvent. A hydrogen-ion exponent of the solvent is in a range of pH 2.1 or more and pH 5.7 or less. A method for manufacturing a photocatalyst dispersing element includes: adjusting a hydrogen-ion exponent in a solvent to be in a range of inhibiting aggregation of a photocatalyst material and of suppressing lowering of a degree of catalytic activity of the photocatalyst material; and mixing the photocatalyst material with the solvent.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Junsei Yamabe, Naoaki Sakurai, Nobuaki Makino
  • Patent number: 7790019
    Abstract: The invention relates to a catalyst including at least one hydro-dehydrogenating element chosen from the group formed by the group VIB and group VIII elements of the periodic table and a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to hydrocracking and/or hydroconversion processes and hydrotreating processes utilizing a catalyst according to the invention.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 7, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Euzen, Patrick Bourges, Hugues Dulot, Christophe Gueret
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Patent number: 7754647
    Abstract: The present invention provides a process for preparing a supported catalyst (catalyst C) having a support (support S) selected from among oxides, phosphates, silicates, carbides, borides and nitrides of main group elements and elements of transition groups VI and II and mixtures of the abovementioned compounds and an active component (activator A) comprising one or more compounds containing one or more elements of transition groups V, VI and VII customary for the catalysis of metathesis reactions.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: July 13, 2010
    Assignee: Basf Aktiengesellschaft
    Inventors: Markus Schubert, Michael Hesse, Juergen Stephan, Volker Boehm, Andreas Brodhagen, Frank Poplow, Martina Sinner-Lang, Uwe Diehlmann, Gerhard Cox, Jochen Pfeifer
  • Publication number: 20100111796
    Abstract: Catalysts, methods of preparing catalyst, and methods for treating exhaust gas streams are described. In one or more embodiments, a catalyst system includes an upstream zone effective to catalyze the conversion of a mixture of NOx and NH3 to N2, and a downstream zone effective for the conversion of ammonia to N2 in the presence or absence of NOx. In an embodiment, a method for preparing a catalyst system includes: first coating one end of a substrate along at least 5% of its length with an undercoat washcoat layer containing a material composition effective to catalyze the removal of ammonia; second coating with an overcoat layer containing a material composition effective to catalyze the conversion of a mixture of NOx and NH3 to N2.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 6, 2010
    Applicant: BASF Catalysts LLC
    Inventors: Matthew Tyler Caudle, Martin Dieterle, Scott E. Buzby
  • Patent number: 7666296
    Abstract: The invention relates to a process for converting heavy hydrocarbonaceous feedstocks carried out in a slurry reactor in the presence of hydrogen and in the presence of a catalytic composition obtained by: injecting a catalytic precursor of at least one metal of Group VIB and/or Group VIII in at least part of the feedstock to be treated in the absence of an oxide substrate, thermal treatment at a temperature of 400° C.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 23, 2010
    Assignee: Institut Francais du Petrole
    Inventor: Magalie Roy-Auberger
  • Publication number: 20100029474
    Abstract: A stacked bed catalyst system comprising at least one first catalyst selected from conventional hydrotreating catalyst having an average pore diameter of greater than about 10 nm and at least one second catalyst comprising a bulk metal hydrotreating catalyst comprised of at least one Group VIII non-noble metal and at least one Group VIB metal and optionally a binder material.
    Type: Application
    Filed: March 31, 2009
    Publication date: February 4, 2010
    Inventors: Gary P. Schleicher, Kenneth L. Riley
  • Patent number: 7655594
    Abstract: Briefly described, compositions, materials including the compositions, methods of using the compositions, and methods of degrading contaminants, are described herein. The composition can include a polyoxometalate/ cationic silica material. In addition, the compositions can be made of a polyoxometalate/cationic silica material, a copper (II) salt having a weakly bound anion, and a nitrate salts. Further, the compositions can be made of a polyoxometalate/cationic silica material, a copper (II) salt having a weakly bound anion, a compound selected from tetraethylammonium (TEA) nitrate, tetra-n-butylammonium (TBA) nitrate, and combinations thereof.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: February 2, 2010
    Assignee: Emory University
    Inventors: Neyla Okun, Craig L. Hill
  • Patent number: 7648932
    Abstract: The invention relates to a process for the production of a molded porous ceramic article containing ?-SiC, which process comprises the following steps: the preparation of a molded article containing silicon and carbon and the subsequent pyrolysis and siliconization of the article containing silicon and carbon to form SiC. The invention further relates to a molded porous ceramic article containing SiC which has been produced from a molded article containing silicon and carbon.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: January 19, 2010
    Assignee: Mann+Hummel Innenraumfilter GmbH & Co. KG
    Inventors: Lars Weisensel, Thomas Wolff, Heino Sieber, Peter Greil
  • Patent number: 7625840
    Abstract: A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: December 1, 2009
    Assignee: UChicago Argonne, LLC.
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Publication number: 20090255851
    Abstract: A catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 315 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ?. The catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta. Methods of preparation of such catalyst are described herein. Methods of contacting a hydrocarbon feed with hydrogen in the presence of such catalyst to produce a crude product. Uses of crude products obtained. The crude product composition is also described herein.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 15, 2009
    Inventors: Opinder Kishan BHAN, Scott Lee WELLINGTON
  • Patent number: 7598203
    Abstract: Provided are a hydrogenation catalyst for hydrocarbon oil, having markedly improved desulfurization activity, denitrogenation activity, and dearomatization activity; a carrier for the catalyst and its production; and a method of hydrogenation of hydrocarbon oil with the catalyst.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: October 6, 2009
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Narinobu Kagami, Ryuichiro Iwamoto